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Abstract The process of implicitization generates an implicit representation of a
curve or surface from a given parametric one. This process ispotentially interesting
for applications in Computer Aided Design, where the robustness and efficiency of
intersection algorithm can be improved by simultaneously considering implicit and
parametric representations. This paper gives an brief survey of the existing tech-
niques for approximate implicitization of hyper surfaces.In addition it describes a
framework for the approximate implicitization of space curves.
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1 Introduction

There exist two main representations of curves and surfacesin Computer Aided
Geometric Design: the implicit and the parametric form. In both cases, the functions
which describe the curve or surface are almost always chosenas polynomial or
rational functions or, more generally, as polynomial or rational spline functions [15].
Consequently, one deals with segments and patches of algebraic curves and surfaces.

Each of the two different representation is particularly well suited for certain
applications. Parametric representations are well suitedto generate points, e.g., for
displaying curves and surfaces, and to apply the results of the classical differential
geometry of curves and surfaces, e.g., for shape interrogation. Implicit representa-
tions encompass a larger class of shapes and are more powerful for certain geometric
queries. Moreover, the class of algebraic curves and surfaces is closed under cer-
tain geometric operations, such as offsetting, while the class of rational parametric
curves and surfaces is not.

Consequently, it is often desirable to change from one representation to the other
one. For instance, the implicitization of a planar curve reduces the computation of
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the intersection of two curves given in the parametric form to find the roots of a
single polynomial [23].

The exact conversion procedures, implicitization and parameterization, have
been studied in classical algebraic geometry and in symbolic computation. Their
practical application in Computer Aided Design is rather limited, due to the feasibil-
ity reasons outlined below. As an alternative, approximatetechniques have emerged
recently. These alternatives contribute to the use of symbolic-numerical techniques
in Computer Aided Geometric Design.

The remainder of this paper consists of four parts. First we introduce the no-
tation. Section 3 then presents a survey of related techniques for the approximate
implicitization of hypersurfaces. The following section describes a new framework
for the approximate implicitizaton of space curves. Finally we conclude this paper.

2 Preliminaries

We start by introducing a few notations. A parametric representation of a curve
segment or a surface patch is a mapping

p : Ω → R
d : t 7→ p(t) (1)

whereΩ ⊂ R
k is the parameter domain (typically a closed interval inR or a box in

R
2). A curve or surface is described fork = 1 andk = 2, respectively. In many appli-

cations, e.g. in Computer-Aided Design, the mappingp is represented by piecewise
rational functions (rational spline functions), see [15].

An implicitly defined hypersurfaceF in R
d is the zero-set of a functionfs :

R
d → R,

F = {x ∈ R
d : fs(x) = 0}. (2)

If d = 3 or d = 2, then it is called an implicitly definedsurface or planar curve,
respectively.

The subscript represents a vectors∈ R
N which collects the parameters which

characterize the functionfs(x). They are called theshape parameters, since they
control the shape of the curve or surface. For instance, iffs is a polynomial of some
finite degree,

fs(x) =
N

∑
i=1

si φi(x), (3)

thens= (s1, . . . ,sN) contains the coefficients with respect to a suitable basis(φi)
N
i=1

of the space of polynomials.
An implicitly defined space curve

C = {x ∈ R
3 : fs(x) = 0∧gs(x) = 0}. (4)
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Fig. 1 An implicitly defined space curve

is defined by two intersecting implicitly defined surfacesF and G , see Fig. 1.
Clearly, fs andgs are not unique. This space curve is said to beregular at the point
x ∈ F ∩G , if there exists a representation (4) such that the two gradient vectors
∇x fs(x) and∇xgs(x) with ∇x = ( ∂

∂x ,
∂
∂y ,

∂
∂ z ) are linearly independent.

Typically, the two functions definingF andG are characterized by two indepen-
dent sets of shape parameters, saysf andsg. In order to simplify the notation, we
shall use the convention that both functions depend on the union of these two sets,
hence ons= sf ∪ sg. If the two functionsfs(x) andgs(x) are polynomials, thenC
is said to be analgebraic space curve.

3 Approximate Implicitization

Exact techniques for the implicitization of curves and surfaces have been studied
for a long time. In 1862, Salmon [20] noted that the surface implicitization can
be performed by eliminating the parameters. This was improved by Dixon in 1908
[8], who published a more compact resultant for eliminatingtwo variables from
three polynomials. In 1983, Sederberg [21] considered the implicitization of surface
patches for Computer Aided Geometric Design.

From a theoretical point of view, the problem of the implicitization of a given
rational curve or surface is always solvable. However, there remains a number of
challenging computational difficulties. As described in [15, chapter 12], while the
2D case can be handled satisfactorily by building the Bezoutresultant, the 3D case
is more complicated: for instance, a tensor product surfaceof degree(m,n) leads to
an implicit formula of degree 2mn. Then, in the simple casem = n = 3, we already
have an algebraic representation of degree 18. After expanding this polynomial in
monomial basis this would lead to 1330 terms.

Practical problems associated with the exact implicitization of curves and sur-
faces are addressed in [22] and [5]. Gröbner bases can also be used [7]. For more
details on resultant based methods, the reader may also consult [6].

To conclude, as shown in [22, 15], exact implicitization hasmany associated
difficulties, in particular in the case of surfaces. Moreover, the computed implicit
form of a curve or surface can be difficult to use, since the degree of the polynomial
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is often too high. On the other hand, CAD (Computer-Aided Design) systems are
based on floating point computations, and so all quantities are represented with a
rounding error. Therefore, if we apply any of the exact implicitization method in
this context, the result is not exact.

The existing techniques for approximate implicitization can be classified as direct
ones, where the result is found in a single step, and evolution-based techniques,
where an iterative process is needed to find the result.

3.1 Direct techniques

We describe three approaches to approximate implicitization. The first two ap-
proaches are due to Dokken, who also coined the notion of AI. The third approach
comprises various fitting-based techniques.

Dokken’s method.

In order to adapt implicitization to the need for approximate computation in CAD,
and to achieve more practical algorithms, Dokken introduced the approximate im-
plicitization of a curve or surface [9, 10]. In the sequel we recall Dokken’s method
to compute the approximate implicitization of a curve or surface. See also [12] for
a survey of these and related techniques.

Given a parametric curve or surfacep(t), t ∈ Ω , a polynomial fs(x) is called
approximate implicitization ofp(t) with toleranceε > 0 if we can find a continuous
direction functiong(t) and a continuous error functionη(t) such that

fs(p(t)+ η(t)g(t)) = 0, (5)

with ‖g(t)‖2 = 1 and|η(t)| ≤ ε (see [9, Definition 35]). We denote byn the degree
of the parametrizationp and bym the degree offs.

Dokken observes that the compositionfs◦p can be factorized as

fs(p(t)) = (Ds)T α(t), (6)

whereD is a matrix build from certain products of the coordinate functions ofp(t), s
is the vector of parameters that characterize the functionfs(x). Furthermore,α(t) =
(α1(t), . . . ,αN(t))T is the basis of the space of polynomials of degreemn, which is
used to describefs(p(t)) andN is the dimension of polynomial space.

This basis is assumed to form a partition of unity,

N

∑
i=1

αi = 1

and in addition, the basisα(t) is assumed to be non-negative fort ∈ Ω :
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αi(t) ≥ 0, ∀i,∀t ∈ Ω .

For instance, one may use the Bernstein-Bézier basis with respect to the intervalΩ
or with respect to a triangle which containsΩ in the case of curves and surfaces,
respectively.

Consequently we obtain that

| fs(p(t))| = |(Ds)T α(t)| ≤ ‖Ds‖2‖α(t)‖2 ≤ ‖Ds‖2, (7)

hence we are led to find a vectors which makes‖Ds‖2 small. Using the Singular
Value Decomposition (SVD) of the matrixD, one can show that‖ fs1(p(t)))‖∞ ≤√

σ1, whereσ1 is the smallest singular value, ands1 is the corresponding singular
vector. This strategy enables the use of Linear Algebra tools to solve the problem
of approximate implicitization. Moreover, this approach provides high convergence
rates, see [12, Table 1 and 2].

Dokken’s weak method.

Dokken’s original method has several limitations: for instance, it is relatively costly
to build the matrixD. Moreover, it is impossible to use spline functions for describ-
ing fs, since no suitable basis for the compositionfs◦p can be found.

This problem can be avoided by using theweak form of approximate impliciti-
zation which was introduced in [11], see also [12, section 10]. For a given curve or
surfacep with parameter domainΩ , we now find the approximate implicitization
by minimizing

∫

Ω
( fs(p(t)))2dt = sT As (8)

where

A = DT
(

∫

Ω
α(t)α(t)T dt

)

D. (9)

The matrixA can be analyzed by eigenvalue decomposition, similar to theoriginal
approach, where the matrixD was analyzed with singular value decomposition.
Note that one can apply this strategy even if no explicit expression is available: one
only needs to be able to evaluate points on the curve or surface. The integrals can
then be approximately evaluated by numerical integration.

Choosing the eigenvector which is associated with the smallest eigenvalue of the
matrixA is equivalent to minimizing the objective function defined in (8) subject to
the constraint‖s‖= 1. This can be seen as a special case of fitting, see next section.

Algebraic curve and surface fitting.

Given a number of points(pi)
N
i=1, which have been sampled from a given curve

or surface, one may fit a curve or surface by minimizing the sumof the squared
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residuals (also called algebraic distances),

N

∑
i=1

( fs(pi))
2
. (10)

This objective function can be obtained by applying a simplenumerical integration
to (8).

If the algebraic curve or surface is given as in (3), then thisobjective function
has the trivial minimums= 0. In order to obtain a meaningful result by minimizing
(10), several additional constraints have been introduced.

Pratt [19] picks one of the coefficients and restricts it to 1,e.g.

s1 = 1. (11)

For instance, iffs is a polynomial which is represented with respect to the usual
power basis, then one may consider the absolute term. This constraint is clearly not
geometrically invariant, since the curve and surface cannot pass through the origin
of the system of coordinates.

Geometrically invariant constraints can be obtained by considering quadratic
functions of the unknown coefficientss. An interesting normalization has been sug-
gested by Taubin [25], who proposed to use the norm of the squared gradient vectors
at the given data,

N

∑
i=1

‖∇x fs(pi)‖2 = 1. (12)

Adding this constraint leads to a generalized eigenvalue problem. Taubin’s method
gives results which are independent of the choice of the coordinate system.

Finally, Dokken’s weak method – when combined with numerical integration for
evaluating the objective function (8) – uses the constraint

‖s‖2 =
N

∑
i=1

s2
i = 1. (13)

These three approaches are able to provide meaningful solutions which minimize
the squared algebraic distances (10). However, they may still lead to fairly unex-
pected results. Additional branches and isolated singularpoints may be present,
even for data which are sampled from regular curves or surfaces.

If a method for approximate implicitization is to reproducethe exact results for
sufficiently high degrees, then this unpleasant phenomenonis always present. For
instance, consider a cubic planar curve with a double point.Even if we take sample
points only from one of the two branches which pass through the singular point,
any of the above-mentioned methods will generate the cubic curve with the double
point, provided that the degree offs is at least 3.

These difficulties can be avoided by using additional normal(or gradient) infor-
mation. More precisely, a nontrivial solution of the minimization problem can be
found by considering a convex combination of the two objective functions (8) and
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N

∑
i=1

‖∇x fs(pi)−ni‖2
, (14)

where the vectors(ni)
N
i=1 represent additional normal vector information at the given

points.
This gives a quadratic function of the unknown coefficientss, hence the minimum

is found by solving a system of linear equations. This approach has been introduced
in [16], and it has later been extended in [17, 27, 26]. Among other topics, these pa-
pers also consider the case of curves which contain singularpoints, where a globally
consistent propagation of the normals is needed.

3.2 Iterative (evolution-based) techniques

Iterative (evolution-based) methods have been consideredfor several reasons. First,
they lead to a uniform framework for handling various representations of curves
and surfaces, which can handle implicitly defined curves andsurfaces as well as
parametric ones [1, 13]. Second, they make it possible to include various conditions,
such as constraints on the gradient field, volume constraints or range constraints
[28, 14, 29]. Finally, the sequence of curves or surfaces generated by an iterative
method can be seen as discrete instances of a continuous evolution process, which
links this approach to the level set method and to active curves and surfaces in
Computer Vision [18, 4].

We recall the evolution-based framework for fitting point data (p j) j=1,...,M with
implicitly defined hypersurfaces, which was described in [1]. In this framework,
the approximate solutions which are generated by an iterative algorithm are seen as
discrete instances of a continuous movement of an initial curve or surface towards
the target points (the given point data).

More precisely, we assume that the shape parameterss depend on a time-like
parametert, and consider the evolution of the hypersurface described by the param-
eterss(t) for t → ∞. Each data pointp j attracts a certain pointf j on the hypersurface
F which is associated with it. Usuallyf j is chosen to be the closest point onF , i.e.

f j = arg min
p∈F

‖p−p j‖. (15)

These attracting forces push the time-dependent hypersurface towards the data. This
is realized by assigning certain velocities to the points onthe hypersurface. For a
point lying on a time-dependent implicitly defined curve or surface, which is de-
scribed by a functionfs, the normal velocity is given by

v = −∂ fs
∂ t

∇x f⊤s
‖∇x fs‖2 = −∇s fs ṡ

∇x f⊤s
‖∇x fs‖2 , (16)

where the dot indicates the derivative with respect tot and the gradient operator
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∇s = (
∂

∂ s1
, . . . ,

∂
∂ sN

) (17)

gives the row vector of the first partial derivatives. Note that we omitted the time
dependency ofs in (16), in order to simplify the notation.

The first term−∇s fs ṡ in (16) specifies the absolute value of the normal velocity.
The second term is the unit normal vector of the curve, which identifies the direction
of the velocity vector.

As the number of data points exceeds in general the degrees offreedom of the
hypersurface, the velocities are found as the least squaressolution of

M

∑
j=1

((v j −d j)
⊤n j)

2 → min
ṡ

, (18)

whered j = f j −p j is the residual vector from a data point to its associated point on

the hypersurface,n j = ∇x fs
‖∇x fs‖ is the unit normal in this point andv j is the velocity

computed via (16) atf j. More precisely, this leads to the minimization problem

M

∑
j=1

(

(
(∇s fs)(p j) ṡ (∇x fs)(p j)

‖(∇x fs)(p j)‖2 − (f j −p j)
⊤)

(∇x fs)(p j)
⊤

‖(∇x fs)(p j)‖

)2

→ min
ṡ

. (19)

We use Tikhonov regularization in order to obtain a unique solution. In addition, we
apply a distance field constraint, in order to avoid the trivial solution, cf. [28].

The geometric interpretation of this approach is as follows: The bigger the dis-
tance to the associated data point, the greater is the velocity that causes the move-
ment of the hypersurface at the corresponding point. Note that (18) takes only the
normal component of the velocity into account, as a tangential motion does not
change the distance to the data.

The objective function in Eq. (19) depends onsas well as oṅs. For a given value
of s, we can finḋsby solving a system of linear equations. Consequently, (19)leads
to an ordinary differential equation for the vector of shapeparameters. We can solve
it by using Euler steps with a suitable stepsize control, see[1] for details.

The solution converges to a stationary point, which defines the solution of the
fitting problem. It can be shown that this evolution-based approach is equivalent to
a Gauss-Newton method for the implicit fitting problem, and the stationary point of
the ODE is a (generally only) local minimum of the objective function

M

∑
j=1

||p j − f j||2, (20)

wheref j has been defined in (15), see [2].
The evolution viewpoint has several advantages. It provides a geometric inter-

pretation of the initial solution, which is now seen as the starting point of an evolu-
tion that drives the hypersurface towards the data. It also provides a geometrically
motivated stepsize control, which is based on the velocity of the points during the
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evolution (see [1]). Finally, the framework makes it possible to introduce various
other constraints on the shape of the hypersurface, see [13,14].

In the remainder of this paper we will apply the evolution framework to the
approximate implicitization of space curves. In this situation we need to generate
two surfaces which intersect in the given space curve. Moreover, these two surfaces
should intersect transversely, in order to obtain a robustly defined intersection curve.

4 Approximate implicitization of space curves

Now we consider a point cloud(p j) j=1,...,M which has been sampled from a space
curve. Recall that a pointp j lies on an implicitly defined space curveC if it is con-
tained in both surfaces defining the curve. Consequently we fit the spatial data with
two surfacesF andG . The desired solutionC is then contained in the intersection
of F andG . We need to couple the fitting of the two surfaces, in order to obtain a
well-defined intersection curve.

4.1 Fitting two implicitly defined surfaces

Following the idea in [2] we use an approximation of the exactgeometric distance
from a data point to a space curve. More precisely, we use the Sampson distance
which was originally introduced for the case of hypersurfaces [25]. The oriented
distance from a pointp j to a curve or surface which is defined implicitly as the zero
set of some functionfs can be approximated by

fs(p j)

‖∇x fs(p j)‖
. (21)

Geometrically speaking, the equation of the surface is linearized in the pointp j

and the distance from this point to the zero-set of the linearization is taken as an
approximation of the exact distance. Consequently, this measure is exact for planes,
as they coincide with their linearization. The Sampson distance is not defined at
points with vanishing gradients, which have to be excluded.

A natural extension of this distance to two surfaces defininga space curve is

d j =

√

fs(p j)2

‖∇xs(p j)‖2 +
gs(p j)2

‖∇xgs(p j)‖2 . (22)

If both surfaces intersect each other orthogonally in the data points, i.e.

(∇x fs∇xg⊤s )
∣

∣

∣

p j
= 0, (23)
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then this expression approximates the distance to the implicitly defined space curve.
In order to approximate a set of points which has been sampledfrom a space

curve, we minimize the sum of the squared distances, which leads to the objective
function

M

∑
j=1

d2
j =

M

∑
j=1

fs(p j)
2

‖∇x fs(p j)‖2 +
gs(p j)

2

‖∇xgs(p j)‖2 → min
s

. (24)

Note that both functionsfs andgs depend formally on the same vectors of shape
parameters. Typically, each shape parametersi is uniquely associated with eitherfs
or gs. Consequently, (24) minimizes the Sampson distances from apointp j to each
of the surfacesF andG independently.

We adapt the evolution based-framework [2] in order to deal with the objective
function (24). We consider the combination of the two evolutions for F and G

which is defined by the minimization problemE → min
ṡ

, where

E( f ,g) = ∑
(

fs
‖∇x fs‖

+
∇s fs

‖∇x fs‖
ṡ
)2

+

(

gs

‖∇xgs‖
+

∇sgs

‖∇xgs‖
ṡ
)2

. (25)

In order to simplify the notation, we omit the argumentp j from now on and omit
the range of the sum, which is taken over all sampled points(p j) j=1,...,M. This sum
can also be seen as simple numerical integration along the given space curve.

The geometric meaning of this objective function is as follows: The normal ve-
locity (cf. 16) of the level set offs (and analogously forgs) which passes through
the given pointp j is to be equal to the estimated oriented distance, see (21), to the
surface. Later we will provide another interpretation of this evolution as a Gauss-
Newton-type method.

Similar to Eq. (19), the objective function in Eq. (25) depends onsand onṡ. For
a given value ofs, we findṡ by solving a system of linear equations. Consequently,
(25) leads to an ordinary differential equation for the vector of shape parameters.
We can again solve it simply by using Euler steps with a suitable stepsize control.

As a necessary condition for a minimum of (25), the first derivatives with respect
to the vectoṙshave to vanish. This yields the linear system

∑[
∇s f⊤s
‖∇x fs‖

∇s fs
‖∇x fs‖

+
∇sg⊤s
‖∇xgs‖

∇sgs

‖∇xgs‖
]ṡ= −∑ fs∇s f⊤s

‖∇x fs‖2 +
gs∇sg⊤s
‖∇xgs‖2 . (26)

If there exists a zero-residual solution, then the right hand side vanishes, asfs(p j) =
gs(p j) = 0 for all j. Hencės= 0 is a solution for the problem and we have reached
a stationary point of the evolution. However, the solution may not be unique.

First, the trivial (and unwanted) functionsfs ≡ 0 andgs ≡ 0 solve always the
minimum problem (24) for all data sets(p j) j=1...M. Of course these solutions have
to be avoided.

Second, the evolution defined via (25) pushes both surfacesindependently to-
wards the data pointsp j. This may lead to the unsatisfying resultfs ≡ gs (where the
two functions are identical up to a factorλ ). Consequently, we need to introduce



Approximate Implicitization of Space Curves 11

additional terms which guarantee thatfs andgs do not vanish and that they intersect
orthogonally in the data points.

4.2 Regularization

So far, the implicitization problem is not well–posed. Iffs is a solution to the prob-
lem, thenλ fs is a solution as well. In this section we discuss several strategies that
shall prevent the functionsfs andgs from vanishing and that shall guarantee a unique
solution to the individual fitting problems for the two defining surfacesF andG .
Additionally, we propose a coupling term that ensures a well-defined intersection
curve of the surfacesF andG .

Distance field constraint.In order to avoid the unwanted solutionsfs≡0 andgs≡0
we use the distance field constraint which was described in [28]. Consider the term

D( f ) =

(

d
dt
‖∇x fs(x)‖+‖∇x fs(x)‖−1

)2

. (27)

It pushes the functionfs in a pointx closer to a unit distance field, hence

‖∇x fs(x)‖ = 1 (28)

If the length of the gradient in 27 equals 1, it is expected to remain unchanged.
Consequently, its derivative shall be 0. Otherwise (27) modifies fs such that the
norm of its gradient gets closer to 1.

We apply this penalty term to both functionsfs andgs.
This side condition has also an important influence on the robustness of the im-

plicit representation of the two surfacesF andG , cf. [3]. Roughly speaking, the
closer the defining functionsfs andgs are to a unit gradient field, the less sensible
is the representation to potential errors in its coefficients.

Theoretically, this condition can be integrated over the entire domain of interest.
In order to obtain a robust representation of the implicit space curve, the robustness
of the two generating surfaces is mainly required along their intersection, i.e. near
the data points. This leads to the idea of imposing the distance field constraint only
in the data pointsp j.

We note two more observations. First, the term is quadratic in the unknownṡs
which follows directly from expanding the derivative in (27),

d
dt
‖∇x fs(x j)‖ =

∇x fs
‖∇x fs‖

∇s∇x fs ṡ (29)

Consequently, the objective function with the distance field constrained is still
quadratic in the unknowns, and we can compute the derivativevectorṡof the shape
parameters by solving a system of linear equations.
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Second, the constrained problem does in general not reproduce exact solutions
which would be available without any constraints. For instance, if the data were
sampled from a low degree algebraic space curve, then the approximation technique
would not provide an exact equation of this curve. Only if that solution possesses a
unit gradient field along the data, then it can be recovered. In the next section we in-
troduce another regularization term which makes it possible to reproduce the exact
solution.

Averaged gradient constraint.This technique is related to a method that was in-
troduced by Taubin [25]. The core idea is to restrict the sum of the norms of the
gradients. Hence, not all the gradient lengths are expectedto be uniform, but the
average gradient length

1
M ∑‖∇x fs(p j)‖ = 1. (30)

This can be dealt with by adding the term

A( f ) =

(

∑ d
dt
‖∇x fs(p j)‖+‖∇x fs(p j)‖−1

)2

(31)

to our framework.
Although (28) and (31) look quite similar, their effects on the solution are rather

different. Note that Eq. (30) is only one constraint, whereas (28) is a set of con-
straints, which depends on the number of points.

Consequently, the condition on the average norm of the gradient can only handle
the singularity that is due to the scalability of implicit representations. If the am-
biguity of the solution arises from an incorrectly chosen degree of the polynomial,
then Taubin’s method and the term (31) do not provide a uniquesolution.

For instance, when fitting a straight line with two quadraticsurfaces, the obtained
linear system is singular as the number of unknowns exceeds the number of linearly
independent equations provided by the data points. On the other hand, if we use the
distance field constraint (27), then we will obtain a unique solution.

Orthogonality constraint. The distance field constraint leads to a robust represen-
tation of each of the two surfaces which define the curve. Now we introduce an
additional term which provides a robust representation of the curve itself.

Ideally, the two surfaces would intersect orthogonally along the space curveC ,
i.e. (23) holds.

In this case, small displacements in the two surfaces cause only small errors in
the curve. Moreover, the term (22) then approximates the distance to the space curve
very well. On the other hand, if the two surfaces intersect tangentially

(∇x fs×∇xg⊤s )
∣

∣

∣

C
= 0. (32)

even small perturbations may cause big changes of the curve.
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In order to obtain two surfaces that intersect each other approximately orthogo-
nally, we add the term

O( f ,g) = ∑
(

d
dt

(

∇x fs
‖∇x fs‖

∇xg⊤s
‖∇xgs‖

)

+
∇x fs
‖∇x fs‖

∇xg⊤s
‖∇xgs‖

)2

(33)

to the objective function. This term penalizes deviations from the optimal case
∇x fs∇xg⊤s = 0. More precisely, if the gradients of the surfaces are not orthogonal in
a point where (33) is applied to, then the time derivative of the product of the unit
gradients forces the surfaces to restore this property. Theoretically, this term should
be imposed along the intersection of the surfacesF andG . As the exact intersection
curve is not known, we apply (33) to the data pointsp j.

We analyze the structure of this term in more detail. The timederivative of the
first product in (33) gives

d
dt

∇x fs
‖∇x fs‖

∇xg⊤s
‖∇xgs‖

=
∇x ḟs∇xg⊤s + ∇x fs∇xġ⊤s

‖∇x fs‖‖∇xgs‖

− ∇x fs∇xg⊤s (
∇x fs∇xṡ⊤

‖∇x fs‖3‖∇xgs‖
+

∇xgs∇xġ⊤s
‖∇x fs‖‖∇xgs‖3 ) (34)

Since∇x ḟs = ∇x∇s fsṡand∇xġs = ∇x∇sgsṡ, the term (33) is quadratic iṅs.

4.3 Putting things together

Summing up, we obtain the minimization problem

F(ṡ,s) → min
ṡ

(35)

where

F = E( f ,g)+ ω1(D( f )+ D(g))+ ω2O( f ,g)+ ω3(A( f )+ A(g))+ ω4ṡ2 (36)

The non-negative weightsω1, ω2, ω3 andω4 control the influence of the distance
field constraint, the orthogonality constraint, the averaged gradient constraint and
the Tikhonov regularization, respectively. Due to the special structure Eq. (36) is
quadratic in the vectoṙs. Hence, for a given vectors of shape parameters, we can
find ṡ by solving a system of linear equations. The evolution of theimplicit rep-
resentation of the space curve can then be traced using explicit Euler steps with a
suitable stepsize control (cf. [1]).

We conclude this section by discussing the coupled evolution from the optimiza-
tion viewpoint. We show that the constrained optimization is in fact a Gauss-Newton
method for a particular fitting problem.

Consider the optimization problem
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C = ∑
(

fs
‖∇x fs‖

)2

+

(

gs

‖∇xgs‖

)2

+ ω1

(

(‖∇x fs‖−1)2 +(‖∇xgs‖−1)2
)

+ ω2

(

∇x fs
‖∇xgs‖

∇xg⊤s
‖∇xgs‖

)2

(37)

+ ω3(
(

∑‖∇x fs(p j)‖−1
)2

+
(

∑‖∇xgs(p j)‖−1
)2

) → min
s

.

Obviously, a solution of (37) minimizes simultaneously theSampson distances from
the data points to the space curve (term 1 and 2) the distance field constraint (term
3), the orthogonality constraint (term 4) and the averaged gradient constraint (term
5 and 6). Hence a zero residual solution of (37) interpolatesall data points, the
defining surfaces have slope one in the data points and furthermore, the surfaces
intersect orthogonally.

Since (37) is non-linear in the vector of unknownss, we consider an iterative so-
lution technique. A Gauss-Newton approach for (37) solves iteratively the linearized
version of (37),

C∗ → min
∆s

(38)

where

C∗ = ∑
(

fs
‖∇x fs‖

+
∇s fs

‖∇x fs‖
∆s

)2

+

(

gs

‖∇xgs‖
+

∇sgs

‖∇xgs‖
∆s

)2

(39)

+ ω1

[

(‖∇x fs‖−1+∇s(‖∇x fs‖−1)∆s)2 +(‖∇xgs‖−1+∇s(‖∇xgs‖−1)∆s)2
]

+ ω2

(

∇x fs
‖∇x fs‖

∇xg⊤s
‖∇xgs‖

+ ∇s(
∇x fs
‖∇x fs‖

∇xg⊤s
‖∇xgs‖

)∆s
)2

+ ω3(
(

∑‖∇x fs‖−1+ ∇s‖∇x fs‖∆s
)2

+
(

∑‖∇xgs‖−1+ ∇s‖∇xgs‖∆s
)2

)

and computes an update of the previous solution vias+ = s+ ∆s. By comparing
(36) and (39) we arrive at the following observation.

An explicit Euler step for the evolution equation (36) with stepsize 1 is equivalent to the
Gauss-Newton update (39) for the optimization problem (37).

Indeed, if we use that for any functionh(s(t)),

d
dt

h(s(t)) = ∇sh(s(t))ṡ, (40)

then we can replace the time derivatives in (36). Substituting ṡ for ∆s then gives the
desired result.
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(a) (b)

Fig. 2 Implicitization of a space curve represented by data pointssampled from a parametric curve.
Left: Initial surfaces, right: Final result.

(a) (b)

Fig. 3 Result with omitted orthogonality constraint(left) and omitted distance field con-
straint(right).

4.4 Examples

Finally we present some examples.

Example 1. We sampled 50 points from a parametric space curve of degree 6. The
two implicit patches that represent the implicit space curve are of degree 2. As initial
configuration we have chosen two surfaces deviating from each other slightly, see
Figure 2(a).

The obtained result after 15 iterations is shown in Figure 2(b). In order to demon-
strate the robustness of the representation we note that thenorm of the gradients of
the two surfaces in the data points varies between 0.94 and 1.94. The maximal de-
viation of the gradients from orthogonality at the data points is 0.49 degrees.

Example 2. We choose again the same data set, but modify the various weights in
order to demonstrate their influence. First we omit the orthogonality constraint. That
is, the evolution is not coupled, and both surfaces move independently towards the
data. The result is obvious, both surfaces converge towardsthe same result, as the
initial values are quite similar, cf. Fig. 3(a). Alternatively, we omit the distance field
constraint. The results can be seen in Fig. 3(b).
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Fig. 4 Implicit description of a curve represented by perturbed data. Left: Initial surfaces, right:
Final result.

(a) (b)

Fig. 5 Implicit representation of a curve described by exact pointdata. Left: Initial surfaces, right:
Final result.

As one can verify, the two surfaces match still the data. However, one of the
surfaces has a singularity. This is due to the fact that the averaged gradient constraint
allows also vanishing gradients. For the distance field constraint this is not true, as
the norm of the gradients in the data points is forced to be close to one, hence
singular points are unlikely to appear.

Example 3. For this example we added a random error of maximal magnitude0.05
% of the diameter of the bounding box to the data points from the previous example.
The fitted space curve is represented in Fig. 4.

Example 4. In a fourth example we consider a parametric curve of degree 8. The
two surfaces were chosen to have degree 3. This example shallillustrate again the
good convergence behavior, as the two initial surfaces are far away from the final
result.

5 Conclusion

In the first part of the paper we reviewed some of the existing techniques for approx-
imate implicitization of hypersurfaces. Starting with Dokken’s approach, which re-
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lies on the use of singular value decomposition, we observedthat the weak version
of Dokken’s method can be seen as a special instance of a fitting method. Finally
we described a general framework for evolution based fittingtechniques.

The second part of the paper extended the existing evolutionframework to the
implicitization of space curves, by coupling the evolutionof two implicitly defined
surfaces. As the implicit representation of a curve or surface is not unique, additional
regularization terms have to be added in order to achieve theuniqueness of the
solution. We discussed two possibilities.

The first, called the distance field constraint, tries to achieve a unit gradient field
along the intersecting surfaces. Hence a unique solution tothe fitting problem is
always guaranteed. Furthermore, it can even cope with an incorrectly chosen degree,
that is when the degrees of the defining polynomials have beenchosen too high.
However, this approach prevents the evolution from finding the exact solution.

The second proposed regularization eliminates only the redundancy which is
caused by the scalability of the underlying functions. As anadvantage, it allows to
find the exact solution, provided that the degrees of the implicitly defined surfaces
are sufficiently high.

In order to obtain also a robust representation of the intersection curve we intro-
duced another constraint which is to guarantee that the defining surfaces intersect as
orthogonal as possible. Consequently, small perturbations of the coefficients of the
defining functions lead only to small deviations of the intersection points of the two
surfaces.

For future work we plan to use adaptive spline spaces to improve the quality
of the approximation of the space curves. Furthermore a theoretical analysis of the
approximation order, (which is until now only available forhypersurfaces) is under
investigation.
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27. E. Wurm, J.B. Thomassen, B. Jüttler, and T. Dokken. Comparative benchmarking of methods
for approximate implicitization. In M. Neamtu and M. Lucian, editors,Geometric Modeling
and Computing: Seattle 2003, pages 537–548. Nashboro Press, Brentwood, 2004.
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