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Abstract The process of implicitization generates an implicit regergation of a
curve or surface from a given parametric one. This procgsstentially interesting
for applications in Computer Aided Design, where the robess and efficiency of
intersection algorithm can be improved by simultaneoustysidering implicit and
parametric representations. This paper gives an briefeguo¥ the existing tech-
nigues for approximate implicitization of hyper surfacksaddition it describes a
framework for the approximate implicitization of spaceas.
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1 Introduction

There exist two main representations of curves and surfac€omputer Aided
Geometric Design: the implicit and the parametric form. dthocases, the functions
which describe the curve or surface are almost always chasgwolynomial or
rational functions or, more generally, as polynomial oioral spline functions [15].
Consequently, one deals with segments and patches of algebrves and surfaces.

Each of the two different representation is particulariyllvgeited for certain
applications. Parametric representations are well stitegknerate points, e.g., for
displaying curves and surfaces, and to apply the resultseoftassical differential
geometry of curves and surfaces, e.g., for shape inteioygainplicit representa-
tions encompass a larger class of shapes and are more pbiwectertain geometric
queries. Moreover, the class of algebraic curves and ssfacclosed under cer-
tain geometric operations, such as offsetting, while the<bf rational parametric
curves and surfaces is not.

Consequently, it is often desirable to change from one sgpr@ation to the other
one. For instance, the implicitization of a planar curveuess the computation of
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the intersection of two curves given in the parametric foonfind the roots of a
single polynomial [23].

The exact conversion procedures, implicitization and ipatarization, have
been studied in classical algebraic geometry and in symlzolinputation. Their
practical application in Computer Aided Design is ratherited, due to the feasibil-
ity reasons outlined below. As an alternative, approxirtetbniques have emerged
recently. These alternatives contribute to the use of syictbamerical techniques
in Computer Aided Geometric Design.

The remainder of this paper consists of four parts. First nteoduce the no-
tation. Section 3 then presents a survey of related techrifpr the approximate
implicitization of hypersurfaces. The following sectioastribes a new framework
for the approximate implicitizaton of space curves. Finale conclude this paper.

2 Preliminaries

We start by introducing a few notations. A parametric repnéation of a curve
segment or a surface patch is a mapping

p: Q—RY: tp(t) (1)

whereQ c R¥is the parameter domain (typically a closed intervaRior a box in
R?). A curve or surface is described floe= 1 andk = 2, respectively. In many appli-
cations, e.g. in Computer-Aided Design, the mappirng represented by piecewise
rational functions (rational spline functions), see [15].
An implicitly defined hypersurfaceZ in RY is the zero-set of a functiof :
RY - R,
F ={xeRY: fs(x) = 0}. (2)

If d=3ord=2, then it is called an implicitly definesurface or planar curve,
respectively.

The subscript represents a vecsor RN which collects the parameters which
characterize the functiofs(x). They are called thehape parameters, since they
control the shape of the curve or surface. For instandg$a polynomial of some
finite degree,

N
0 = 3 s a0 3)

thens= (sy,...,Sv) contains the coefficients with respect to a suitable bas)8 ;
of the space of polynomials.
An implicitly defined space curve

¢ = {x € R®: fg(x) = 0Ags(x) = 0}. (4)
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Fig. 1 An implicitly defined space curve

is defined by two intersecting implicitly defined surfacésand ¢, see Fig. 1.
Clearly, fs andgs are not unique. This space curve is said tadmelar at the point
X € # N, if there exists a representation (4) such that the two gradiectors
Ox fs(x) andOxgs(x) with Oy = (£, 2, 2) are linearly independent.

Typically, the two functions defining?F and¥ are characterized by two indepen-
dent sets of shape parameters, saandsg. In order to simplify the notation, we
shall use the convention that both functions depend on tfawof these two sets,
hence ors = s Us. If the two functionsfs(x) andgs(x) are polynomials, the
is said to be amlgebraic space curve.

3 Approximate Implicitization

Exact techniques for the implicitization of curves and aoes have been studied
for a long time. In 1862, Salmon [20] noted that the surfacglicitization can
be performed by eliminating the parameters. This was imgutdyy Dixon in 1908
[8], who published a more compact resultant for eliminatiwg variables from
three polynomials. In 1983, Sederberg [21] consideredttpdicitization of surface
patches for Computer Aided Geometric Design.

From a theoretical point of view, the problem of the implicdtion of a given
rational curve or surface is always solvable. However,ghtemains a humber of
challenging computational difficulties. As described i®,[thapter 12], while the
2D case can be handled satisfactorily by building the Bemsuiltant, the 3D case
is more complicated: for instance, a tensor product sudddegreg m,n) leads to
an implicit formula of degreer®n. Then, in the simple casa= n= 3, we already
have an algebraic representation of degree 18. After expgitidis polynomial in
monomial basis this would lead to 1330 terms.

Practical problems associated with the exact implicittrabf curves and sur-
faces are addressed in [22] and [5]. Grobner bases can @lgedal [7]. For more
details on resultant based methods, the reader may alsaltf8js

To conclude, as shown in [22, 15], exact implicitization maany associated
difficulties, in particular in the case of surfaces. Moregp¥iee computed implicit
form of a curve or surface can be difficult to use, since theekegf the polynomial
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is often too high. On the other hand, CAD (Computer-Aidedi@@ssystems are
based on floating point computations, and so all quantitiegepresented with a
rounding error. Therefore, if we apply any of the exact irigization method in
this context, the result is not exact.

The existing techniques for approximate implicitizati@mde classified as direct
ones, where the result is found in a single step, and evolitased techniques,
where an iterative process is needed to find the result.

3.1 Direct techniques

We describe three approaches to approximate implicitimatihe first two ap-
proaches are due to Dokken, who also coined the notion of ié. third approach
comprises various fitting-based techniques.

Dokken’s method.

In order to adapt implicitization to the need for approxiemabmputation in CAD,
and to achieve more practical algorithms, Dokken introdube approximate im-
plicitization of a curve or surface [9, 10]. In the sequel weall Dokken’s method
to compute the approximate implicitization of a curve orface. See also [12] for
a survey of these and related techniques.
Given a parametric curve or surfapét), t € Q, a polynomialfs(x) is called

approximate implicitization op(t) with tolerances > 0 if we can find a continuous
direction functiong(t) and a continuous error functian(t) such that

fs(p(t) +n(t)g(t)) =0, (5)

with ||g(t)|l2 =1 and|n(t)| < € (see [9, Definition 35]). We denote Imythe degree
of the parametrizatiop and bym the degree ofs.
Dokken observes that the compositifa p can be factorized as

fs(p(t)) = (D) " a(t), (6)

whereD is a matrix build from certain products of the coordinatediions ofp(t), s
is the vector of parameters that characterize the fundtjot). Furthermoreq (t) =
(ax(t),...,an(t))T is the basis of the space of polynomials of degreewhich is
used to describé&(p(t)) andN is the dimension of polynomial space.

This basis is assumed to form a partition of unity,

N
i;ai =1

and in addition, the basis(t) is assumed to be non-negative far Q:
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ai(t) >0, ViVvteQ.

For instance, one may use the Bernstein-Bézier basis esfiect to the interval
or with respect to a triangle which contaifisin the case of curves and surfaces,
respectively.

Consequently we obtain that

|fs(p(t))| = (D9 a(t)] < [Dsilz]la(t)][2 < Ds]2, (7)

hence we are led to find a vect®which makeg|Ds||> small. Using the Singular
Value Decomposition (SVD) of the matr®, one can show thatfs, (p(t)))|e <
/01, whereoy is the smallest singular value, aedis the corresponding singular
vector. This strategy enables the use of Linear Algebrasttmbkolve the problem
of approximate implicitization. Moreover, this approacbyides high convergence
rates, see [12, Table 1 and 2].

Dokken’s weak method.

Dokken'’s original method has several limitations: for arste, it is relatively costly
to build the matrixD. Moreover, it is impossible to use spline functions for disc
ing fs, since no suitable basis for the compositign p can be found.

This problem can be avoided by using tiveak form of approximate impliciti-
zation which was introduced in [11], see also [12, sectiojp Bfr a given curve or
surfacep with parameter domai®, we now find the approximate implicitization
by minimizing

| (1s(p(1)))?dt = sTAs ®)
Q
where

A=DT </Q a(t)a(t)Tdt) D. )

The matrixA can be analyzed by eigenvalue decomposition, similar totiggnal
approach, where the matr was analyzed with singular value decomposition.
Note that one can apply this strategy even if no explicit egpion is available: one
only needs to be able to evaluate points on the curve or furfde integrals can
then be approximately evaluated by numerical integration.

Choosing the eigenvector which is associated with the sstadigenvalue of the
matrix A is equivalent to minimizing the objective function definad8) subject to
the constrainfs|| = 1. This can be seen as a special case of fitting, see nextrsectio

Algebraic curve and surface fitting.

Given a number of pointspi)i'\':l, which have been sampled from a given curve
or surface, one may fit a curve or surface by minimizing the sdithe squared
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residuals (also called algebraic distances),

N

Z(fS(pi))z- (10)

This objective function can be obtained by applying a sinmpimerical integration
to (8).

If the algebraic curve or surface is given as in (3), then ttigctive function
has the trivial minimuns = 0. In order to obtain a meaningful result by minimizing
(10), several additional constraints have been introduced

Pratt [19] picks one of the coefficients and restricts it te.d,

s =1 (11)

For instance, iffs is a polynomial which is represented with respect to the lusua
power basis, then one may consider the absolute term. Thigraint is clearly not
geometrically invariant, since the curve and surface capass through the origin

of the system of coordinates.

Geometrically invariant constraints can be obtained bysmw®ring quadratic
functions of the unknown coefficiengsAn interesting normalization has been sug-
gested by Taubin [25], who proposed to use the norm of theredugadient vectors
at the given data,

N
3 I0fs(p)* =1 (12)

Adding this constraint leads to a generalized eigenvaloblpm. Taubin’s method
gives results which are independent of the choice of thedinate system.

Finally, Dokken’s weak method — when combined with numeiig&gration for
evaluating the objective function (8) — uses the constraint

N
MF=;§:L (13)

These three approaches are able to provide meaningful@@uihich minimize
the squared algebraic distances (10). However, they mthyesii to fairly unex-
pected results. Additional branches and isolated sincuobénts may be present,
even for data which are sampled from regular curves or sesfac

If a method for approximate implicitization is to reprodube exact results for
sufficiently high degrees, then this unpleasant phenomenalways present. For
instance, consider a cubic planar curve with a double pBiven if we take sample
points only from one of the two branches which pass throughsthgular point,
any of the above-mentioned methods will generate the culriceowith the double
point, provided that the degree &fis at least 3.

These difficulties can be avoided by using additional norfoagradient) infor-
mation. More precisely, a nontrivial solution of the miniation problem can be
found by considering a convex combination of the two obyectiinctions (8) and
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> 1Bxts(p) i, (14)
i=

where the vector&)N ; represent additional normal vector information at the give
points.

This gives a quadratic function of the unknown coefficienteence the minimum
is found by solving a system of linear equations. This apghdes been introduced
in [16], and it has later been extended in [17, 27, 26]. Amathgbtopics, these pa-
pers also consider the case of curves which contain singaiats, where a globally
consistent propagation of the normals is needed.

3.2 lterative (evolution-based) techniques

Iterative (evolution-based) methods have been considerestveral reasons. First,
they lead to a uniform framework for handling various repreations of curves
and surfaces, which can handle implicitly defined curves aunfaces as well as
parametric ones [1, 13]. Second, they make it possible tadieosarious conditions,
such as constraints on the gradient field, volume consgraintange constraints
[28, 14, 29]. Finally, the sequence of curves or surfaceegaed by an iterative
method can be seen as discrete instances of a continuousiengirocess, which
links this approach to the level set method and to active esiand surfaces in
Computer Vision [18, 4].

We recall the evolution-based framework for fitting pointad@;);—1....m with
implicitly defined hypersurfaces, which was described ih [& this framework,
the approximate solutions which are generated by an ieratgorithm are seen as
discrete instances of a continuous movement of an initialecor surface towards
the target points (the given point data).

More precisely, we assume that the shape paramstdepend on a time-like
parametet, and consider the evolution of the hypersurface descrilpe¢ddparam-
eterss(t) fort — co. Each data point; attracts a certain poirfif on the hypersurface
& which is associated with it. Usualfy is chosen to be the closest point.gn i.e.

fj = arg min||p — pj]|. (15)
pe#

These attracting forces push the time-dependent hyparsadwards the data. This
is realized by assigning certain velocities to the pointshenhypersurface. For a
point lying on a time-dependent implicitly defined curve arface, which is de-
scribed by a functiorfs, the normal velocity is given by

dfs Oxfd _
V=——= = —sfsS
ENAE s’s

|:|stT
15 fs]2”

(16)

where the dot indicates the derivative with respedtdad the gradient operator
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0 0

DS:(E)"'7E

) 7)
gives the row vector of the first partial derivatives. Notatttve omitted the time
dependency ofin (16), in order to simplify the notation.

The first term—OsfsSin (16) specifies the absolute value of the normal velocity.
The second term is the unit normal vector of the curve, wtdehiifies the direction
of the velocity vector.

As the number of data points exceeds in general the degrdeseafom of the
hypersurface, the velocities are found as the least sqaalhatson of

M

Z((VJ —dj)'nj)?— min, (18)
j=

whered; = f; — pj is the residual vector from a data point to its associatedtmi
the hypersurface); = H%EH is the unit normal in this point and is the velocity
computed via (16) . More precisely, this leads to the minimization problem

2

—(fj—pj)T) ) —>m_sin. (19)

% (((Dsfs)(pj)'s(ﬂxfs)(pj) (Oxfs) ()
1(Bxts) (py) 112 [1(Oxfs) ()l

We use Tikhonov regularization in order to obtain a uniguetgmn. In addition, we
apply a distance field constraint, in order to avoid the atigblution, cf. [28].

The geometric interpretation of this approach is as follolse bigger the dis-
tance to the associated data point, the greater is the tyetbeit causes the move-
ment of the hypersurface at the corresponding point. Nae(it8) takes only the
normal component of the velocity into account, as a tangentiotion does not
change the distance to the data.

The objective function in Eq. (19) dependssas well as ors. For a given value
of s, we can finds by solving a system of linear equations. Consequently, |€8)s
to an ordinary differential equation for the vector of shapeameters. We can solve
it by using Euler steps with a suitable stepsize control[$E®r details.

The solution converges to a stationary point, which defihessblution of the
fitting problem. It can be shown that this evolution-basegrapch is equivalent to
a Gauss-Newton method for the implicit fitting problem, anel $tationary point of
the ODE is a (generally only) local minimum of the objectivaétion

=1

U 2
> P —fill%, (20)
=

wheref; has been defined in (15), see [2].

The evolution viewpoint has several advantages. It pre/algeometric inter-
pretation of the initial solution, which is now seen as thetiitg point of an evolu-
tion that drives the hypersurface towards the data. It ateviges a geometrically
motivated stepsize control, which is based on the velodithe points during the
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evolution (see [1]). Finally, the framework makes it possito introduce various
other constraints on the shape of the hypersurface, se&41.3,

In the remainder of this paper we will apply the evolutionnfiework to the
approximate implicitization of space curves. In this diima we need to generate
two surfaces which intersect in the given space curve. M@gethese two surfaces
should intersect transversely, in order to obtain a ropuasfined intersection curve.

4 Approximate implicitization of space curves

Now we consider a point clouj);—1..m Which has been sampled from a space
curve. Recall that a poimt; lies on an implicitly defined space cur¢gif it is con-
tained in both surfaces defining the curve. Consequentlytwieefispatial data with
two surfaces# and¥. The desired solutio® is then contained in the intersection
of # and¥. We need to couple the fitting of the two surfaces, in ordelbimio a
well-defined intersection curve.

4.1 Fitting two implicitly defined surfaces

Following the idea in [2] we use an approximation of the expedmetric distance
from a data point to a space curve. More precisely, we use dngpSon distance
which was originally introduced for the case of hypersuei&a{?5]. The oriented
distance from a poin; to a curve or surface which is defined implicitly as the zero
set of some functiotfis can be approximated by

fs(pi)
Oxfs(pj)Il”

Geometrically speaking, the equation of the surface isafized in the poinp;
and the distance from this point to the zero-set of the lization is taken as an
approximation of the exact distance. Consequently, thisswme is exact for planes,
as they coincide with their linearization. The Sampsonadise is not defined at
points with vanishing gradients, which have to be excluded.

A natural extension of this distance to two surfaces definisgace curve is

fs(pj) gs(pj)?
_ 22
\/||st (Pj) ||2 [10xgs(pj) 2 22

If both surfaces intersect each other orthogonally in thea gaints, i.e.

(21)

(Ox stxgsT) =0, (23)

Pj
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then this expression approximates the distance to theditiplilefined space curve.
In order to approximate a set of points which has been sanfpbed a space
curve, we minimize the sum of the squared distances, whautsléo the objective

function
M

2 _ fs(pi)? 9s(p;)? :
2= 3 et T 24)

Note that both function$s andgs depend formally on the same vecwof shape
parameters. Typically, each shape paramgtisruniquely associated with eithéy
or gs. Consequently, (24) minimizes the Sampson distances frpairap; to each
of the surfaces” and¥ independently.

We adapt the evolution based-framework [2] in order to de#i ¥he objective
function (24). We consider the combination of the two eviolu$ for .# and¥
which is defined by the minimization problei— m_Sin, where

fs Osfs . 2 Os UsGs . 2
=03 (it ) * (o o) - @
In order to simplify the notation, we omit the argumertirom now on and omit
the range of the sum, which is taken over all sampled pdmts_1,...m. This sum
can also be seen as simple numerical integration along Viea gpace curve.

The geometric meaning of this objective function is as f@ioThe normal ve-
locity (cf. 16) of the level set ofs (and analogously fogs) which passes through
the given poinpj is to be equal to the estimated oriented distance, see (2tjet
surface. Later we will provide another interpretation dstavolution as a Gauss-
Newton-type method.

Similar to Eg. (19), the objective function in Eq. (25) degsons and ons. For
a given value o, we finds by solving a system of linear equations. Consequently,
(25) leads to an ordinary differential equation for the wectf shape parameters.
We can again solve it simply by using Euler steps with a siétatepsize control.

As a necessary condition for a minimum of (25), the first detikes with respect
to the vectoss have to vanish. This yields the linear system

S| Osfs  Osfs Os0d DsgS _— fsOsfg gstgsT
Gt Tt T5sl TOsgel E

(26)

If there exists a zero-residual solution, then the righthside vanishes, ag(pj) =
0s(pj) =0 forall j. Hences= 0 is a solution for the problem and we have reached
a stationary point of the evolution. However, the soluticeymot be unique.

First, the trivial (and unwanted) functiorfs = 0 andgs = 0 solve always the
minimum problem (24) for all data setpj);—1..m. Of course these solutions have
to be avoided.

Second, the evolution defined via (25) pushes both surfaxiependently to-
wards the data points;. This may lead to the unsatisfying reséit= gs (where the
two functions are identical up to a factd). Consequently, we need to introduce
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additional terms which guarantee tHatindgs do not vanish and that they intersect
orthogonally in the data points.

4.2 Regularization

So far, the implicitization problem is not well-posedfdfis a solution to the prob-
lem, thenA fs is a solution as well. In this section we discuss severalegjias that
shall prevent the functionfg andgs from vanishing and that shall guarantee a unique
solution to the individual fitting problems for the two defigisurfaces# and¥.
Additionally, we propose a coupling term that ensures a-defined intersection
curve of the surface¢ and¥.

Distance field constraint.In order to avoid the unwanted solutiofis= 0 andgs =0
we use the distance field constraint which was describeddh nsider the term

d 2
D(f) = (a”Dxfs(X)HﬁL“]xfs(X)H 1> . (27)

It pushes the functioffis in a pointx closer to a unit distance field, hence
[Oxfs(x)] =1 (28)

If the length of the gradient in 27 equals 1, it is expectedeimain unchanged.
Consequently, its derivative shall be 0. Otherwise (27) ifiexi fs such that the
norm of its gradient gets closer to 1.

We apply this penalty term to both functiofisandgs.

This side condition has also an important influence on thaswoiess of the im-
plicit representation of the two surfaces and¥, cf. [3]. Roughly speaking, the
closer the defining functionf andgs are to a unit gradient field, the less sensible
is the representation to potential errors in its coeffident

Theoretically, this condition can be integrated over thireiomain of interest.
In order to obtain a robust representation of the impliciicgpcurve, the robustness
of the two generating surfaces is mainly required along tinéérsection, i.e. near
the data points. This leads to the idea of imposing the distéield constraint only
in the data pointg;.

We note two more observations. First, the term is quadrattbé unknowns
which follows directly from expanding the derivative in {27

d Ox fs ,

gt 000 = e Dsles s (29)
Consequently, the objective function with the distancedfiebnstrained is still
guadratic in the unknowns, and we can compute the derivegigers of the shape
parameters by solving a system of linear equations.
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Second, the constrained problem does in general not repeagkact solutions
which would be available without any constraints. For inst if the data were
sampled from a low degree algebraic space curve, then thexipyation technique
would not provide an exact equation of this curve. Only it thalution possesses a
unit gradient field along the data, then it can be recoveretthd next section we in-
troduce another regularization term which makes it posgibreproduce the exact
solution.

Averaged gradient constraint. This technique is related to a method that was in-
troduced by Taubin [25]. The core idea is to restrict the sdithe norms of the
gradients. Hence, not all the gradient lengths are expeotee uniform, but the
average gradient length

1
=3 I0xfs(pp)ll = 1. (30)
This can be dealt with by adding the term

2
AT = (3 0P+ I0ck(py)l - 1) (31)

to our framework.

Although (28) and (31) look quite similar, their effects dr tsolution are rather
different. Note that Eq. (30) is only one constraint, wheréz8) is a set of con-
straints, which depends on the number of points.

Consequently, the condition on the average norm of the gnadan only handle
the singularity that is due to the scalability of implicifpresentations. If the am-
biguity of the solution arises from an incorrectly chosegrée of the polynomial,
then Taubin’s method and the term (31) do not provide a unégligion.

For instance, when fitting a straight line with two quadraticfaces, the obtained
linear system is singular as the number of unknowns excéedsumber of linearly
independent equations provided by the data points. On ttex band, if we use the
distance field constraint (27), then we will obtain a uniqoleson.

Orthogonality constraint. The distance field constraint leads to a robust represen-
tation of each of the two surfaces which define the curve. Newintroduce an
additional term which provides a robust representatiohefcurve itself.

Ideally, the two surfaces would intersect orthogonallynglthe space curve,
i.e. (23) holds.

In this case, small displacements in the two surfaces canlgesmall errors in
the curve. Moreover, the term (22) then approximates tharmlig to the space curve
very well. On the other hand, if the two surfaces interseugéatially

(Ox fs x Oxgd ) L= 0. (32)

even small perturbations may cause big changes of the curve.
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In order to obtain two surfaces that intersect each othercppately orthogo-
nally, we add the term

2

d Oxfs  Ox0d ) Oxfs  Ox0d )
O(f,g) = — + 33
(.9 Z(dt(mxfsn DR A ] (33)

to the objective function. This term penalizes deviatiorenf the optimal case
Ox fsOxgd = 0. More precisely, if the gradients of the surfaces are ribiogonal in
a point where (33) is applied to, then the time derivativehef product of the unit
gradients forces the surfaces to restore this propertyoretieally, this term should
be imposed along the intersection of the surfageand?. As the exactintersection
curve is not known, we apply (33) to the data pomis

We analyze the structure of this term in more detail. The titegvative of the
first product in (33) gives

E Oxfs  Ox0q _ DxstxgsT“‘DxstngT
dt [|Oxfs [[Oxgsll | Ox fs|| [ Cx sl

Oy fsOxS" Ox0s0x3d
I0x s3I Oxgsll  [|Ox fsl | Oxgsl[®

— O fsOxgs ( ) (34)

Sincely fs = OxOsfss andOyds = Oy OsgsS, the term (33) is quadratic i

4.3 Putting things together

Summing up, we obtain the minimization problem
F(55s — m_sin (35)
where
F =E(f,g) +@(D(f) +D(g)) + w20(f,g) + ws(A(f) +A(g)) + &  (36)

The non-negative weights;, wp, ws andw, control the influence of the distance
field constraint, the orthogonality constraint, the averhgradient constraint and
the Tikhonov regularization, respectively. Due to the sestructure Eq. (36) is
quadratic in the vectas. Hence, for a given vect@ of shape parameters, we can
find S by solving a system of linear equations. The evolution ofithplicit rep-
resentation of the space curve can then be traced usingiéplier steps with a
suitable stepsize control (cf. [1]).

We conclude this section by discussing the coupled evalditam the optimiza-
tion viewpoint. We show that the constrained optimizat®imifact a Gauss-Newton
method for a particular fitting problem.

Consider the optimization problem



14 Martin Aigner, Bert Juttler and Adrien Poteaux

€72 Qmiﬂ)z*Qw$M02+w(ﬂﬂﬂﬂ1f+mmmgnﬁ
2

Ox fs ngz >
+ ( 37
Y 37)

+ @s((3 10Tyl = 1)+ (3 1 5xs(py) | ~ 1)°) — min.

Obviously, a solution of (37) minimizes simultaneously 8smpson distances from
the data points to the space curve (term 1 and 2) the distaidectinstraint (term
3), the orthogonality constraint (term 4) and the averagadignt constraint (term
5 and 6). Hence a zero residual solution of (37) interpolatedata points, the
defining surfaces have slope one in the data points and fortve, the surfaces
intersect orthogonally.

Since (37) is non-linear in the vector of unknovwasve consider an iterative so-
lution technique. A Gauss-Newton approach for (37) solieraiively the linearized
version of (37),

C* — min (38)
As
where
Osfs )2 ( Os UsOs )2

As| + + As 39
Q&MII&MI EREE (39)
+ w [(IIDxsz—lJrD (II0x s —1)As)? (I\ngs||—1+Ds(Hngsl\—l)AS)z}

2

Oxfs ngs Oxfs ngsT )

+0 AS

(IIDxst 10xgsll ~ " [[Oxfs] I\ngsll)

X Is|| — S X 1s XYs|| — S XYS
+ @a((Y 10xTs]l — 1+ Os O s 49)* + (3 [|0x@s| — 1+ O Txgsll49) )

and computes an update of the previous solutionsVia= s+ As. By comparing
(36) and (39) we arrive at the following observation.

An explicit Euler step for the evolution equation (36) with stepsize 1 is equivalent to the
Gauss-Newton update (39) for the optimization problem (37).

Indeed, if we use that for any functids(t))

d :
SN(s0) = Dh(s(0)s (40)

then we can replace the time derivatives in (36). Subgtigfor Asthen gives the
desired result.
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- @

(@) (b)

Fig. 2 Implicitization of a space curve represented by data pseatspled from a parametric curve.
Left: Initial surfaces, right: Final result.

=

(@ (b)

Fig. 3 Result with omitted orthogonality constraint(left) and itted distance field con-
straint(right).

4.4 Examples

Finally we present some examples.

Example 1. We sampled 50 points from a parametric space curve of degrEleeb
two implicit patches that represent the implicit space ewnne of degree 2. As initial
configuration we have chosen two surfaces deviating frorh efeer slightly, see
Figure 2(a).

The obtained result after 15 iterations is shown in Figubd.26 order to demon-
strate the robustness of the representation we note thabtine of the gradients of
the two surfaces in the data points varies between 0.94 &4d The maximal de-
viation of the gradients from orthogonality at the data j®is 0.49 degrees.

Example 2. We choose again the same data set, but modify the varioushtseig
order to demonstrate their influence. First we omit the gytimality constraint. That
is, the evolution is not coupled, and both surfaces movepedédently towards the
data. The result is obvious, both surfaces converge towhedsame result, as the
initial values are quite similar, cf. Fig. 3(a). Alternagly, we omit the distance field
constraint. The results can be seen in Fig. 3(b).
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o

Fig. 4 Implicit description of a curve represented by perturbethdieft: Initial surfaces, right:

Final result.
(@) (b)

Fig. 5 Implicit representation of a curve described by exact pdaté. Left: Initial surfaces, right:
Final result.

As one can verify, the two surfaces match still the data. Hawneone of the
surfaces has a singularity. This is due to the fact that tbesaed gradient constraint
allows also vanishing gradients. For the distance field ttaims this is not true, as
the norm of the gradients in the data points is forced to beecto one, hence
singular points are unlikely to appear.

Example 3. For this example we added a random error of maximal magniiuete
% of the diameter of the bounding box to the data points fragrptievious example.
The fitted space curve is represented in Fig. 4.

Example 4. In a fourth example we consider a parametric curve of degrdéé8
two surfaces were chosen to have degree 3. This exampleiliisthate again the
good convergence behavior, as the two initial surfacesaraviay from the final
result.

5 Conclusion

In the first part of the paper we reviewed some of the exisgogniques for approx-
imate implicitization of hypersurfaces. Starting with xek’s approach, which re-
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lies on the use of singular value decomposition, we obsehatthe weak version
of Dokken’s method can be seen as a special instance of afittethod. Finally
we described a general framework for evolution based fitiehniques.

The second part of the paper extended the existing evolérgmnework to the
implicitization of space curves, by coupling the evolutafiiwo implicitly defined
surfaces. As the implicit representation of a curve or sigrfa not unique, additional
regularization terms have to be added in order to achievautigueness of the
solution. We discussed two possibilities.

The first, called the distance field constraint, tries to eedia unit gradient field
along the intersecting surfaces. Hence a unique solutiaghdditting problem is
always guaranteed. Furthermore, it can even cope with anriectly chosen degree,
that is when the degrees of the defining polynomials have bhesen too high.
However, this approach prevents the evolution from findiregeixact solution.

The second proposed regularization eliminates only thenéancy which is
caused by the scalability of the underlying functions. Asadmantage, it allows to
find the exact solution, provided that the degrees of theiaitlyl defined surfaces
are sufficiently high.

In order to obtain also a robust representation of the iatdien curve we intro-
duced another constraint which is to guarantee that theidgfsurfaces intersect as
orthogonal as possible. Consequently, small perturbsitbdbthe coefficients of the
defining functions lead only to small deviations of the istation points of the two
surfaces.

For future work we plan to use adaptive spline spaces to iagptbe quality
of the approximation of the space curves. Furthermore adlieal analysis of the
approximation order, (which is until now only available forpersurfaces) is under
investigation.
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