
Approximating Algebraic Space Curves
by Circular Arcs?

Szilvia Béla1 and Bert Jüttler2

1 Doctoral Program in Computational Mathematics
2 Institute of Applied Geometry,

Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria

Abstract. We introduce a new method to approximate algebraic space
curves. The algorithm combines a subdivision technique with local ap-
proximation of piecewise regular algebraic curve segments. The local
technique computes pairs of polynomials with modified Taylor expan-
sions and generates approximating circular arcs. We analyze the connec-
tion between the generated approximating arcs and the osculating circles
of the algebraic curve.

Keywords: algebraic space curve, circular arc, subdivision

1 Introduction

Representing algebraic space curves is a fundamental problem of geometric com-
puting. These curves are defined as the intersection curves of algebraic surfaces.
Computation of such a surface-surface intersection is a basic operation in ge-
ometric modeling. It is important for evaluating set operations, for computing
boundary curves and closely related to self-intersection problems. Several algo-
rithms have been introduced to compute algebraic space curves. A survey of the
topic is given by Patrikalakis and Maekawa [1].

Intersecting low degree implicitly defined surfaces has attracted a lot of in-
terest in the literature. Quadratic surfaces are the simplest curved surfaces,
therefore they are frequently used in computational geometry. The intersection
computation of such surfaces has been discussed thoroughly in [2–6].

Several different methods have been developed for computing the intersection
of algebraic surfaces (see [8–10]). Many of them are symbolic-numeric algorithms.
The most widely used numeric methods are the lattice evaluation, tracing and
subdivision-based methods. The lattice evaluation techniques solve a set of low
dimensional sub-problems. Then the solution of these sub-problems is interpo-
lated to approximate the general solution. Marching or tracing methods generate
point sequences along the connected components of the curve. They necessarily
use some topological information to find starting, turning and singular points
[11–14]. Subdivision algorithms are based on the ”divide and conquer” paradigm.

? This work was supported by the Austrian Science Fund (FWF) through the Doctoral
Program in Computational Mathematics, subproject 3

2 Sz. Béla and B. Jüttler

They decompose the problem into several sub-problems, and sort these problems
according to the curve topology [15, 16]. The decomposition terminates if suit-
able approximating primitives can be generated for each sub-problem [17]. In
order to construct these approximating primitives, several local approximation
techniques can be applied, such as interpolation, bounding region generation,
least-squares approximation or Newton-type methods [18].

The existing local approximation techniques are based on the use of differ-
ent types of approximating primitives. These primitives are often low degree
curves since they have low computational costs. Several approximation algo-
rithms generate line segments. However, algorithms that use quadratic curves
may achieve a better convergence rate. A general quadratic curve represented
in algebraic form can have self-intersection points or cups. In order to avoid to
use non-regular curves as approximating primitives we generate circular arcs to
approximate regular segments of the algebraic curve. As an alternative one can
consider circular splines or bi-arcs as regular approximation primitives [23–25].
Circular arcs have many advantages compared to spline curves, such as exact
arc length, offset and simple closest point computation. Therefore our local tech-
nique generates fat arcs (i.e., circular arcs with an error tolerance) as bounding
primitives. The method we describe here can be used as a preprocessing step for
approximating general curves by arc splines with a given tolerance, cf. [7].

In this paper we describe a hybrid algorithm which combines a subdivision
technique with a new local approximation method. First we describe a technique
for generating approximating circular arcs for regular algebraic curve segments.
These arcs are closely related to the differential geometry of the algebraic curve.
We discuss this relation and use it to confirm the convergence of the approxima-
tion technique. Then we present an algorithm using the arc generation technique
combined with error estimation. In the end of the paper we describe how to com-
bine the local arc generation approach with the global subdivision process and
demonstrate the behavior of the algorithm by several examples.

2 Generating Approximating Circular Arcs

A segment of an algebraic space curve is given as the zero sets of two polynomials
f and g in an axis-aligned box Ω0 ⊂ IR3. It allocates the point set

C(f, g,Ω0) = {x : f(x) = 0 ∧ g(x) = 0 ∧ x ∈ Ω0}.

In order to use a local approximation method, we consider different segments
of the curve in different sub-domains of the original box Ω ⊂ Ω0. All these
sub-domains are again assumed to be axis-aligned boxes. We would like to ap-
proximate segments of the curve by circular arcs. Clearly this is possible only for
sub-domains, that do not contain singularities of the algebraic curve. In order to
control this property on a certain domain we define regular points and regular
segments of algebraic space curves as follows.

Approximating Algebraic Space Curves by Circular Arcs 3

Definition 1. A point p of an algebraic space curve K = C(f, g,Ω) ⊂ IR3 is
called regular, if the vectors ∇f(p) and ∇g(p) are linearly independent (and
called singular otherwise). An algebraic space curve is regular in the sub-
domain Ω, if any point of the segment in Ω is regular.

We suppose that the sub-domain Ω ⊆ Ω0, where we compute, contains only
regular segments of the algebraic curve. Then it does not contain curve segments
with self-intersections [16]. However, the domain can contain several segments
(even closed loops) of the curve.

We present a local approximation technique. First it reformulates the alge-
braic equations, which define the curve. More precisely, we try to find a certain
combination of the given polynomials f and g, that possesses a special Hessian
matrix in the center point c = (cx, cy, cz) of the sub-domain Ω. Such a new
polynomial h can be defined as the combination

h = kf + lg, (1)

where k and l are linear polynomials and (x, y, z) ∈ Ω

k(x, y, z) = a+ k1(x− cx) + k2(y − cy) + k3(z − cz),

l(x, y, z) = b+ l1(x− cx) + l2(y − cy) + l3(z − cz).

The zero level set of the polynomial h

Z(h,Ω) = {x : h(x) = 0 ∧ x ∈ Ω}

is a surface, which contains the algebraic curve defined by f and g

K = C(f, g,Ω) ⊆ Z(h,Ω).

We choose the coefficients of k and l such that the Hessian of h is a scalar
multiple of the identity matrix in the center of the domain c

Hess(h)(c) =

λ 0 0
0 λ 0
0 0 λ

 , λ ∈ IR. (2)

If such an h can be computed, then the quadratic Taylor expansion of h about
c has a spherical zero level set. In order to find h, we solve a linear system
with eight variables (the coefficients of k and l) and five equations, that can be
deducted from (2)

hxx(c)− hyy(c) = 0
hyy(c)− hzz(c) = 0

hxy(c) = 0
hyz(c) = 0
hxz(c) = 0

 (3)

where

huv =
∂h

∂u∂v
, u, v ∈ {x, y, z}.

4 Sz. Béla and B. Jüttler

If the system has full rank, then the solution set in the space of coefficients of
k and l is three-dimensional. Therefore we choose two coefficients as parameters
in advance. More precisely, we suppose that the value of the constant term of
the polynomials k and l are arbitrary but fixed (a, b) ∈ IR2 and different from
zero (a 6= 0 and b 6= 0).

Lemma 1. Given two polynomials f and g over the domain Ω ⊂ IR3. We sup-
pose that

‖∇f(c)×∇g(c)‖ 6= 0 (4)

holds in the center c of the domain. Then for any pair of (a, b) ∈ IR2, where
a 6= 0 and b 6= 0, there exist an exactly one-dimensional family of non-trivial
polynomials, k and l, such that h = kf + lg satisfies (3).

Proof. The Hessian matrix of h can be expressed with the help of f, g, k and l
as

Hess(h)(c) = ∇k(c)∇f(c)T +∇f(c)∇k(c)T + aHess(f)(c)

+∇l(c)∇g(c)T +∇g(c)∇l(c)T + bHess(g)(c). (5)

For any values of the parameters a 6= 0 and b 6= 0 the system (3) can be
reformulated as

Ak =

fx(c) −fy(c) 0 gx(c) −gy(c) 0

0 fy(c) −fz(c) 0 gy(c) −gz(c)
fy(c) fx(c) 0 gy(c) gx(c) 0

0 fz(c) fy(c) 0 gz(c) gy(c)
fz(c) 0 fx(c) gz(c) 0 gx(c)

k1

k2

k3

l1
l2
l3

 = b, (6)

where the vector of constants is

b = −a

1
2 (fxx(c)− fyy(c))
1
2 (fyy(c)− fzz(c))

fxy(c)
fyz(c)
fxz(c)

− b

1
2 (gxx(c)− gyy(c))
1
2 (gyy(c)− gzz(c))

gxy(c)
gyz(c)
gxz(c)

 .

In order to be certain that the system (6) has a one-dimensional solution set,
we have to show that the matrix A has rank 5. Therefore we analyze the 5× 5
sub-matrices of A. We denote with Ai the matrix, which we derive from A by
deleting ith column. The determinants of the matrices A4, A5 and A are

det(A4) = −fx(c)‖∇f(c)×∇g(c)‖2,
det(A5) = fy(c)‖∇f(c)×∇g(c)‖2,
det(A6) = −fz(c)‖∇f(c)×∇g(c)‖2.

We know that ‖∇f(c)×∇g(c)‖ 6= 0. This also implies, that one of the coordi-
nates of ∇f(c), fx(c), fy(c) or fz(c) is non-zero. Consequently, that one of the

Approximating Algebraic Space Curves by Circular Arcs 5

determinants of A4,A5 or A6 is not zero. So A always has a full rank 5. The
solution of the system Ak = b exists, and it is a one-dimensional subspace in
IR6. �

According to Lemma 1, for any pair of (a, b) where a 6= 0 and b 6= 0, there
exists a one-parameter family of polynomials k and l, such that kf + lg satisfies
(3). From this family of polynomials we always choose the one, which minimizes
the Euclidean norm

‖k‖2 → min subject to Ak = b, (7)

where k = (k1, k2, k3, l1, l2, l3) is the common coefficient vector of k and l. This
guarantees that the solution behaves as numerically well as possible during the
computations.

Given the polynomials f and g, a value of (a, b) and a center point c of the
domain Ω, we define the function

F(f, g, (a, b), c) = h = kf + lg (8)

according to the construction in Lemma 1 and the assumption (7).

Remark 1. Suppose that the right-hand side of the system (6), i.e. the vector b,
vanishes for a certain pair of (a, b). In this case the solution set of (6) is a line
in IR6, which passes through the origin. Then the linear combination af + bg
fulfills the condition (2). According to (7) we always choose the solution of the
system (6), which has the smallest length. In this special case, both k and l are
constants.

The polynomial h = F(f, g, (a, b), c) fulfills the special condition for the
Hessian (2). Thus the quadratic Taylor expansion of h about c has a spherical
zero level set

T 2
c h(x) = h(c) +∇h(c)T (x− c) +

1

2
hxx(c)(x− c)T (x− c), ∀x ∈ Ω. (9)

If we compute two polynomials for two different pairs of parameters (a, b) 6= (a′, b′)

f̂ = F(f, g, (a, b), c) and ĝ = F(f, g, (a′, b′), c), such that a, b, a′, b′ 6= 0,

then their quadratic Taylor expansions about c can be denoted by

p = T 2
c f̂ and q = T 2

c ĝ.

These two polynomials define the algebraic set

S = C(p, q,Ω) = {x : p(x) = 0 ∧ q(x) = 0 ∧ x ∈ Ω}. (10)

If this algebraic set is not empty and p 6= q, then it forms a circular arc. This
arc can be used as an approximating circular arc of the curve K = C(f, g,Ω).
Later on the error of the approximation is estimated by a distance bound of the
algebraic curves K̂ = C(f̂ , ĝ,Ω) and S.

6 Sz. Béla and B. Jüttler

3 Convergence of Approximating Arcs

We analyze in this section the behavior of the generated approximating arcs and
its convergence properties.

3.1 Connection with the Osculating Circle

Now we suppose that the center of the computational domain Ω is a point of the
algebraic curve K = C(f, g,Ω) defined by the polynomials f and g and that it is
not an inflection point of the curve. If the center point is denoted by c, then

f(c) = g(c) = 0. (11)

This special case plays an important role during the computations, since later we
would like to approximate the curve in such sub-domains of the original domain,
which tightly enclose the algebraic curve.

For an arbitrary pair of parameters we compute a new polynomial as the
combination of f and g as we defined in (8)

h = F(f, g, (a, b), c).

Consider the quadratic polynomial

s = T 2
c h.

According to the assumption (11) the center of the domain is a point of the zero
set of h and s

h(c) = s(c) = af(c) + bg(c) = 0. (12)

Then the quadratic approximating polynomial s takes the following form

s(x) = ∇h(c)T(x− c) + λ(x− c)T(x− c), (13)

where

∇h(c) = a∇f(c) + b∇g(c), (14)

and

Hess(h)(c) = λI3,

as in (2). Suppose that λ 6= 0, then s = 0 can be written in the form〈
x−

(
c +

1

λ
∇h(c)

)
,x−

(
c +

1

λ
∇h(c)

)〉
=
|∇h(c)|2

λ2
, (15)

which is an equation of a sphere. Therefore the radius of this sphere can be
computed as

r =
|∇h(c)|

λ
. (16)

Approximating Algebraic Space Curves by Circular Arcs 7

(a) (b)

Fig. 1. Sphere family computed with Taylor expansion modification about a point on
the algebraic curve (a) and its intersection with the normal plane of the curve (b). The
thin, black curve is the algebraic curve. The red circle is the osculating circle.

Remark 2. The zero set of s defined in (13) depends only on the ratio of the
chosen parameters a and b. Therefore the sphere family, computed for different
values of (a, b), is a one-parametric surface family. It can be parametrized by the
ratio of a and b. This follows from the computational method of k and l and the
special form of the sphere equations (13). Fig. 1 (a) visualizes several members
of such a sphere family for different values of a/b.

Lemma 2. We assume that (11) is satisfied in the point c. Then for each sphere
equation, computed for a certain (a, b) ∈ IR2, a, b 6= 0, the center of the sphere
s = 0 lies in the normal plane of the algebraic curve in the point c. Moreover
the inverse of the radius of the sphere is exactly the normal curvature κn of the
tangent direction ∇f(c)×∇g(c) of the surface F(f, g, (a, b), c) in the point c.

Proof. Suppose that in a certain neighborhood of the point c the algebraic curve
can be parametrized with arc length parametrization. It is not a restriction, since
we are computing only with the regular segments of the algebraic curve. The
parametrization is denoted by

p(t), where p(t0) = c.

This curve lies on the surface h = 0 according to the definition, therefore it
satisfies

dih(p(t))

dti
= 0,

8 Sz. Béla and B. Jüttler

for any i. If we compute the first derivative in the point c, we obtain that

dh(p(t))

dt

∣∣∣∣
t=t0

= 〈∇h(c),p′(t0)〉 = 0.

Thus the tangent vector of the algebraic curve is parallel to the cross product of
the gradients ∇f(c) and ∇g(c). In (14) we observed, that

∇h(c) = a∇f(c) + b∇g(c).

Since s is the quadratic Taylor expansion of h about c, we obtain that

〈∇s(c),p′(t0)〉 = 0.

This implies, that for any values of the parameters (a, b) the gradient of the
associated sphere is in the normal plane of the algebraic curve in the point c.

The second derivative is

d2h(p(t))

dt2

∣∣∣∣
t=t0

= 〈∇h(c),p′′(t0)〉+ p′(t0)THess(h)(c)p′(t0) =

= 〈∇h(c),p′′(t0)〉+ λ〈p′(t0),p′(t0)〉 = 0.

Since we used the arc length parametrization, therefore

〈∇h(c),p′′(t0)〉+ λ = 0.

The polynomial s is the quadratic Taylor expansion of h about c, therefore also

〈∇s(c),p′′(t0)〉 = −λ.

If we expand the scalar product, then we get

|∇s(c)||p′′(t0)| cosϕ = −λ,

where ϕ denotes the angle of the surface normal ∇h(c) = ∇s(c) and the normal
direction of the algebraic curve in c. According to the Theorem of Meusnier and
(16) we finally arrive at

κ cosϕ = κn =
λ

|∇s(c)|
=

1

r
,

which proves the lemma. �

As an example, Fig. 1 (b) shows the intersection of the sphere family and
the normal plane of the algebraic curve. Each sphere of the family intersects this
plane in a great circle. These circles intersect each other in two points on the
normal of the algebraic space curve. The second intersection point is not shown
in the Figure.

Approximating Algebraic Space Curves by Circular Arcs 9

Corollary 1. The functions f and g define an algebraic curve K = C(f, g,Ω)
in Ω ⊂ IR3. We assume that the point c ∈ Ω lies on the algebraic curve c ∈ K.
We compute the function family h(a, b) = F(f, g, (a, b), c) with special Hessian
for f and g in the point c. The quadratic Taylor expansion for any (a, b) pair
a, b 6= 0 has a spherical zero level set. The intersection of this sphere family is a
circle, which is the osculating circle of K in the point c.

Proof. In each point of a curve on a surface, the osculating circle is the normal
section of the curvature sphere of the surface [19]. In Lemma 2 we observed,
that this curvature sphere for any h(a, b) = 0 surface is the zero set of the
quadratic Taylor expansion. These spheres have the same intersection curve with
the osculating plane of K in the point c, which is exactly the osculating circle.�

3.2 Convergence of Approximating Circles

The method, which is described in Sect. 2, generates an approximation of the
intersection curve of two algebraic surfaces f and g in the sub-domain Ω ⊆ Ω0 by
a circular arc. This approximating arc is defined as the intersection curve of two
spheres. These spheres are given as the zero level set of two polynomials p and
q. The polynomials are the quadratic Taylor expansion of certain polynomials
with a special Hessian about the center point c of the domain Ω. The special
polynomials are computed as the combination of the functions f and g in the
form kf + lg = F(f, g, (a, b), c) for certain pair a, b 6= 0. Note that c is not
required to lie on the curve segment.

In order to prove the convergence of the generated circles, we have to show
that the computed polynomials depend continuously on the points of Ω0 for
a fixed choice of (a, b). It means, that the polynomial F(f, g, (a, b), c) depends
continuously on the choice of the point c.

Lemma 3. Given two polynomials f, g ∈ C2 over the domain Ω0. We suppose
that for any point c ∈ Ω0

‖∇f(c)×∇g(c)‖ 6= 0. (17)

For an arbitrary but fixed pair of a and b ∈ IR \ {0} we compute the polynomial

h = F(f, g, (a, b), c)

with a special Hessian (see in Lemma 1) under the condition (7). Then h depends
continuously on the points of the domain Ω0.

Proof. We have to show that the computed linear factors k and l depend continu-
ously on the point c. We computed the coefficient vector k = (k1, k2, k3, l1, l2, l3),
such that it satisfies the linear system Ak = b in (6) and minimizes the l2-norm
of the vector k (see (7)). If (17) is true, then A has full rank in any point c ∈ Ω0.
For a full rank matrix the vector, which satisfies (6) and (7), can be computed
as

k = AT(AAT)−1︸ ︷︷ ︸
A†

b.

10 Sz. Béla and B. Jüttler

The matrix A† is the so called Moore-Penrose generalized inverse of A (see
[20]). If f, g ∈ C2, then the matrix A and the vector b depend continuously
on the point c. Therefore the vector k also depends continuously on the point
c. The values of a 6= 0 and b 6= 0 are fixed real numbers. So all coefficients
a, b, ki, i = 1 . . . 3 and li, i = 1 . . . 3 depend continuously on c. Therefore also
kf + lg depends continuously on the point c. �

The next corollary follows from Corollary 1 and Lemma 3. If we modify
the Taylor expansion as described in Sect. 2, then we can establish a result
concerning the behavior of a sequence of the generated approximating circles.

Corollary 2. Suppose we have a nested sequence of sub-domains
(Ωi)i=1,2,3... ⊂ Ω0

Ωi+1 ⊂ Ωi,

which have decreasing diameters δi, such that

lim
i→∞

δi = 0,

and ci denotes the center point of Ωi. Consider a pair of functions f and g,
which defines an algebraic curve in Ω0 ⊂ IR3

K0 = C(f, g,Ω0) = {x : f(x) = 0 ∧ g(x) = 0 ∧ x ∈ Ω0}.

Suppose that there exists a point p, which satisfies f(p) = g(p) = 0 and p ∈ Ωi

for all i. We compute f̂i = F(f, g, (a, b), ci) and ĝi = F(f, g, (a′, b′), ci) for fixed
values of a, b, a′, b′ 6= 0. We consider the circles Si defined by the zero set of the
quadratic Taylor expansions pi = T 2

ci
f̂i and qi = T 2

ci
ĝi. Then the sequence of

these circles converges to a limit circle, which is the osculating circle of K0 in
the point p.

The following corollary guarantees, that the local algebraic reformulation of
the polynomials asymptotically does not influence the shape of the algebraic
curve (no additional curve segment arises).

Corollary 3. We assume that the parameters a, b, a′ and b′ are all non-zero
and satisfy ab′ 6= a′b and that c varies in the compact domain Ω0. There exists
a constant d > 0 such that if the diameter δΩ of Ω ⊂ Ω0 satisfies δΩ < d and
c ∈ Ω then

C(f, g,Ω) = C(f̂ , ĝ,Ω), (18)

where f̂ = F(f, g, (a, b), c) and ĝ = F(f, g, (a′, b′), c).

Proof. We write the algebraic reformulation as(
f̂
ĝ

)
=

(
k1 l1
k2 l2

)(
f
g

)
= Lc

(
f
g

)
.

Approximating Algebraic Space Curves by Circular Arcs 11

Algorithm 1 ArcLocal3d (f, g,Ω, ε)

Require: The curve is regular in Ω.
1: c← center of Ω
2: f̂ = F(f, g, (a, b), c), ĝ = F(f, g, (a′, b′), c), a, b, a′, b′ ∈ IR \ {0}
3: S ← zero set of T 2

c f̂ and T 2
c ĝ {approximating circle}

4: if S 6= ∅ then
5: G← lower bound for ‖∇f̂‖ and ‖∇ĝ‖
6: K ← upper bound for |∇f̂ · ∇ĝ|
7: if 0 < G and 0 < G2 −K then
8: %← upper bound of HDΩ(S, C(f̂ , ĝ,Ω)) {see Sect. 4.2}
9: if % 6 ε then

10: return S ∩ Ω {approximating arc has been found}
11: end if
12: end if
13: end if
14: return ∅ {no approximating arc has been found}

If det(Lc(x)) 6= 0 for all x ∈ Ω then (18) is satisfied. (Note that this is merely a
sufficient condition, but not a necessary one.) We know that

Lc(c) = ab′ − a′b 6= 0.

According to Lemma 3 the linear polynomials k1,2 and l1,2 depend continuously
on c and x. Thus also ∇k1,2 and ∇l1,2 change continuously. Hence there exists
a global upper bound B for all x and c ∈ Ω0 such that

‖∇ det(Lc(x))‖ < B.

Consequently, det(Lc(x)) 6= 0 is satisfied for all domains Ω containing c whose
diameter does not exceed |ab′ − ba′|/(2B). �

One might introduce an additionally test certifying that det(Lc) does not vanish
in Ω. We omitted this test since we never experienced unwanted branches in our
numerical experiments.

4 Algorithm and Error Bounds

Based on the results of Sect. 2 we formulate Algorithm 1. It generates an ap-
proximation of regular algebraic curve segments by circular arcs and a bound of
the approximation error.

4.1 Local Algorithm

The local method is applied in such sub-domains of the original computa-
tional domain, which contains regular curve segments. Later on we will describe a
global algorithm, which combines this local algorithm with subdivision method.

12 Sz. Béla and B. Jüttler

(a) (b) (c)

Fig. 2. Examples for local approximating arc generation with the help of ArcLocal3d

for the parameter pairs (a, b) = (1, 2) and (a′, b′) = (2, 1).

Table 1. Arc approximation of three different curve segments (see Fig. 2) for four
different parameter choices.

(a, b); (a′, b′) Curve (a) Curve (b) Curve (c)

(1, 2); (2, 1) 0.01526 0.01184 0.01771

(1, 5); (5, 1) 0.01528 0.01177 0.01774

(1, 100); (100, 1) 0.01561 0.01151 0.01827

(1, 1000); (1000, 1) 0.01566 0.01150 0.01829

Remark 3. The algorithm ArcLocal3d first reformulates the polynomials. There-
fore we have to fix the value of two parameter pairs (a, b) and (a′, b′). According
to Remark 2 if a, b, a′, b′ 6= 0 and a/b 6= a′/b′, then any choice of these parameter
pairs generate similar results, since the generated approximating arcs converge
to the same limit circle, the osculating circle. It is not possible to improve the
general behavior of the algorithm by the choice of these parameters.

Fig. 2 presents three curve segments approximated by arcs with the help of
the local algorithm for the parameter pairs (a, b) = (1, 2) and (a′, b′) = (2, 1).
We approximate the same curve segments by three other choice of the parameter
pairs in the unit cube. Table 1 compares the error bounds (see bounding method
in Sect. 4.2) of these approximations. In all remaining examples, which will be
presented in Section 5.2, we chose the parameters as (1, 2) and (2, 1).

The algorithm generates the approximating arc in algebraic form. Clearly, if
we would like to represent the output in a parametric form, it is also possible to
describe the circular arcs as rational quadratic curves.

The error estimation method (described in Sect. 4.2) is based on the convex
hull property of polynomials represented in Bernstein-Bézier form. This tech-
nique is used to bound the distance between the zero level set of each polyno-
mial and the associated quadratic Taylor expansion. Then an upper bound is

Approximating Algebraic Space Curves by Circular Arcs 13

generated for the one-sided Hausdorff distance of the approximating arc and the
algebraic curve.

The algorithm is successful, if the approximating arc is found and the error
bound is smaller then the prescribed tolerance ε. In this case the algorithm
returns a circular arc, which approximates the curve segment in the appropriate
sub-domain Ω. If the local algorithm fails then it returns the empty set.

4.2 Error Estimate

We describe a method here to estimate the distance of two algebraic space curves.
In order to get a distance bound we combine a distance bound of parametric and
algebraic curves and a distance estimation strategy between algebraic surfaces.

In order to bound the distance of algebraic and parametric curves we recall
a result from [21]. We assume that the parametric curve segment s(t) is defined
with the parameter domain t ∈ [0, 1] in Ω ⊂ IR3. The curve traces the point set

S = {s(t) : t ∈ [0, 1]}.

The algebraic curve K = C(f, g,Ω) is defined as the simultaneous zero set of
the polynomials f and g. The one-sided Hausdorff distance of S with respect to
K∗ = K ∪ ∂Ω is defined as

HDΩ(S,K) = sup
t∈[0,1]

inf
x∈K∗

‖x− s(t)‖. (19)

The boundary ∂Ω in (19) is needed for technical reasons, see [21].

Theorem 1 ([21]). Suppose that the polynomials f and g define the algebraic
curve K = C(f, g,Ω) in Ω ⊂ IR3. We assume that positive constants G and K
exist for all x ∈ Ω, such that

G ≤ ‖∇f(x)‖ and G ≤ ‖∇g(x)‖,

and

|∇f(x) · ∇g(x)| ≤ K.

If

G2 −K > 0,

and provided that there exist a positive constant M , such that

∀t ∈ [0, 1], f(s(t))2 + g(s(t))2 ≤M2,

the one-sided Hausdorff distance is bounded by

HDΩ(S,K) ≤ M√
G2 −K

. (20)

14 Sz. Béla and B. Jüttler

Theorem 1 can be used for bounding the distance of implicitly defined alge-
braic curves. The Bernstein-Bézier(BB) norm denoted as ‖.‖ΩBB, is the maximum
absolute value of the coefficients in the BB-form of the polynomial represented
in the domain Ω. With the help of this norm we can bound the distance of
algebraic surfaces over a certain computational domain Ω ⊂ IR3. The distance
bound can be defined between an arbitrary polynomial f and an approximating
polynomial p for all point in the domain

ε = ‖f − p‖ΩBB. (21)

Due to the convex hull property

|f(x)− p(x)| ≤ ε, ∀x ∈ Ω.

Therefore for all x ∈ Ω such that p(x) = 0

‖f(x)‖ ≤ ε. (22)

Suppose that an algebraic curve K is defined by the polynomials f and g

K = C(f, g,Ω) = {x : f(x) = 0 ∧ g(x) = 0 ∧ x ∈ Ω}.

An approximating space curve S is given by two approximating algebraic surfaces
p = 0 and q = 0

S = C(p, q,Ω) = {x : p(x) = 0 ∧ q(x) = 0 ∧ x ∈ Ω}.

In order to estimate the distance of algebraic space curves we measure first
the distance of the defining algebraic surfaces. Suppose that the polynomial p
approximates f , and q is an approximating polynomial of g. We estimate the
distance between the algebraic surfaces and the approximating surfaces pairwise

ε1 = ‖f − p‖ΩBB, ε2 = ‖g − q‖ΩBB.

According to (22) for all x ∈ S

|f(x)| ≤ ε1 and |g(x)| ≤ ε2,

thus √
f(x)2 + g(x)2 ≤

√
ε2

1 + ε2
2.

Therefore Theorem 1 can be applied to bound the distance of K and S with the
help of the constants G,K and

M =
√
ε2

1 + ε2
2.

In order to compute the constants G,K, ε1 and ε2, we represent the polyno-
mials in Bernstein-Bézier form and use the convex hull property of the represen-
tation form.

Approximating Algebraic Space Curves by Circular Arcs 15

Remark 4. This error bound and the method for computing it can be extended
to the two-sided Hausdorff distance. The role of the polynomials f, g and p, q
can be exchanged in the bound (21). In this case, the values of the algebraic
distances (ε1 and ε2) do not change. The bounds on the gradients G and K will
change. However, both bounds converge to the same value when the domain Ω
shrinks to a point. This follows from the construction of p and q, which satisfy

∇f(c) = ∇p(c) and ∇g(c) = ∇q(c)

in the center c of the computational domain.

5 Global Subdivision Method

Subdivision is a frequently used technique and it is often combined with local
approximation methods. Such hybrid algorithms subdivide the computational
domain in order to separate regions where the topology of the curve can be
described easily. The local curve approximation techniques can be applied in the
sub-domains, where the topology of the curve has been successfully analyzed.
The regions with unknown curve behavior can be made smaller and smaller with
subdivision.

5.1 Global Algorithm

The algorithm GenerateArcs (see Algorithm 2) generates approximating arcs
for general algebraic space curves. It combines the arc generation for regular
curve segments ArcLocal3d (see Algorithm 1) with recursive subdivision.

First it analyzes the Bernstein–Bézier coefficients of the polynomials with
respect to the current sub-domain. If no sign changes are present for one or both
of the polynomials, then the current sub-domain does not contain any component
of the algebraic curve. Otherwise, if the curve is regular within the domain,
it tries to apply the local arc generation algorithm. If this is not successful,
then the algorithm either subdivides the current domain into eight sub-domains,
or returns the entire domain, if its diameter is already below the user-defined
threshold ε.

Note that the algorithm may return sub-domains that do not contain any
segments of the implicitly defined curve. However, it is guaranteed to return a
set of approximating primitives, such that each point of the implicitly defined
curve has at most the distance ε to one of the primitives.

The generated approximating arcs are generally disconnected. It follows from
the approximation technique described in the local algorithm ArcLocal3d. This
technique always considers information only about the algebraic curve segment,
which is located in the computational sub-domain. Due to the user-specified error
bound ε, the end points of two neighboring approximating arcs along the curve
cannot be farther away from each other than 2ε. However a post processing step
can be applied in the end of the global algorithm to connect the approximating

16 Sz. Béla and B. Jüttler

Algorithm 2 GenerateArcs(f, g,Ω, ε)

1: if the box is empty then
2: return ∅
3: end if
4: if the curve is regular in Ω then
5: A ← ArcLocal3d(f, g,Ω, ε) {arc generation}
6: if A 6= ∅ then
7: return A {... has been successful}
8: end if
9: end if

10: if diameter of Ω > ε then
11: subdivide the box into 8 subboxes Ω1, . . . ,Ω8 {subdivision}
12: return

⋃8
i=1GenerateArcs(f,Ωi, ε) {recursive call}

13: end if
14: return Ω {current box is small enough}

arcs, which represent the same segment of the curve. For instance based on the
error bound, one can apply approximation techniques, which generate continuous
curves within tolerance bands [7].

5.2 Examples

Example 1. In this example we approximate the intersection curve of quadric
surfaces. We apply the algorithm GenerateArcs for three different intersections
of four different pairs of quadric surfaces. The outputs are represented in Fig. 3.
The number of used approximating primitives are given in Tab. 2 for each in-
tersection curve. If the curve has a singular point (here in 1.(b), 2.(c), 3.(b) and
4.(c)), then the algorithm returns not only arcs but also bounding boxes as ap-
proximating primitives. All the examples are represented in the unit cube [0, 1]3.
The intersection curves are approximated within the tolerance ε = 0.01.

According to the local approximation technique the global algorithm gener-
ates only bounding boxes around the singular points of the curve. If singular
points are present, then our method generates bounding boxes, but no arcs.
More sophisticated techniques are required for dealing with singular points, see
e.g. [26]. Our further aim is to develop such computational tests based on arc
approximation.

Example 2. In this example we approximate the intersection curve of non-
quadratic surface patches by two different methods. One is using the circular
arc generation technique combined with subdivision. The other technique gen-
erates only approximating line segments as local approximating primitives and
combines it with iterative subdivision. This second method also reformulates
the algebraic system locally. It generates two different linear combination of the
algebraic equations such that the new polynomials have perpendicular normal
vector in the center of the computational sub-domain. The approximating line

Approximating Algebraic Space Curves by Circular Arcs 17

1.(a) 1.(b)-singular 1.(c)

2.(a) 2.(b) 2.(c)-singular

3.(a) 3.(b)-singular 3.(c)

4.(a) 4.(b) 4.(c)-singular

Fig. 3. Approximation of the intersection of quadric surfaces.

18 Sz. Béla and B. Jüttler

Table 2. Approximating intersection curve of quadric surfaces. The number of used
approximating primitives are given for the examples shown in Fig. 3.

Quadric Surfaces Position (see Fig. 3) Number of Arcs Number of Boxes

1. sphere + cylinder
(a) 80 0

(b)-singular 104 248
(c) 52 0

2. ellipsoid + hyperboloid
of one sheet

(a) 80 0
(b) 76 0

(c)-singular 96 76

3. rotational paraboloid +
hyperbolic paraboloid

(a) 60 0
(b)-singular 108 156

(c) 50 0

4. hyperboloid of two
sheets + elliptic cylinder

(a) 80 0
(b) 80 0

(c)-singular 88 612

Fig. 4. Approximation of a high-order al-
gebraic space curve by circular arcs (69
segments) and line segments (278 seg-
ments), both with tolerance ε = 10−4.
Only one picture is shown, since there are
no visual differences.

segment is defined then as the intersection curve of the linear Taylor expansions
of the reformulated polynomials.

The example surfaces are defined as the zero level set of the polynomials

2x4 + y3 + z − 1.1 (23)

x3y2 + z − 0.6

in the unit cube. The curve is approximated within the tolerance ε = 10−4. The
line approximation uses 278 line segments while the arc generation method only
69 arcs to reach the same tolerance level (see Fig. 4).

Example 3. In this example we approximate the isophotes of surfaces for dif-
ferent light directions. Isophotes are curves on a surface, where all points are
exposed with equal light intensity from a given light source. An isophote of a
surfaces f = 0 for a fixed direction vector d and angle ϕ traces the point set

I(f,d, ϕ) = {p : f(p) = 0 ∧ 〈d,∇f(p)〉 = cos(ϕ)‖∇f(p)‖},

Approximating Algebraic Space Curves by Circular Arcs 19

Table 3. Number of used approximating primitives (in columns # Arcs) in the isophote
approximations (see examples in Fig.5 and Fig.6).

S1 : xy − z + 0.5 = 0 S2 : x3 + 1
2
y3 + z − 1

2
= 0

(0, 0,−1) (−1, 1,−4) (−2, 0,−3) (−1,−1,−1) (0,−1,−1)

cosϕ # Arcs cosϕ # Arcs cosϕ # Arcs cosϕ # Arcs cosϕ # Arcs

0.8 66 0.7 19 0.5 15 0.6 28 0.3 16
0.85 44 0.8 25 0.65 18 0.7 32 0.4 32
0.9 48 0.88 56 0.8 28 0.75 58 0.5 44
0.95 32 0.95 54 0.9 22 0.8 107 0.7 70
0.99 28 0.99 26 0.97 31 0.85 120 0.99 79

Fig. 5. Approximation of isophotes for different light directions on the surface S1.

if we suppose that the direction vector is a unit vector. In order to describe an
isophote for a given d and ϕ we used the algebraic equation system

f = 0,

(fxd
x + fyd

y + fzd
z)

2 − cos2 ϕ
(
f2
x + f2

y + f2
z

)
= 0,

where d = (dx, dy, dz). These two equations allocates the points of the isophotes,
which belong to the direction d and the angles ϕ and (π−ϕ). We apply the arc
approximation algorithm to two different surfaces to compute isophotes. For the
first one we compute isophotes for three different light directions (see Fig. 5).
For the second surface we used two different light directions (see Fig. 6). In
Tab. 3 we show the number of used approximating arcs for each isophote for
both surfaces, along with the light directions and angles. We approximated the
isophotes in the domain [−1, 1]3 within the tolerance ε = 0.05.

20 Sz. Béla and B. Jüttler

Fig. 6. Approximation of isophotes for different light directions on the surface S2.

6 Conclusion

We presented a local technique which generates approximating circular arcs for
regular segments of algebraic space curves. This technique is based on a refor-
mulation of the problem. It combines the defining polynomials of the algebraic
curve, such that the new polynomials define the same algebraic curve but they
have special Hessian matrices at a certain point. This local technique can be
combined with subdivision method to approximate arbitrary algebraic curves
restricted to a domain.

A similar method can be applied also for planar algebraic curves. Moreover
it might be possible to use a similar arc generation technique in IRn to approx-
imate general algebraic curves. This result can be used also for finding roots of
polynomial systems [17]. Computing with quadratic approximating primitives
provides good convergence properties [22]. Thus it is promising to apply then
for curve approximation and for solving polynomial systems.

References

1. Patrikalakis, N.M., Maekawa, T.: Shape interrogation for computer aided design
and manufacturing. Springer (2002)

2. Wang, W., Joe, B., Goldman, R.: Computing quadric surface intersections based
on an analysis of plane cubic curves. Graphical Models 64 (2002) 335–367

3. Wang, W., Goldman, R., Tu, C.H.: Enhancing Levin’s method for computing
quadric surface intersections. Computer Aided Geometric Design 20 (2003) 401–
422

4. Chau, S., Oberneder M., Galligo A., Jüttler B.: Intersecting biquadratic surface
patches. In Piene, R., Jüttler, B. eds.: Geometric Modeling and Algebraic Geom-
etry. Springer (2008) 161–180

Approximating Algebraic Space Curves by Circular Arcs 21

5. Tu, C.H., Wang, W., Mourrain, B., Wang, J.Y.: Using signature sequences to
classify intersection curves of two quadrics. Computer Aided Geometric Design 26
(2009) 317–335

6. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization
of the intersection of quadrics. SCG ’03: Proceedings of the nineteenth annual
symposium on computational geometry. ACM (2003) 246–255

7. Held, M., Eibl, J.: Biarc approximation of polygons within asymmetric tolerance
bands. Computer-Aided Design 37 (2005) 357–371

8. Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK
Peters (1993)

9. Pratt, M.J., Geisow, A.D.: Surface/surface intersection problem. In Gregory, J.,
ed.: The Mathematics of Surfaces II. Claredon Press, Oxford (1986) 117–142

10. Patrikalakis, N.M.: Surface-to-Surface Intersections. IEEE Comput. Graph. Appl.
13(1) (1993) 89–95

11. Bajaj, C.L., Hoffmann C.M., Hopcroft J.E., Lynch R.E.: Tracing surface intersec-
tions. Comput. Aided Geom. Des. 5(4) (1988) 285–307

12. Krishnan, S., Manocha, D.: An efficient surface intersection algorithm based on
lower-dimensional formulation. ACM Trans. Graph. 16(1) (1997) 74–106

13. Gonzalez-Vega, L., Necula, I.: Efficient topology determination of implicitly defined
algebraic plane curves. Comput. Aided Geom. Design 19(9) (2002) 719–743

14. Daouda, D.N., Mourrain, B., Ruatta, O.: On the computation of the topology of
a non-reduced implicit space curve. Proc. Int. Symp. on Symbolic and Algebraic
Computation, ACM (2008) 47-54.

15. Alcazar, J.G., Sendra, J.R.: Computation of the topology of real algebraic space
curves. Journal of Symbolic Computation 39(6) (2005) 719–744

16. Liang, C., Mourrain, B., Pavone, J.-P.: Subdivision methods for the topology of
2d and 3d implicit curves. In Piene, R., Jüttler, B. eds.: Geometric Modeling and
Algebraic Geometry. Springer (2008) 199–214

17. Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations.
Journal of Symbolic Computation 44(3) (2009) 292–306

18. Elber, G., Kim, M.: Geometric constraint solver using multivariate rational spline
functions. Proc. Symp. on Solid Modeling and Applications, ACM (2001), 1-10

19. Kreyszig, E.: Differential Geometry. Dover (1991)
20. Cline, R. E., Plemmons, R. J.: l2-Solutions to Undetermined Linear Systems.

SIAM Review 18(1) (1976) 92–106
21. Jüttler, B., Chalmovianský, P.: A predictor–corrector technique for the approxi-

mate parameterization of intersection curves. Appl. Algebra Eng. Comm. Comp.
18 (2007) 151–168

22. Sederberg, T.W., White, S.C., Zundel, A.K.: Fat arcs: a bounding region with
cubic convergence. Comput. Aided Geom. Des. 6(3) (1989) 205–218

23. Sabin, M.A.: The use of circular arcs to form curves interpolated through empirical
data points. Technical Report VTO/MS/164, British Aircraft Corporation, (1976)

24. Meek, D.S., Walton, D.J.: Approximating smooth planar curves by arc splines.
Journal of Computational and Applied Mathematics 59 (1995) 221–231

25. Song, X., Aigner M., Chen, F., Jüttler B.: Circular spline fitting using an evolution
process. Journal of Computational and Applied Mathematics 231 (2009) 423-433

26. Mantzaflaris, A., Mourrain, B.: Deflation and Certified Isolation of Singular Zeros
of Polynomial Systems unpublished: http://hal.inria.fr/inria-00556021/en (2011)

