
Triangular Bubble Spline Surfaces

Mario Kapl a,∗ and Marek Byrtus b and Bert Jüttler a
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Abstract

We present a new method for generating a G
n-surface from a triangular network of compatible surface strips. The compatible

surface strips are given by a network of polynomial curves with an associated implicitly defined surface, which fulfill certain

compatibility conditions. Our construction is based on a new concept, called bubble patches, to represent the single surface patches.

The compatible surface strips provide a simple Gn-condition between two neighboring bubble patches, which are used to construct

surface patches, connected with G
n-continuity. For n ≤ 2, we describe the obtained G

n-condition in detail. It can be generalized

to any n ≥ 3. The construction of a single surface patch is based on Gordon-Coons interpolation for triangles.

Our method is a simple local construction scheme, which works uniformly for vertices of arbitrary valency. The resulting surface

is a piecewise rational surface, which interpolates the given network of polynomial curves. Several examples of G0, G1 and G
2-

surfaces are presented, which have been generated by using our method. The obtained surfaces are visualized with reflection lines

to demonstrate the order of smoothness.
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1. Introduction

The present paper describes a new methodology for gen-
erating aGn-surface from a triangular mesh given by a net-
work of curves with an associated implicitly defined surface,
called compatible surface strips. Our method is a multi-
patch scheme, which is one of the main approaches for con-
structing a smooth surface from a triangular or quadrilat-
eral mesh (cf. [4, 12]). The fundamental idea of this ap-
proach is the construction of single surface patches, pieced
together with Gn-continuity, which define the desired Gn-
surface. A survey of this concept is presented in [17]. The
amount of existing literature on this topic is large; some
references are [6, 7, 13, 16, 18, 19, 20].
Based on the multi-patch approach, several methods for

constructing a Gn-surface, which interpolates a given net-
work of curves, have been developed (cf. [9, 14, 15, 24]). In
general, a mesh of curves has to fulfill certain compatibil-
ity conditions, especially at the vertices, to be feasible for
Gn-interpolation. For instance, [10, 11] describe geometric
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constraints on a network of curves which have to be satis-
fied for the case of G1 and G2-smooth surfaces.
A method for generating a smooth triangular (rectangu-

lar) surface from given three triangular (four rectangular)
surface patches is presented in [21, 22]. The construction is
based on a generalization of the Gordon-Coons interpola-
tion.
In [8], Hahn describes an algorithm for filling k-sided

polygonal holes with quadrilateral surface patches, meet-
ing at a common vertex. The single surface patches are
generated with the help of Cordon-Coons interpolation in
such a way that they are joined with Gn-continuity. The
main difference to our approach consists in the fact, that
Hahn’s construction uses an explicitly constructed diffeo-
morphism between neighboring patches in order to satisfy
the Gn-conditions. Consequently, the construction of a sin-
gle patch depends on the neighboring patches. The choice
of the Hermite boundary data for one edge defines already
the data for all other edges. Moreover, the construction is
not perfectly symmetric, since the cross boundary deriva-
tives are always specified on one side of the edges.
The novelty of our method consists in the use of a net-

work of compatible surface strips instead of a network of
curves. Starting from a triangular network of compatible
surface strips, we generate a triangular spline surface with
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Gn-continuity, interpolating the given curves of the com-
patible surface strips. Moreover, we do not need to spec-
ify the diffeomorphism between neighboring patches, since
the Gn-conditions are specified as contact between implicit
and parametric surfaces.
Our method is based on a new type of surface patches,

called bubble patches, for representing the individual sur-
faces. The use of these surface patches provides a simple
and natural way to define free-form surfaces over triangular
meshes and possesses several advantages. The construction
of a single patch is simple and independent of the neigh-
boring patches. In addition, it works uniformly for triangu-
lar meshes with vertices of arbitrary valency. Consequently,
modifications of the connectivity of the mesh only affect
those patches that are actually modified. The resulting sur-
faces are piecewise rational with Gn-continuity.
The remainder of the paper is organized as follows. In

Sections 2 and 3 we introduce some basic definitions. In
particular, we introduce the idea of a triangular network
of compatible surface strips, which is a network of polyno-
mial curves with an associated implicitly defined surface,
fulfilling certain compatibility conditions. A possible con-
struction of a suitable network is presented in Appendix B.
Section 4 describes a new methodology, called bubble

patches, for representing triangular surface patches. In Sec-
tion 5 we use the compatible surface strips to describe a
simpleGn-condition between two bubble patches. This pro-
vides a simple method to generate Hermite boundary data
of the patches, which guarantees Gn-continuity between
two neighboring patches.
Section 6 describes the construction of Cn-bubble

patches by using Gordon-Coons interpolation for triangles.
This interpolation scheme is a well known tool for gener-
ating a smooth function, interpolating the given Hermite
boundary data and is summarized in Appendix A. Sec-
tion 7 presents several examples of generated G0, G1 and
G2-surfaces and verifies their smoothness with the help of
reflection lines. Finally, we conclude the paper.

2. Surface strips

We explain the concept of a surface strip of order n

along a curve, which is a standard concept in classical dif-
ferential geometry.

Definition 1 Let p : [0, 1] → R
3 a smooth parametric

curve. A surface strip of order n along the curve p is
as an equivalence class of all surfaces through the curve p

having a contact of order n along this curve.

More precisely, we describe a surface strip of order n

along the curve p, depending on a parametric or implicit
representation of the surfaces, as follows.
• Parametric representation of the surfaces : A surface strip
of order n ≤ 2 is an equivalence class of all parametric
surfaces containing the curve p (n = 0), having the same
tangent planes (n = 1) and the same normal curvatures

(n = 2) along the curve p.
A surface strip of order n = 0 along the curve p is

simply described by the curve p. A surface strip of order
n = 1 is the curve with associated tangent planes. These
planes can be described by specifying the first derivative
vector of the parametric surfaces across the given curve
(the first cross-boundary derivative).
A surface strip of order n = 2 is the curve with as-

sociated tangent planes and curvature information. The
curvature information can be described by specifying the
second derivative vector of the parametric surfaces across
the given curve.

• Implicit representation of the surfaces : A surface strip of
order n is an equivalence of all implicitly defined surfaces
containing the curve p (n = 0), having – possibly after a
rescaling of the surfaces – the same gradients (n = 1) and
the same Hessian matrices (n = 2) along the curve p.
A surface strip of order n = 0 along the curve p is

simply the curve p. A surface strip of order n = 1 is
the curve with associated gradient information along it,
specifying the tangent plane. A surface strip of order n =
2 is the curve with associated gradient information and
Hessian matrices along the curve.
For both representations of the surfaces, a surface strip

of order n along the curve p can be seen as the curve p with
the truncated Taylor expansions of order n of the paramet-
ric/implicit surfaces along the curve. Clearly, the truncated
Taylor expansions have to satisfy certain compatibility con-
ditions for the curve.
In the case of parametric surfaces, the derivatives of the

surfaces along the given curve have to agree with the corre-
sponding derivatives of the curve, and themixed derivatives
of the surfaces have to agree with the corresponding deriva-
tives of the previously specified cross-boundary derivatives.
Thus, for each order of smoothness, one additional vector
field of cross-boundary derivatives can be specified.
Similar compatibility conditions are presented in the case

of strips defined by implicitly defined surfaces. For instance,
in the case n = 1, the specified gradient vectors of the im-
plicitly defined surface have to be orthogonal to the tan-
gents of the curve. Similar conditions can be derived for
higher values of n, simply by differentiating the composi-
tion of the parametric representations of the curve and the
implicitly defined surface through it with respect to the
curve parameter.

3. Triangular network of compatible surface strips

Let n ∈ Z
+
0 and let M be a triangular mesh, given by

vertices v ∈ V and edges e = (v,w) ∈ E with v,w ∈ V ,
where V is the vertex set and E is the edge set of the mesh.
In addition, we consider a smooth implicitly defined surface
F = {z ∈ R

3 : f(z) = 0} satisfying f(v) = 0 for v ∈ V .
For each edge e = (v,w) of the mesh, we consider a

boundary curve pe : [0, 1] → R
3 with pe(0) = v and

pe(1) = w of the form
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pe(t) = L̃e(t) + h̃e(t)Ñe(t), (1)

where L̃e and Ñe are the linear interpolants

L̃e(t) = (1 − t)v + tw

of the vertices and

Ñe(t) = (1− t)(∇f)(v) + t(∇f)(w),

of the associated normals, respectively. Moreover, the func-
tion h̃e : [0, 1] → [0, 1], which is assumed to be a polynomial
function satisfying h̃e(0) = h̃e(1) = 0, specifies the devia-
tion of the mesh from the corresponding edge of the mesh.
Clearly, the curves of this form are fairly special, since

they have to be contained in the bi-linear ruled surfaces
that are generated by the linear interpolants of points and
normals. We consider this special class of curves only, in
order to be compatible with the triangular bubble patches
which will be introduced in the next section.
We will construct the boundary curves and the implic-

itly defined surface F such that the surface contains the
boundary curve pe, i.e.

f(pe(t)) = 0

for t ∈ [0, 1]. In order to construct a Gn-smooth interpo-
lating bubble spline surface we need to evaluate the first n
derivatives of F along the boundary. Consequently, we do
not need to have a closed-form representation of f at all
points in R

3. Instead, we only specify how to evaluate the
derivatives of F along the curve. This can be done in such
a way that the surface F is compatible with the network of
curves.
The curve pe with the implicitly defined surface F –

which is represented by its truncated Taylor expansion of
order n at all points of the curve – is referred to as a compat-
ible surface strip of order n for the edge e, and the network
of boundary curves pe with the implicitly defined surface
is called a network of compatible surface strips. More pre-
cisely, the network of compatible surface strips for n ≤ 2
can be interpreted as follows.
• Case n = 0: It is simply the network of boundary curves.
• Case n = 1: It is the network of boundary curves with the
associated gradients of the function f along the curves.

• Case n = 2: It is the network of boundary curves with the
associated gradients and Hessian matrices of the func-
tion f along the curves.
A construction leading to a network of compatible surface

strips is described in Appendix B.

4. Triangular bubble patches

We introduce a new concept, called bubble patches, for
representing surface patches on triangles with given vertices
and normals. This provides a simple and natural way to
obtain free-form surfaces from triangular meshes.
Let T be the standard domain triangle defined by

T = {(u, v)|(u, v) ∈ [0, 1]2;u+ v ≤ 1}

with the vertices v1 = (0, 1), v2 = (1, 0) and v3 = (0, 0).

v

w

x

nv

nw

nx

Fig. 1. The boundary curves of a bubble patch on a triangle with

given vertices and normals.

Definition 2 Let T be a triangle of M with the vertices
v,w,x ∈ V , connected by the edges (v,w), (v,x), (x,w) ∈
E, and the corresponding normals nv, nw, nx; see Fig. 1.
We define a surfaceB : T → R

3 on the triangle T as follows

B(u, v) = L(u, v) + h(u, v)N(u, v), (2)

where L and N are linear interpolants, given by

L(u, v) = (1− u− v)v + uw+ vx

and

N(u, v) = (1− u− v)nv + unw + vnx,

and h is a scalar-valued function. Moreover we require that
B(0, 0) = v, B(1, 0) = w, and B(0, 1) = x which implies
that h(0, 0) = h(1, 0) = h(0, 1) = 0. The function B is
referred to as a bubble patch (on the triangle T ) and the
function h is called the bubble function (on the trian-
gle T ).

In our case, where the construction starts with a network
of compatible surface strips, the normals nv, nw and nx

are given by the gradients of the implicitly defined surface,
evaluated at the vertices,

nv = (∇f)(v), nw = (∇f)(w) and nx = (∇f)(x),

respectively. An example of a bubble patch on a triangle is
shown in Fig. 1.
A bubble patch B is generated by selecting points on a

special 2-parametric family of lines, see Fig. 2. These lines
are obtained by combining the linear parametrization of the
triangle with the linear interpolation of the normal vectors
at the vertices. Consequently, the parametrization of the
surface is uniquely determined by this family of lines.
The regularity of a bubble patch can also be guaranteed

with the help of this parametrization. If the three boundary
normals do not deviate too much from the normal of the
triangle, and if the values of the bubble function are not
too large, then the bubble patch will be regular.
Bubble patches are in close relation to the underlying

triangular mesh. There is a one-to-one correspondence be-
tween the points of the mesh and the points on the surface.
In addition, it is easy to bound the distance. The distance
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Fig. 2. A 2-parametric family of lines defines the bubble patch.

between a bubble patchB and the corresponding triangle T
of the mesh M can be bounded by

max
(u,v)∈T

|h(u, v)| ||N(u, v)||.

5. Strip-compatible bubble patches

We use a network of compatible surface strips to describe
a simple construction for a Gn-smooth spline surface com-
posed of triangular bubble patches. The idea is to construct
bubble patches which have a contact of order nwith the im-
plicitly defined surface F along the boundary curves. This
provides a simple method to generate Hermite boundary
data

∂i

∂vi
h(u, v)

∣
∣
v=0

,
∂i

∂ui
h(u, v)

∣
∣
u=0

(3)

and
∂i

∂vi
h(u, v)

∣
∣
v=1−u

,
∂i

∂ui
h(u, v) |u=1−v (4)

for i ∈ {0, . . . , n}. By interpolating these data we are then
able to guarantee Gn-continuity between neighboring bub-
ble patches.
Our construction of a Gn-smooth spline surface consists

of the following two steps. At first we generate for each
triangle Hermite boundary data (3) and (4) of the bubble
function h. This step is described in the remainder of this
section. In the second step we construct the single bub-
ble patches by applying Gordon-Coons interpolation to the
generated Hermite boundary data; see Section 6.
Now we describe the first step of our construction. We

consider a bubble patch B and a compatible surface strip
given by the curve pe and the implicitly defined surface F ,
such that pe is a boundary curve of B. For the sake of
simplicity, we consider the case

B(t, 0) = pe(t). (5)

A contact of order n between the patchB and the surface F
along the curve pe is described by the contact condition

∂i+j

∂ui∂vj
f(B(u, v)

∣
∣
v=0

= 0 (6)

for i, j ∈ {0, . . . , n} with i + j ≤ n. Since equation (5) is
satisfied, we have

f(B(u, 0)) = 0 (7)

and condition (6) is trivially satisfied for j = 0. Moreover,
we also have

h(t, 0) = h̃e(t).

Depending on the order n of contact, the condition

∂j

∂vj
f(B(u, v)

∣
∣
v=0

= 0 (8)

for j ∈ {1, . . . , n} provides the Hermite boundary data

∂i

∂vi
h(u, v)

∣
∣
v=0

of the bubble function h for j ∈ {1, . . . , n} as follows. For
better readability, we denote the first and second partial
derivative of a bivariate function r : [0, 1]2 → R

d (d ∈
{1, 2, 3}) with respect to the second argument by r0,1 and
r0,2, respectively.

Contact of order 1: The condition
∂

∂v
f(B(u, v)

∣
∣
v=0

= 0

is equivalent to

(∇f)(B(u, 0))T ·B0,1(u, 0) = 0.

By combining this observation with

B0,1(u, 0) =L0,1(u, 0) + h0,1(u, 0)N(u, 0)

+ h(u, 0)N0,1(u, 0)

we obtain the first partial derivative

h0,1(u, 0) =−
(∇f)(B(u, 0))T · L0,1(u, 0)

(∇f)(B(u, 0))T ·N(u, 0)

−
h(u, 0)(∇f)(B(u, 0))T ·N0,1(u, 0)

(∇f)(B(u, 0))T ·N(u, 0)

of the bubble function.

Contact of order 2: The second partial derivative
h0,2(u, 0) of the bubble function can be computed similarly.
The condition

∂2

∂v2
f(B(u, v)

∣
∣
v=0

= 0

can equivalently be reformulated as

(∇f)(B(u, 0))T ·B0,2(u, 0)

+B0,1(u, 0)
T ·Hess(f)(B(u, 0)) ·B0,1(u, 0) = 0.

Since B0,2(u, 0) is given by

B0,2(u, 0) = h0,2(u, 0)N(u, 0) + 2h0,1(u, 0)N0,1(u, 0),

we obtain

h0,2(u, 0) =−
B0,1(u, 0)

T ·Hess(f)(B(u, 0)) ·B0,1(u, 0)

(∇f)(B(u, 0))T ·N(u, 0)

−
2h0,1(u, 0)(∇f)(B(u, 0))T ·N0,1(u, 0)

(∇f)(B(u, 0))T ·N(u, 0)
.
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Contact of order s ≥ 3: We compute the partial deriva-
tive

∂s

∂vs
h(u, v)

∣
∣
v=0

by using condition (8) and the previously computed partial
derivatives

∂j

∂vj
h(u, v)

∣
∣
v=0

of the bubble function for j ∈ {0, . . . , s− 1}.

The fulfillment of the contact condition (6) follows di-
rectly from the conditions (7) and (8). Consequently, the
bubble patch B possesses a contact of order n with the im-
plicitly defined surface F along the curve pe.
By describing analogous Gn-conditions for the bound-

aries B(0, t) and B(t, 1− t), we obtain the remaining Her-
mite boundary data of (3) and (4).
Since the bubble patch B has a contact of order n with

the implicitly defined surface F along the boundary curves
which are contained in the surfaceF , the Hermite boundary
data (3) and (4) fulfill the condition

∂i+j

∂ui∂vj
h(u, v)

∣
∣
(u,v)=vk

=
∂i+j

∂vj∂ui
h(u, v)

∣
∣
(u,v)=vk

, (9)

for i, j ∈ {1, . . . , n} at the vertices vk with k ∈ {1, 2, 3}.
Condition (9) is called the twist compatibility condition and
is needed for applying Gordon-Coons interpolation to con-
struct a Cn-bubble patchB; see Section 6 and Appendix A.
Condition (6) provides a simple method to construct

Hermite boundary data (3) and (4) for an arbitrary value
of n, which guarantees Gn-continuity between two neigh-
boring bubble patches. Only a few linear equations need to
be solved to get the Hermite boundary data of one patch.
Another advantage of this approach is that the generation
of the Hermite boundary data is perfectly local, i.e., it is
entirely independent of the computation performed for the
other patches. In addition, this method works uniformly
for vertices of arbitrary valency.

6. Construction of bubble patches

In the previous section we explained how to generate
Hermite boundary data (3) and (4) of the bubble func-
tion h, which ensures Gn-continuity between two neigh-
boring patches. By using Gordon-Coons interpolation for
triangles, we can construct from the generated Hermite
boundary data Cn-bubble patches, which are connected
with Gn-continuity.
Gordon-Coons interpolation for triangles is a transfinite

interpolation scheme which generates from the given Her-
mite boundary data a smooth function, interpolating this
boundary data (cf. [1, 2, 3, 5]). The main concept of this in-
terpolation scheme is similar to the Gordon-Coons method
for rectangles (cf. [4, 12]) and can be summarized as follows.
Let ē1 = (v2,v3), ē2 = (v1,v3) and ē3 = (v1,v2) be

the edges of the standard triangle T. For i, j, k ∈ {1, 2, 3}
with i 6= j 6= k 6= i, we denote by Pi the operator, which

v1

v2v3 ē1

ē2
ē3

v1

v2v3 ē1

ē2
ē3

v1

v2v3 ē1

ē2
ē3

P1 P2 P3

Fig. 3. The three operators P1, P2 and P3 which perform Hermite
interpolation parallel to the edges ē1, ē2 and ē3, respectively.

performs Hermite interpolation parallel to the edge ēi, us-
ing Hermite boundary data, given for the edges ēj and ēk;
see Fig. 3. By combining the three operators we obtain an
interpolation operator, which generates a smooth function,
interpolating the given boundary data.
By applying this procedure to the Hermite boundary

data (3) and (4) of order n we obtain a Cn-bubble func-
tion h, and hence a Cn-bubble patchB. Moreover, the bub-
ble patches are all rational surfaces, which are pieced to-
gether with Gn-continuity.
In order to make this paper self-contained, Appendix A

summarizes the general concept of the Gordon-Coons
method of degree n in detail and present explicit formulas
for n = 0 and n = 1.
The generated bubble surfaces are rational, but their de-

gree is generally so high that an evaluation in closed form
does not appear to be of much use. Thus, there are two
possibilities to use our construction.
First, one may use the bubble patches as a procedural

definition for a surface, where each point of the surface can
be evaluated by following the evaluation path determined
by the construction. Each step in the construction requires
solely standard arithmetic operations, hence the evaluation
can be performed easily and derivatives can be obtained,
e.g., by using tools such as automatic differentiation.
Second, one may generate low degree approximations

(e.g. using spline functions) for the Hermite boundary data.
If this approach is taken, then we obtain bubble patches
which are spline surfaces of low degree. We have used this
approach in our current implementation. The functions
specifying the Hermite boundary data along the curves are
represented by standard cubic splines. This leads to spline
surface patches of degree (5, 5), (7, 7) and (9, 9) for n = 0,
n = 1 and n = 2, respectively.
Clearly, the surfaces which are obtained in this way are

only approximately Gn-smooth, since an approximation
step is performed. However, there exists a precise mathe-
matical model of an exactlyGn-smooth surface. If the level
of smoothness turns out to be too low, then one can eas-
ily improve the accuracy of the cubic spline approximation
used to represent the Hermite boundary data. Only one-
dimensional spline fitting procedures are needed for this
task.
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7. Examples

We present several examples of generated G0, G1 and
G2-surfaces, see Fig. 4. These surfaces are interpolating
the given curves of the triangular networks of compatible
surface strips. A network of compatible surface strips is
obtained by using the construction method in Appendix B.
Fig. 4 shows only the vertices and edges of the different
triangular meshes that were used to generate the networks
of compatible surfaces strips. We use reflection lines, which
is a well known tool for verifying the resulting geometric
continuity (cf. [23]), to demonstrate the smoothness of the
surfaces.
We can observe, that all resulting surfaces have the re-

quired geometric continuity. In the case of G1 and G2, all
reflection lines of the surfaces are at least G0 and G1, re-
spectively. In the examples of the tube and of the rotated
horse shoe, it is clear to see that the resulting G0 and G1-
surfaces are onlyG0 andG1, respectively, but not smoother.
In addition, we can observe that the order of geometric
smoothness has nothing to do with the aesthetic appeal of
the resulting surfaces. A possible attempt to fair the sur-
faces could be a different choice of the implicitly defined
surfaces at the vertices of the mesh in the first step of the
construction of a suitable network of compatible surface
strips; see Appendix B.

8. Conclusion

In this paper we have presented a simple method for con-
structing a Gn-surface from a triangular network of com-
patible surface strips, which is a network of curves with an
associated implicitly defined surface.
Summing up, our construction scheme works as follows.

For each triangle we generate a single surface patch, repre-
sented by a newmethodology, called bubble patch. Thereby
a single surface patch is constructed with the help of trian-
gular Coons interpolation in such a way that the patches
are connected with Gn-continuity. This is achieved by gen-
erating Hermite boundary data of the bubble patch for
the Gordon-Coons method, which ensures the desired Gn-
continuity between the patches. For this we use the com-
patible surface strips to describe a simple Gn-condition
between the patches, which provides the suitable Hermite
boundary data. Our algorithm is explained for n ≤ 2 in
detail and several examples are presented.
The advantages of our method are as follows. Our con-

struction is local and simple and works uniformly for
meshes of arbitrary valency. The resulting surfaces are
piecewise rational surface patches, which are pieced to-
gether with Gn-continuity. By using low degree approxi-
mations (e.g. splines) for the Hermite boundary data we
obtain (spline) surface patches of low degree. The method
can be extended to quadrilateral and mixed triangular and
quadrilateral meshes with vertices of arbitrary valency. An
example from a quadrilateral mesh is shown in Fig 5.

As a possible topic for future work, we are currently try-
ing to derive a geometric subdivision scheme from our con-
struction, by sampling points and Hermite data from the
constructed surface. The use of a globally defined implicit
representation could provide a new and promising approach
to verify the smoothness of the obtained limit surfaces,
which does not require local parametrizations and can deal
uniformly with vertices of any valency.

Acknowledgements The second author has been sup-
ported by the Austrian Science Fund, project S9202.

Appendix A. Gordon-Coons interpolation for

triangles

We give a short overview of a transfinite interpolation
scheme for triangles, which is often known as the Gordon-
Coons method for triangles. For more details of Gordon-
Coons interpolation for triangles we refer to [1, 2, 3, 5].

A.1. General concept

For n ∈ Z
+
0 , k ∈ {0, 1} and j ∈ {0, . . . n}, we denote by

H2n+1
k,j the classical Hermite polynomials of degree 2n+ 1,

i.e.
H2n+1

k,j : [0, 1] → R

satisfying
∂i

∂ti
H2n+1

k,j (t)
∣
∣
t=l

= δi,jδk,l

for j ∈ {0, . . . , n} and l ∈ {0, 1}.
A general construction scheme of the Gordon-Coons

method of degree n for generating aCn-function h : T → R

is as follows:
(i) Let

hi,j(u, v) =
∂i+j

∂ri∂sj
h(r, s)

∣
∣
(r,s)=(u,v)

for i, j ∈ {0, . . . , n}. Consider the given Hermite
boundary data

hi,0(0, v), h0,i(u, 0), hi,0(1 − v, v) and h0,i(u, 1− u)

for i ∈ {0, . . . , n}, satisfying the twist compatibility
condition (9).

(ii) For a function g : T → R, define the operators P1,
P2 and P3 as

P1 =

n∑

i=0

H2n+1
0,i (

u

1− v
)(1 − v)igi,0(0, v)

+

n∑

i=0

H2n+1
1,i (

u

1− v
)(1 − v)igi,0(1− v, v),

P2 =

n∑

i=0

H2n+1
0,i (

v

1− u
)(1− u)ig0,i(u, 0)

+
n∑

i=0

H2n+1
1,i (

v

1− u
)(1− u)ig0,i(u, 1− u),
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Meshes

G0-surfaces

G1-surfaces

G2-surfaces

Cube Bar Tube Rotated horse shoe

Fig. 4. Examples of different meshes and the resulting G0, G1 and G2-surfaces with reflection lines.
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Rotated horse shoe G1-surface G2-surface

Fig. 5. Example of a quadrilateral mesh and the resulting G1 and G2-surfaces with reflection lines.

and

P3 =

n∑

i=0

H2n+1
0,i (

u

u+ v
)(u+ v)iWi(0, u+ v)

+

n∑

i=0

H2n+1
1,i (

u

u+ v
)(u+ v)iWi(u+ v, 0),

where the indices for g indicate differentiation and

Wi(u, v) =

i∑

j=0

(
i

j

)

(−1)jgi−j,j(u, v).

(iii) Then the function h is given by

h(u, v) = (Pi ⊕Pj)h(u, v) (A.1)

for any choice of i, j ∈ {1, 2, 3} with i 6= j, where the
Boolean sum operator Pi ⊕Pj is given by

Pi ⊕Pj = Pi +Pj −PiPj ,

see [2, Theorem 2.1].
The fulfillment of the twist compatibility condition (9)

for the vertex vk for k ∈ {1, 2, 3} with i 6= j 6= k 6= i is
sufficient for applying the interpolant (A.1); see [2, Theo-
rem 2.1]. An example of an interpolant (A.1) is

h(u, v) = (P1 ⊕P2)h(u, v), (A.2)

for which the explicit formulas for n = 0 and n = 1 are
presented in Subsection A.2 and A.3, respectively (cf. [2]).
Clearly, the interpolant (A.1) is not symmetric. According
to [2], a more symmetric interpolant can be obtained by
averaging interpolants (A.1).
[2, Theorem 2.4] describes similar interpolants, which

do not need the twist compatibility condition (9) to be
satisfied. Instead, they need some additional assumptions
concerning the Hermite boundary data (3) and (4).

A.2. Gordon-Coons interpolation of degree 0

The Boolean sum operator (P1 ⊕P2)h(u, v) is given by

(P1 ⊕P2)h(u, v) =H1
0,0(

v

1− u
)h(u, 0)

+H1
1,0(

v

1− u
)h(u, 1− u)

+H1
0,0(

u

1− v
)[h(0, v)−Q

(0)
0 (0, v)],

where

Q
(0)
0 (0, v) = H1

0,0(v)h(0, 0) +H1
1,0(v)h(0, 1).

A.3. Gordon-Coons interpolation of degree 1

The explicit formula of the Boolean sum operator (P1 ⊕
P2)h(u, v) is

(P1 ⊕P2)h(u, v) =

1∑

i=0

H3
0,i(

v

1− u
)(1− u)ih0,i(u, 0)

+

1∑

i=0

H3
1,i(

v

1− u
)(1− u)ih0,i(u, 1− u)

+

1∑

i=0

H3
0,i(

u

1− v
)(1 − v)i[hi,0(0, v)

−Q
(i)
1 (0, v)],

where

Q
(0)
1 (0, v) =

1∑

i=0

H3
i,0(v)h0,i(0, 0)

+
1∑

i=0

H3
i,1(v)h0,i(0, 1),

and
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Q
(1)
1 (0, v) = v[

1∑

i=0

∂i

∂ti
H3

0,i(t) |t=v h0,i(0, 0)

+

1∑

i=0

∂i

∂ti
H3

1,i(t) |t=v h0,i(0, 1)]

+H3
0,0(v)h1,0(0, 0)

+H3
0,1(v)[−h0,1(0, 0) + h1,1(0, 0)]

+H3
1,0(v)[h1,0(0, 1)− h0,1(0, 1)]

+H3
0,1(v)[−h0,1(0, 1) + h1,1(0, 1)].

Appendix B. Construction of a triangular network

of compatible surface strips

We explain the construction of a triangular network of
compatible surface strips from a triangular mesh of given
vertices and associated normals. For this, we consider the
triangularmeshMwith vertices v ∈ V , edges e = (v,w) ∈
E with v,w ∈ V . In addition, we assume that we have for
each vertex v ∈ V an associated normal nv. The construc-
tion of a network of compatible surface strip of order n con-
sists of three steps, described in the following subsections.

B.1. Construction of implicitly defined surfaces at the
vertices

At first, we generate for each vertex v ∈ V an associated
implicitly defined surface Fv = {z ∈ R

3 : fv(z) = 0} of
degree m, given by its truncated Taylor expansion

fv(z) = g(v)T · (z− v) +
1

2
(z− v)T ·H(v) · (z− v) + . . . ,

fulfilling
g(v) = nv,

where g(v) is the gradient and H(v) is the Hessian matrix
of the function fv at the vertexv. Conceptually, we consider
fv as the Taylor expansion of a globally implicitly defined
surface F = {z ∈ R

3 : f(z) = 0} about the vertex v.
Therefore we can refer to g(v) and H(v) as local gradient
and local Hessian matrix at v, respectively.
A possible construction of the function fv is as follows.

We generate for fv a function of degree m

fv(x, y, z) =
∑

r,s,t∈Z
+

0
: r+s+t≤m

cr,s,tx
ryszt,

satisfying
fv(v) = 0 (B.1)

and
(▽fv)(v) = g(v) = nv, (B.2)

with cr,s,t ∈ R. Now we compute the unknown coefficients
cr,s,t by solving the minimization problem

min
cr,s,t

∑

w∈Ωi(v)

ωw(fv(w)2 + ||(▽fv)(w)− nw||2)

subject to the constraints (B.1) and (B.2), where Ωi(v) is
the i-ring neighborhood of vertices of v and ωw is the user

specified weight for the vertexw in the i-ring neighborhood
Ωi(v).
The implicitly defined surface Fv will be used in the fol-

lowing subsections to describe the local behavior of the de-
sired compatible surface strips at the vertex v. Therefore,
the choice of the implicitly defined surfaces at the vertices
influences the shape of the resulting surfaces.

B.2. Construction of boundary curves

As the next step, we construct for each edge e = (v,w) a
curve pe of the form (1), having a contact of order 2n with
the implicitly defined surfaces Fv and Fw at the vertices v
and w, respectively, which specifies the function h̃e.
In detail, we choose h̃e as a polynomial of degree 4n+ 1

in the Bernstein-Bézier representation, i.e.

h̃e(t) =

4n+1∑

i=0

diB
4n+1
i (t),

whereB4n+1
i are the Bernstein polynomials of degree 4n+1

and di ∈ R. To get the function h̃e, we compute a boundary
curve pe which possesses a contact of order 2n with the
implicitly defined surfaces Fv and Fw at the vertices v and
w, respectively, i.e.

∂i

∂ti
fv(pe(t)

∣
∣
t=0

= 0 and
∂i

∂ti
fw(pe(t)

∣
∣
t=1

= 0 (B.3)

for i ∈ {0, . . . , 2n}. Then the contact conditions (B.3) lead
to a system of linear equations for the coefficients di of the
function h̃e. Moreover, the contact of order 2n of the bound-
ary curve with the implicitly defined surfaces guarantees
that the twist compatibility condition (9) is satisfied.

B.3. Construction of compatible implicitly defined surfaces
along the boundary curves

Finally, we generate a family of implicitly defined sur-
faces Fq = {z ∈ R

3 : fq(z) = 0} of degree n along each
boundary curve pe. For a point q = pe(t) on the boundary
curve, the function fq is given by

fq(z) = g(q)T · (z− q)
︸ ︷︷ ︸

only for n≥1

+
1

2
(z− q)T ·H(q) · (z − q)

︸ ︷︷ ︸

only for n≥2

+ . . . ,

where g(q) is the local gradient and H(q) is the local Hes-
sian matrix of the function fq at the point q. This family
of surface is generated in such a way that it is compati-
ble with the curve pe and with the implicitly defined sur-
faces Fv and Fw at the vertices v and w, respectively. This
is achieved by simply projecting the Taylor expansions ob-
tained by Hermite interpolation into the linear subspaces
which are defined by the compatibility conditions. We ex-
plain this construction step for n ≤ 2 in detail, but it can
be generalized to any n ≥ 3, which is beyond the scope of
this paper.
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The function fq is determined by zero for n = 0, by the
local gradient g(q) for n = 1, and by the local gradient g(q)
and the local Hessian matrix H(q) for n = 2. As already
described before, the local gradients (and the local Hessian
matrices) have to be compatible with the boundary curve
pe, which means that the boundary curve needs to have a
first (and second order contact) with the function fq along
the boundary curve, i.e.

∂

∂s
fq(pe(s))

∣
∣
s=t

= 0 (B.4)

(and
∂2

∂s2
fq(pe(s))

∣
∣
s=t

= 0 ) (B.5)

for q = pe(t). The conditions (B.4) and (B.5) lead to the
following conditions

g(pe(t))
T ·

∂

∂t
pe(t) = 0 (B.6)

and
∂

∂t
g(pe(t)) = H(pe(t)) ·

∂

∂t
pe(t) (B.7)

for the local gradients and for the local Hessian matrices,
respectively.
The computation of the local gradients for n ∈ {1, 2}

and the local Hessian matrices for n = 2 works as follows.

Computation of the local gradients: We first gen-
erate an initial field of pseudo-gradient vectors ĝ(pe) by
Hermite interpolation of suitable boundary data at the ver-
tices v and w of the edge e, i.e.

ĝ(pe(t)) =

2n−1∑

j=0

H4n−1
0,j (t)ĝj

v +H4n−1
1,j (t)ĝj

w,

where

ĝj
v =

∂j

∂tj
(▽fv)(pe(t))

∣
∣
t=0

and

ĝj
w =

∂j

∂tj
(▽fw)(pe(t, 0))

∣
∣
t=1

,

for j ∈ {0, . . . , 2n− 1}.
This initial field of vectors ĝ(pe), however, is not guar-

anteed to fulfill condition (B.6). A valid field of gradient
vectors g(pe) is then obtained by solving the minimization
problem

g(pe(t)) = argmin
ḡ

||ḡ − ĝ(pe(t))||
2

subject to the constraint (B.6). Its solution is given in ex-
plicit form by

g(pe(t)) = ĝ(pe(t))−
ĝ(pe(t))

T · ∂
∂t
pe(t)

∂
∂t
(pe(t))T · ∂

∂t
pe(t)

(
∂

∂t
(pe(t))).

This possesses a simple geometric interpretation. The gra-
dients g(pe) are obtained as the projections of the gradi-
ents ĝ(pe) into the normal plane of the curve pe. Moreover,
this design specification of the local gradients ensures that
the twist compatibility condition (9) is satisfied.

Computation of the local Hessian matrices: The
construction of the local Hessian matrices works similar to
the case of the local gradients. Again, we start with the
construction of interpolants Ĥ(pe), given by

Ĥ(pe(t)) =

2∑

j=0

H5
0,j(t)Ĥ

j
v +H5

1,j(t)Ĥ
j
w,

where

Ĥj
v =

∂j

∂tj
Hess(fv)(pe(t))

∣
∣
t=0

and

Ĥj
w =

∂j

∂tj
Hess(fw)(pe(t))

∣
∣
t=1

,

for j ∈ {0, 1, 2}. By solving the minimization problem

H(pe(t)) = argmin
H̄

||H̄− Ĥ(pe(t))||
2 (B.8)

subject to the constraint (B.7), we obtain the local Hessian
matrices which satisfy condition (B.7) and guarantee the
fulfillment of the twist compatibility condition (9). More-
over, the construction of the Hessian matrices H(pe) is in-
variant with respect to the choice of a coordinate system.
Since the functions fq can be considered as the Taylor ex-

pansions of a globally implicitly defined surface F = {z ∈
R

3 : f(z) = 0} about the vertex v, a triangular network
of compatible surface strips of order n is given by this sur-
face F and the boundary curves pe for the edges e of the
triangular mesh M.
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[13] K. Karčiauskas and J. Peters. Guided spline surfaces.
Comput. Aided Geom. Design, 26(1):105–116, 2009.

[14] Q. Liu and T. Sun. G1 interpolation of mesh curves.
Computer-Aided Design, 26(4):259–267, 1994.

[15] J. Peters. Smooth interpolation of a mesh of curves.
Constr. Approx., 7(2):221–246, 1991.

[16] J. Peters. C2 free-form surfaces of degree (3, 5). Com-
put. Aided Geom. Design, 19(2):113–126, 2002.

[17] J. Peters. Geometric continuity. In Handbook of com-
puter aided geometric design, pages 193–227. North-
Holland, Amsterdam, 2002.

[18] H. Prautzsch. Freeform splines. Comput. Aided Geom.
Design, 14(3):201–206, 1997.

[19] U. Reif. BiquadraticG-spline surfaces. Comput. Aided
Geom. Design, 12(2):193–205, 1995.

[20] U. Reif. TURBS—topologically unrestricted rational
B-splines. Constr. Approx., 14(1):57–77, 1998.

[21] M. Szilvási-Nagy and I. Szabó. C1-continuous Coons-
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