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Abstract

The investigation of rational varieties with chord length parameterization (shortly
RCL varieties) was started by Farin (2006) who observed that rational quadratic
circles in standard Bézier form are parametrized by chord length. Motivated by
this observation, general RCL curves were studied. Later, the RCL property was
extended to rational triangular Bézier surfaces of an arbitrary degree for which the
distinguishing property is that the ratios of the three distances of a point to the three
vertices of an arbitrary triangle inscribed to the reference circle and the ratios of the
distances of the parameter point to the three vertices of the corresponding domain
triangle are identical. In this paper, after discussing rational tensor-product surfaces
with the RCL property, we present a general unifying approach and study the
conditions under which a k-dimensional rational variety in d-dimensional Euclidean
space possesses the RCL property. We analyze the entire family of RCL varieties,
provide their general parameterization and thoroughly investigate their properties.
Finally, the previous observations for curves and surfaces are presented as special
cases of the introduced unifying approach.

Key words: rational varieties, chord lengths parameterizations, rational Bézier
patches

1 Introduction

The investigation of rational varieties with chord length parameterization
(shortly RCL varieties) started in Farin (2006) for planar curves by show-
ing that the chord length parameter assignment is exact for circle segments
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in standard rational quadratic form. An independent geometric proof of this
fact can be found also in Sabin and Dodgson (2005), where an application to
a circle-preserving variant of the four-point subdivision scheme is discussed.

Investigating chord length parameterizations in Computer Aided Geometric
Design is mainly motivated by the use of chord length or chordal method for
interpolation and approximation of discrete point data. RCL parameteriza-
tions can be seen as an alternative to arc-length parameterizations because –
analogously to an arc-length parameter – the chord-length parameter is also
uniquely determined by the loci of the curve. Hence, rational curves with chord
length parameterizations are, in some sense, a chord-length analogy to the so
called Pythagorean-hodograph curves characterized by closed form formulas
for their arc-lengths, cf. Farouki (2008); Farouki and Sakkalis (1990). Let us
emphasize that RCL curves are worth studying mainly because of the follow-
ing advantages: they provide a simple inversion formula applicable e.g. for
computing their implicit form, they do not possess self-intersections, and they
are suitable for point-curve testing.

Motivated by the recent work, a thorough analysis of curves with RCL prop-
erty followed. Sánchez-Reyes and Fernández-Jambrina (2008) studied the
close connection between bipolar coordinates and curves with chord length
parametrization. It was shown that RCL curves are simply those whose param-
eter coincides with one of the bipolar coordinates. Independently, Lü (2009)
uses computations in the complex plane for studying rational curves which can
be parametrized by chord length and he presents two schemes characterizing
planar and spatial curves. Among other results, cubics and quartics are stud-
ied and consequently applied to geometric Hermite interpolation. Finally, some
curves with chord-length parameterization were mentioned among remarkable
curves possessing a complex rational form, see Sánchez-Reyes (2009). Besides
straight lines and circles in standard form, the family of RCL curves contains
e.g. equilateral hyperbolas, Bernoulli’s lemniscate and Pascal’s Limaçon.

Promising observations concerning RCL curves motivated to extend this ap-
proach to rational surfaces. First, it was proved in Bastl et al. (2011) that
the equal chord property holds for certain quadratic rational Bézier patches
describing a segment of a sphere. This result is a direct surface analogy to the
planar result of Farin (2006). The proof is based on the well-known construc-
tion of spherical quadratic patches by stereographic projection, cf. Albrecht
(1998); Dietz et al. (1993); Farin (2002). In addition, it was shown how to
characterize the RCL property of surfaces using tripolar coordinates in space,
which extend the results of Sánchez-Reyes and Fernández-Jambrina (2008)
concerning the bipolar coordinates (see also Bateman (1938); Farouki and
Moon (2000)).

A thorough analysis of surfaces with RCL property was provided in Bastl
et al. (2010). Rational triangular Bézier surfaces of an arbitrary degree were
considered and conditions under which they are rationally parametrized by
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chord lengths with respect to the reference circle were investigated. Let us
recall that the distinguishing property of the RCL surfaces is that the ratios
of the three distances of a point to the three vertices of an arbitrary triangle
inscribed to the reference circle and the ratios of the distances of the parameter
point to the three vertices of the corresponding domain triangle are identical.
Attractive geometric properties of the RCL surfaces were demonstrated and
several examples were presented.

The main aim of this paper is to extend the RCL property to general k-
dimensional rational varieties and thus to formulate a general approach to
chord length parameterizations in any dimension. First, we recall the well-
known results concerning the RCL surfaces and present them in the case of
tensor-product surfaces. Based on these motivating results, we will give the
general definition and present some results necessary for a construction of
arbitrary rational chord length varieties. A crucial result is deriving a gen-
eral formula for any k-dimensional RCL variety in d-dimensional Euclidean
space. Finally, the observations from Bastl et al. (2011, 2010); Farin (2006);
Lü (2009); Sánchez-Reyes and Fernández-Jambrina (2008) are then identified
as special instances of the results provided by the general approach.

2 Preliminaries

We consider a rational tensor-product surface of degree (m, n), which is de-
scribed by its Bernstein–Bézier representation

P(X) =

m∑

i=0

n∑

j=0

wij bij Bm
i (λ)Bn

j (µ)

m∑

i=0

n∑

j=0

wij Bm
i (λ)Bn

j (µ)

, X ∈ R
2, (1)

where λ, µ are coordinates of X given by the bilinear parameterization

X =
1∑

i=0

1∑

j=0

Aij B1
i (λ)B1

j (µ), (λ, µ) ∈ [0, 1]2 (2)

of a (not necessarily axis-aligned) rectangle �(A00,A01,A10,A11) in the plane
R

2 with vertices Aij, which we will call the reference rectangle. The basis
functions are the standard Bernstein polynomials.

The shape of the surface is determined by the (m + 1)(n + 1) control points
bij with the associated weights wij. In particular, the control net of the patch
has the four vertices
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v00 = b00, v10 = bm0, v01 = b0n, and v11 = bmn (3)

which are the images of the vertices of the reference rectangle. Let

Rkℓ(X) = ||X−Akℓ||2 and rkℓ(X) = ||P(X)− vkℓ||2 (4)

be the squared distances of the point X and its image P(X) to the vertices of
the domain and to the vertices of the patch, respectively.

Definition 1 The surface (1) is a rational chord length parameterization
(RCL) with respect to the reference rectangle �(A00,A01,A10,A11), if

r00 : r10 : r01 : r11 = R00 : R10 : R01 : R11, or, equivalently,

∀(i, j), (k, ℓ) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} : rijRkℓ = rkℓRij (5)

holds for all points X ∈ Q.

We first analyze the relation between the reference rectangle and the quadri-
lateral spanned by the vertices of the control net.

Lemma 2 If the surface is a rational chord length parameterization, then the
rectangle �(A00,A10,A01,A11) and the quadrilateral �(v00,v10,v01,v11) are
similar.

Proof. We evaluate the six non-trivial (i.e., obtained for (i, j) 6= (k, l)) rela-
tions (5) at the four vertices Aℓ of the domain quadrilateral. 12 of these 24
equations are trivially satisfied, since one of the rij and Rij vanishes at each
vertex. The remaining equations guarantee the similarity of all four triangles
formed by joining three vertices of each quadrilateral. This suffices to conclude
that the two quadrilaterals are similar. 2

In the remainder of the paper, we identify the reference rectangle with vertices
Aij with the quadrilateral spanned by the vertices vij of the surface patch,
and the domain R

2 containing it with the plane spanned by the vertices.
Consequently, the domain of the surface patch is the plane spanned by the
vertex rectangle.

For any point Y ∈ R
3, we denote with

̺kℓ(Y) = ||Y − vkℓ||2, k, ℓ = 0, 1, (6)

the squared distances to the vertices of the patch.

Lemma 3 For a given point X on the plane containing the reference rectan-
gle, the set of all points Y satisfying
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∀(i, j), (k, ℓ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} : (7)

̺ij(Y)Rkℓ(X) = ̺kℓ(Y)Rij(X)

is a circle which passes through X and is perpendicular to any sphere con-
taining the vertices of the patch. If X lies on the circumcircle of the vertex
rectangle, then the circle Y shrinks to the single point X.

Proof. Recall that for any two points M, N in the plane, the set of all points
Z satisfying

||Z− M||2 = c ||Z−N||2 (8)

for some positive constant c is a circle (Apollonius’ definition) which intersects
any circle through M and N orthogonally. Consequently, for a given point X,
the set of all points Y satisfying

̺ij(Y)Rkℓ(X) = ̺kℓ(Y)Rij(X) (9)

is a sphere whose center lies on the line through vij and vkℓ, where we assume
that (i, j) 6= (k, ℓ). Moreover, any sphere containing these two vertices inter-
sects this sphere orthogonally. Indeed, if we consider the intersection with the
common symmetry plane of both spheres, which is spanned by the sphere’s
center and the line through vij and vkℓ, then we obtain the two families of
circles which appear in Apollonius’ definition of a circle.

The six spheres (9) intersect in one circle. Indeed, any triplet of spheres which
are obtained by considering three of the four vertices defines a single circle,
since the equations are not independent. Moreover, these circles are all iden-
tical since they pass through the given point X and are orthogonal to any
sphere that contains the four vertices, cf. Fig. 1.

If X belongs to the circumcircle of the vertex quadrangle, then any two of the
six spheres (9) touch each other at this point and the circle degenerates into
a single point. 2

So far, we considered the rational tensor-product surface (1) in Bernstein-
Bézier representation with respect to the given reference rectangle in the do-
main (which is the entire plane R

2). Clearly, it is possible to obtain a similar
tensor-product representation as (1) for any reference rectangle. In general,
however, the degree of this representation will increase to (m + n, m + n).
The next corollary identifies the reference rectangles where the tensor-product
patch is again a rational chord length parametrization.

Corollary 4 If P is a rational chord length parameterization, then its restric-
tion to the circumcircle of the reference rectangle is the identity. Moreover, the
surface is a rational chord length parameterization with respect to any refer-
ence rectangle that possesses the same circumcircle.
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Fig. 1. Some circles which are perpendicular to any sphere containing the
vertices of the patch.

Proof. The surface P is a RCL surface if and only if any point P(X) lies on
the circle described in Lemma 3. On the one hand, if X is on the circumcircle
of the reference rectangle, then this circle shrinks to the point X itself. On
the other hand, the family of circles described in Lemma 3 does not depend
on choice of the reference rectangle. 2

Consequently, the RCL surface always contains the circumcircle of its reference
rectangle, and its definition depends solely on this circle. The latter fact can
also be concluded from Corollary 4 of Bastl et al. (2011). This observation
motivates the following extended definition.

Definition 5 A surface P is said to be a rational chord length parameteriza-
tion with respect to a circle, if it is a rational chord length parameterization
with respect to a reference rectangle possessing this circle as its circumcircle.

In addition to considering reference rectangles, one may also consider reference
triangles. The surface (1) can be represented as a rational triangular Bézier
surface of degree m + n with respect to any reference triangle. This case has
been analyzed in the conference article Bastl et al. (2010). The link between
chord length parameterizations with respect to rectangles and triangles is de-
scribed in the following corollary, which follows immediately from the results
in the previous paper.

Corollary 6 A surface P is a rational chord length parameterization with
respect to a circle (in the sense of the previous definition) if and only if any
triangular Bézier surface with respect to a reference triangle that possesses the
same circumcircle is a rational chord length parameterization with respect to
this reference triangle (in the sense of Def. 1 in Bastl et al., 2010).
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3 Construction of RCL surfaces

In order to simplify the formulas, we choose the reference circle (i.e., the
circumcircle of the reference rectangle) as the unit circle C in the xy-plane
centered at the origin. Moreover, the arguments of the rational surface P

are all points X of the xy-plane described by the canonical coordinates, i.e.,
X = (u, v, 0)⊤.

Theorem 7 A surface P is a rational chord length parameterization with
respect to the reference circle C if and only if there exists a rational function
q : (u, v) 7→ q(u, v) such that

P(u, v) =

(

(1 + q2)u

1 + q2(u2 + v2)
,

(1 + q2)v

1 + q2(u2 + v2)
,

q(1 − u2 − v2)

1 + q2(u2 + v2)

)⊤

. (10)

Proof. Without loss of generality, we consider the reference rectangle with the
vertices A00 = (1, 0, 0)⊤, A01 = (0, 1, 0)⊤, A11 = (−1, 0, 0)⊤, A10 = (0,−1, 0)⊤

on the reference circle C. The surface P is RCL if and only if there exists a
rational function ξ such that the squared distances Rk,ℓ and rk,ℓ are related by

∀(u, v) : ξ(u, v)Rk,ℓ(u, v) = rk,ℓ(u, v), k, ℓ = 0, 1. (11)

A short computation confirms that the intersection points of the three spheres
with centers A00,A01,A10 and radii

√
r00,

√
r01,

√
r10 has the coordinates

P±(u, v) =
1

4










−2r00 + r01 + r10

−r01 + r10,

±
√

2 ·
√

4(r01 + r10) − [(r00 − r01)2 + (r00 − r10)2] − 8










.

Using (11) and the identities R00 = (u − 1)2 + v2, R10 = u2 + (v − 1)2,
R01 = u2 +(v +1)2, which follow from the definition (4), this can be rewritten
as

P±(u, v) =
(

ξu, ξv,±
√

(1 − ξ)(ξu2 + ξv2 − 1)
)⊤

. (12)

This surface has a rational parameterization with respect to u, v if and only if
the argument of the square root is a perfect square. This is equivalent to the
condition on the existence of a rational function q(u, v) such that

1 − ξ = q2(ξu2 + ξv2 − 1). (13)
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Solving (13) for ξ we arrive at

ξ(u, v) =
1 + q(u, v)2

1 + q(u, v)2(u2 + v2)
. (14)

Finally, we substitute ξ into (12). The two possible choices of the sign of
the third coordinate can be obtained by specifying the sign of the rational
function q. It can be verified that (11) is satisfied for all values of k and ℓ. 2

We provide a geometric meaning for this result.

Proposition 8 Consider the angle α(u, v) ∈ [−π, π] which satisfies

tan
α(u, v)

2
= q(u, v). (15)

If u2 + v2 6= 1, then α is the angle between the xy-plane and the sphere which
passes through the point P(u, v) and the reference circle C. If u2 +v2 = 1, then
P(u, v) lies on the reference circle C and α is the angle between the xy-plane
and the tangent plane of the surface P at this point.

Proof. We consider a surface (10). In the first case, the unique sphere which
passes through the reference circle and through the point P(u, v) has the
center C = (0, 0, (q2 − 1)/(2q))⊤ and the radius r = (q2 + 1)/(2|q|). The
oriented angle α between the sphere and the xy-plane is equal to the angle
between the vectors (C − A1) and (0, 0, 1)⊤, which gives tanα = 2q

1−q2 . The
second case can be proved similarly by a direct computation. 2

Remark 9 The angle α is equal to the angle which is used in the definition
of tripolar coordinates, as introduced in Bastl et al. (2011).

The following observation provides an alternative geometric interpretation of
the characterization result (10).

Proposition 10 Any RCL surface (10) with the reference circle C can be
obtained by composing

(i) the inversion M with respect to the sphere centered at (0,−1, 0)⊤ with
radius

√
2,

(ii) the rotation Rα about the x-axis through the angle α(u, v), where q satis-
fies (15), and

(iii) the same inversion as in (i) ,

and applying this transformation to the parameterization (u, v, 0)⊤ of the plane
containing C.

Proof. The rotation (ii) and the inversion (i,iii) are described by
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Rα(x, y, z) =










1 0 0

0 1−q2

1+q2 − 2q

1+q2

0 2q

1+q2

1−q2

1+q2



















x

y

z










(16)

and

M(x, y, z) =
1

x2 + (y + 1)2 + z2










2x

1 − x2 − y2 − z2

2z










. (17)

A direct computation now confirms that

P(u, v) = (M ◦ Rα ◦ M)(u, v, 0), (18)

cf. (15) and (10). 2

This geometric interpretation led us to a general approach to RCL parame-
terizations developed in Section 5.

4 Properties and examples of RCL surfaces

In this section we will review some attractive properties of RCL surfaces and
demonstrate them on some interesting examples which are computed using
(10) for different choices of q(u, v). Obviously, by choosing a constant function
q(u, v), we obtain a sphere, cf. Bastl et al. (2011). Examples of triangular and
quadrangular RCL surface patches, where vertices of the reference triangle
and quadrangle, respectively, lie on the reference circle, are shown in Fig. 2.

Fig. 2. Patches (triangular and quadrilateral) on RCL surface for q(u, v) = u + 1.

The scalar-valued control points of the polynomial q(u, v) can be used as design
handles of RCL surfaces, both for triangular and tensor-product patches. Two
examples of bi-quadratic q in Bernstein-Bézier representation with respect

9



Fig. 3. Bernstein-Bézier representations of q (left) and corresponding quadrilateral
RCL patches (right).

to the square with vertices (±
√

2/2,±
√

2/2) and corresponding quadrilateral
RCL patches are displayed in Fig. 3.

Proposition 11 Any RCL surface P(u, v) has a rational unit normal field
along the reference circle. On the other hand, any rational unit normal field
along the reference circle can be extended to an RCL surface. Finally, two RCL
surfaces given by (10) with functions q1, q2 have the same normals along the
reference circle if and only if

q1 − q2 = (1 − u2 − v2)f, (19)

where f(u, v) is a rational function.

Proof. Under the condition u2+v2 = 1, the unit normal of P can be computed
from (10) as

(

2qu

1 + q2
,

2qv

1 + q2
,
1 − q2

1 + q2

)⊤

. (20)

This gives also the second statement. Finally, the third part is a direct conse-
quence. 2

Let I denote the circle inversion with respect to the reference circle in the u, v
plane, i.e.,

I(u, v) =
(

u

u2 + v2
,

v

u2 + v2

)⊤

.

The following proposition can be verified by a straightforward computation.

Proposition 12 The two surfaces P1(u, v), P2(u, v) obtained for q(u, v) and
−1/q(I(u, v)), respectively, are identical up to the reparameterization via I,
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i.e.,

P1(u, v) = P2(I(u, v)).

Definition 13 For a given q let us call the restriction of P1(u, v), or P2(u, v)
to the reference disc (i.e., to the interior of the reference circle) the first
branch, or the second branch of the associated RCL surface.

Fig. 4. RCL surface obtained for q(u, v) = 1−u2−v2. Left: First branch
P1(u, v); Right: Second branch P2(u, v).

Fig. 4 presents an example of the two surfaces in Proposition 12, where blue
and yellow patches correspond to P1(u, v) and P2(u, v), respectively.

Proposition 14 If q(u, v) (or 1/q(I(u, v))) does not possess a pole at (0, 0),
then the first branch (or the second branch) is smooth and bounded. In partic-
ular, if both conditions are satisfied, then the entire RCL surface is a closed
bounded smooth surface.

Proof. If there is no pole for q at (0, 0), then Pq(0, 0) = (0, 0, q)⊤ is well defined
and finite. By a continuity argument the same holds for some neighbourhood
of (0, 0). The remainder of the first branch is also bounded, since each point
must lie on the corresponding circle – see Lemma 3. The same argument holds
for the second branch and −1/q(I(0, 0)). 2

Proposition 15 The first branches P1, P̃1 of two RCL surfaces meet with
G1 continuity along the reference circle if and only if qq̃ = −1 for u2 +v2 = 1.

Proof. The first branches P1 and P̃1 join with G1 continuity along the ref-
erence circle iff α̃ = −(180◦ − α). Hence, q̃ = tan α̃

2
= − tan

(

90◦ − α
2

)

=

− cot α
2

= −1/q. 2

Fig. 5 shows examples of surfaces described in Proposition 15, where blue and
yellow patches correspond to P1 and P̃1, respectively.

5 General RCL varieties

We describe the general theory of k-dimensional RCL varieties in d-
dimensional Euclidean space Ed. This theory will contain all cases studied
so far, in particular planar and spatial curves and surfaces.
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Fig. 5. Left: q(u, v) = 2u + v + 1; Right: q(u, v) = u2 − 2/3.

Ã Ā

B

C1 C2

S2 ⊂ E
′′

2

ρ

E
′

1
Ã

Ā

B

C1
C2

S1

S2

ρ

E
′

1

E
′′

2

Fig. 6. Two CL-related spheres S1 ⊂ E
′

k and S2 ⊂ E
′′

ℓ in the Euclidean
space Ed for d = 2, k = 1, ℓ = 2 (left), and for d = 3, k = 2, ℓ = 2 (right).

5.1 General results

Definition 16 In a d-dimensional Euclidean space Ed, we say that two
spheres S1(C1; r1), S2(C2; r2) of dimensions (k − 1), (ℓ − 1) are called chord-
length related, shortly CL-related, if the following conditions are satisfied:

(1) k + ℓ = d + 1.
(2) The two Euclidean subspaces E

′

k and E
′′

ℓ of dimensions k, ℓ that the two
spheres S1 and S2 span, respectively, intersect in a single line ρ and are
perpendicular to each other (we consider Ed to be perpendicular to any
subspace);

(3) the two centers C1, C2 lies on the line ρ;
(4) the radii satisfy r2

1 + r2
2 = |C1 − C2|2.

Proposition 17 Let S1, S2 be two CL-related spheres. Then the points of S1

have constant chord length ratios to the points of S2, and vice versa. More
precisely, for any two fixed points B̃, B̄ ∈ S2 the ratio

|A − B̃| : |A − B̄| (21)

is the same for all points A ∈ S1 and for any two fixed points Ã, Ā ∈ S1 the
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ratio

|B − Ã| : |B − Ā| (22)

is the same for all points B ∈ S2.

Proof. By assuming a suitable choice of the coordinate system we can suppose
that

E
′

k = {(x1, . . . , xd) : xk+1 = xk+2 = · · · = xd = 0}, (23)

E
′′

l = {(x1, . . . , xd) : x2 = x3 = · · · = xk = 0}, (24)

ρ is the x1-axis, C1 = (0, . . . , 0)⊤ and C2 = (c, 0, . . . , 0)⊤, where c =
√

r2
1 + r2

2.
For any two points

A= (a1, a2, . . . , ak, 0, . . . , 0)⊤ ∈ S1, (25)

B= (b1, 0, . . . , 0, bk+1, bk+2 . . . , bd)
⊤ ∈ S2 (26)

we get

|A −B|2 =(a1 − b1)
2 + a2

2 + . . . + a2
k + b2

k+1 + . . . + b2
d =

= a2
1 + a2

2 + . . . + a2
k + (c − b1)

2 + b2
k+1 + . . . + b2

d −
− c2 + 2cb1 − 2a1b1 =

= r2
1 + r2

2 − c2 + 2cb1 − 2a1b1 = 2b1(c − a1).

Now (c − a1) factors out in (21) which becomes
√

b̃1 :
√

b̄1 (independent on

the point A), while b1 factors out in (22) which becomes
√

c − ã1 :
√

c − ā1

(independently of the point B). 2

Remark 18 It is natural to extend the notion of CL-related spheres to two
degenerate cases. Suppose that S1 is a usual sphere but the radius r2 of the
second sphere is 0. Then S2 degenerates into a point of S1. Similarly if r2 → ∞,
the sphere S2 tends to the (ℓ − 1)-dimensional Euclidean subspace totally
orthogonal to E

′′

ℓ and passing through the center C1. In the remainder of the
paper, we will include these two limit positions of the “sphere” S2 in the
definition of CL-related spheres.

With this extension we can formulate two observations which follow directly
from the definition of CL-related spheres.

Lemma 19 Let S1 be a sphere of dimension (k − 1). Then all (ℓ − 1)-
dimensional spheres which are CL-related to S1

(1) fill the space Ed, i.e., through any point of the space there is precisely one
of them;

(2) are perpendicular to any k-dimensional sphere containing S1.
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Example 20 Consider the case d = 3, k = 2. Then two CL-related spheres
are just two usual circles. Fig. 1 shows one green circle and three orange circles
which are chord-length related with it. By Remark 18, also the green axis is
chord-length related with the green circle, as is any point on this circle. All
orange circles are perpendicular to the spheres containing the green circle.

Proposition 21 Let points A0, . . . ,Ak be points in general position in Ed,
1 < k ≤ n, and r0, . . . , rk a collection of real non-negative numbers. Then the
set of points X ∈ Ed satisfying for all i, j

|X− Ai| : |X− Aj| = ri : rj (27)

is either empty or it is a sphere which is CL-related with the (k−1)-dimensional
circumsphere of the points A0, . . . ,Ak.

Proof. If more than one ri is 0 then there is no such a point X since only
one of |X − Ai| can be 0. Without loss of generality we suppose r0 6= 0 and
restrict ourselves to j = 0 in (27) since all other equations follow. Each of the
k equations for i = 1, . . . , k defines a (d − 1)-dimensional sphere (Apollonius’
definition) degenerating to a hyperplane if ri = r0 and into the point Ai if
ri = 0. The centers of these spheres are in general position and therefore their
intersection is either empty or it is a (d − k)-dimensional sphere (possibly
degenerating in a plane if all ri are equal or into a point of the circumsphere
- see Remark 18). 2

Definition 22 Let S ⊂ Ek be a (k − 1)-dimensional sphere and γ(u), where
u = (u1, . . . , uk), a rational parameterization of the space Ek. We say that a
k-dimensional parametric variety P(u) is RCL with respect to S and γ if

|P(u) − Ã| : |P(u) − Ā| = |γ(u) − Ã| : |γ(u) − Ā| (28)

holds for any Ã, Ā ∈ S and any u.

Remark 23 In particular examples γ will be a simple linear parameterization
of the subspace or it will even coincide with its coordinates.

Since the notion of being RCL is clearly invariant with respect to similarities,
we choose the reference sphere S as the unit sphere in the (x1, . . . , xk)-plane,
which we will call the reference sphere.

Let M be the inversion with respect to the (d−1)-dimensional sphere centered
at

(0, . . . , 0, −1
︸︷︷︸

k−th

, 0, . . . , 0)⊤

with radius
√

2. The inversion M maps the reference sphere to the
(x1, . . . , xk−1)-space and all k-dimensional spheres containing the reference
sphere are mapped to all k-dimensional spaces containing the (x1, . . . , xk−1)-
space.
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Since the inversion preserves circular objects and is conformal, any sphere
which is CL-related to S is mapped by M to a sphere which has its cen-
ter on the (x1, . . . , xk−1)-space and it spans a (d − k + 1)-dimensional space
whichis perpendicular to the (x1, . . . , xk−1)-space. These spheres fill the Eu-
clidean space Ed.

Let γ(u) be given and P(u) be an RCL variety with respect to S and γ. Then
for any u the two points γ(u), P(u) lie on the same sphere which is CL-related
to S. The images M(γ(u)), M(P(u)) will therefore lie on a sphere described
in the previous paragraph, i.e., if

M(γ(u)) = (x̃1(u), . . . , x̃k−1(u), x̃k(u), 0, . . . , 0)⊤ (29)

and

M(P(u)) = (x̃1(u), . . . , x̃k−1(u), x̄k(u), . . . , x̄n(u))⊤, (30)

where

x̄k(u)2 + . . . + x̄n(u)2 = x̃k(u)2.

Consequently,
(x̄k(u), . . . , x̄n(u))⊤

x̃k(u)
(31)

is a rational mapping on the unit (d − k)-dimensional sphere. However, all
such mappings can be obtained via the stereographic projection which has
the form

N(q1, . . . , qd−k) =
(1 − q2

1 − . . . − q2
d−k, 2q1, . . . , 2qd−k)

⊤

1 + q2
1 + . . . + q2

d−k

. (32)

Noting that M = M−1 we obtain the following result which is a generalization
of (18):

Theorem 24 A variety P(u) is a rational chord length parameterization with
respect to the (k−1)-dimensional reference sphere S and the rational parame-
terization γ(u) if and only if there exists a rational mapping q(u) : R

k → R
d−k

such that

P(u) = M
(

x̃1(u), . . . , x̃k−1(u), x̃k(u)N(q(u))
)

, (33)

where x̃i is defined by (29).

5.2 Special cases

We show that the earlier results can be obtained as special cases of the general
theory.

The case d = 2, k = 1. We obtain RCL curves in the plane. The reference
sphere consists of two points (±1, 0)⊤ and the inversion is
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M(x, y) =
1

(x + 1)2 + y2






1 − x2 − y2

2y




 . (34)

Let us consider the trivial parameterization of the x-axis γ(u) = (u, 0)⊤. Then

M(γ(u)) =

(

1 − u2

(u + 1)2
, 0

)⊤

.

Moreover, N depends only on one rational function q and takes the form

N =

(

1 − q2

1 + q2
,

2q

1 + q2

)⊤

.

Substituting these explicit formulas to (33) we obtain the following explicit
formula, which is equivalent to the result obtained in Sánchez-Reyes and
Fernández-Jambrina (2008).

Theorem 25 A planar curve P is a rational chord length parameterization
with respect to the reference points (±1, 0)⊤ if and only if there exists a rational
function q(u) such that

P(u) =

(

(1 + q2)u

1 + q2u2
,

q(1 − u2)

1 + q2u2

)⊤

. (35)

The case d = 3, k = 2. Using the inversion (17) and N depending only on
one rational function q

N =

(

2q

1 + q2
,
1 − q2

1 + q2

)⊤

,

we obtain the formula (10) for the standard parameterization of the plane
γ(u, v) = (u, v)⊤.

The case d = 3, k = 1. In this case, the stereographic projection takes the
form

M(x, y, z) =
1

(x + 1)2 + y2 + z2










1 − x2 − y2 − z2

2y

2z










(36)

and N depends on two rational functions q1, q2

N =

(

1 − q2
1 − q2

2

1 + q2
1 + q2

2

,
2q1

1 + q2
1 + q2

2

,
2q2

1 + q2
1 + q2

2

)⊤

.
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We obtain the following explicit formula for the standard parameterization of
the x-axis γ(u) = (u, 0, 0)⊤.

Theorem 26 A curve P is a rational chord length parameterization with re-
spect to the reference points (0,±1)⊤ if and only if there exist rational functions
q1(u), q2(u) such that

P(u) =

(

(1 + q2
1 + q2

2)u

1 + u2(q2
1 + q2

2)
,

(1 − u2)q1

1 + u2(q2
1 + q2

2)
,

(1 − u2)q2

1 + u2(q2
1 + q2

2)

)⊤

. (37)

Example 27 In particular, if we set q2(u) = kq1(u), k ∈ R, then we obtain
curves with vanishing torsion, i.e., all associated RCL curves are planar. Es-
pecially, if both functions are constant we obtain for the curvature and the
torsion

κ =
2
√

q2
1 + q2

2

1 + q2
1 + q2

2

= const., τ = 0, (38)

i.e., these curves are circles.

6 Conclusion

We described a class of rational triangular and quadrangular Bézier surfaces
possessing a parameterization which preserves the distance ratios to the ver-
tices of the domain triangle or rectangle inscribed to the reference circle.
This extends the property of chord-length parameterization of rational curves,
which was studied in Lü (2009) and Sánchez-Reyes and Fernández-Jambrina
(2008), to the case of surfaces. We identified a family of RCL surfaces, charac-
terized their general parameterization and studied their properties. We have
also presented a general pattern for RCL varieties of any dimension. This gen-
eral result allows to express all planar curves, spatial curves and surfaces with
RCL property by one general formula. The future research will be focused
mainly on modelling with surface patches of this type.
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