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bJohannes Kepler University of Linz, Institute of Applied Geometry, Austria

cRadon Institute of Computational and Applied Mathematics, Linz, Austria

Abstract

We consider special rational triangular Bézier surfaces of degree 2 on the sphere in
standard form and show that these surfaces are parameterized by chord lengths.
More precisely, it is shown that the ratios of the three distances of a point to the
patch vertices and the ratios of the distances of the parameter point to the three ver-
tices of the (suitably chosen) domain triangle are identical. This observation extends
an observation of Farin (2006) about rational quadratic curves representing circles
to the case of surfaces. In addition, we discuss the relation to tripolar coordinates.
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1 Introduction

Rational curves with chord length parameterization have recently been stud-
ied by Farin (2006), Sánchez-Reyes and Fernández-Jambrina (2008) and Lü
(2009). These curves are characterized by the relation

∀t ∈ (0, 1) :
t − 0

||P(t) −P(0)||
=

1 − t

||P(1) −P(t)||
(1)
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between the value of the parameter and the chord length. This relation is
similar to the close (polynomial) relationship between arc length and curve
parameter which exists for Pythagorean-hodograph curves, see Farouki (2008).

Farin (2006) initiated the investigation of rational curves with chord length pa-
rameterization by observing that rational quadratic circles in standard Bézier
form are parameterized by chord–length. Independently, a geometric proof of
this fact has been derived in the context of circle-preserving subdivision curves
by Sabin and Dodgson (2005).

As a potential advantage, the rational curves with this property provide a
simple inversion formula, since the parameter value of any point on the curve
can easily be computed using (1). For instance, this can be useful for implic-
ititation of the curve or for projecting a point onto the curve (closest point
computation). Moreover, these curves do not possess self-intersections.

Meanwhile, two constructions for general rational curves with this remarkable
property were presented.

Sánchez-Reyes and Fernández-Jambrina (2008) studied the close relationship
between curves in chord-length parameterization and bipolar coordinates. This
led them to a compact explicit expression for all planar curves with rational
chord term-length parametrization. In addition to straight lines and circles in
standard form, this class of curves was shown to contain remarkable curves,
such as the equilateral hyperbola, Bernoulli’s lemniscate and Pascal’s Limaçon.

Lü (2009) uses computations in the complex plane to study rational curves
which can be parameterized by chord length and he presents two schemes
characterizing planar and spatial curves. Among other results, the low-degree
rational curves such as cubics and quartics are studied and applied to geomet-
ric Hermite interpolation.

The present paper is devoted to the equal chord property of quadratic rational
Bézier patches that describe a segment of a sphere, thus extending the results
of Farin (2006) to the case of surfaces. We use the well-known construction
of spherical quadratic patches by stereographic projection (Teller and Séquin,
1991; Albrecht, 2004; Dietz, Hoschek and Jüttler, 1993; Farin, 2002) and show
that a subset of these patches possesses a property which generalizes the re-
lation (1) to the case of surfaces. Finally we show how to characterize this
property using tripolar coordinates in space, thereby extending the observa-
tions of Sánchez-Reyes and Fernández-Jambrina (2008) concerning the relation
between bipolar coordinates and curves with chord-length parameterization.
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2 Equal chord lengths property of spherical quadratic patches

We discuss a special class of spherical patches and analyze their equal chord
lengths property.

2.1 Special quadratic triangular patches on the sphere

We consider a rational quadratic triangular Bézier patch

P(u, v, w) =

∑

i,j,k∈Z+, i+j+k=2

ωijk bijk

2

i!j!k!
uivjwk

∑

i,j,k∈Z+, i+j+k=2

ωijk

2

i!j!k!
uivjwk

, (u, v, w) ∈ ∆ (2)

with the domain ∆ = {(u, v, w) : u, v, w ≥ 0, u + v + w = 1}. Its shape
is determined by the six control points bijk with the associated weights ωijk.
In particular, we study quadratic patches which represent a segment of the
sphere.

It is well known that the three boundary curves of a spherical quadratic Bézier
patch intersect in a single point c on the sphere, which we will call the center
of projection (Dietz, Hoschek and Jüttler, 1993; Farin, 2002). We say that a
spherical patch P is special, if the line spanned by c and the midpoint m of
the circumcircle C of the three patch vertices V1 = b200, V2 = b020, V3 = b002

intersects the plane spanned by these vertices orthogonally, see Fig. 1.

With the help of a suitable translation, rotation and scaling, any such patch
can be transformed into a canonical position, which is characterized by the
following three properties:

(1) The sphere is centered at the origin and has radius 1.
(2) The center of projection c is the “south pole” c = (0, 0,−1)⊤.
(3) The three vertices of the patch have the same vertical coordinate.

In addition, we may apply a rational bilinear reparameterization which trans-
forms the triangular patch into standard form, with equal vertex weights
ω200 = ω020 = ω002 (see Farin, 1999).

Recall that the inverse stereographic projection with center c maps any point
x = (x1, x2, x3)

⊤ in space into the second intersection point (different from c)
of the line spanned by x and c with the unit sphere,
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center of projection

Fig. 1. A special quadratic triangular patch on the sphere with the refer-
ence triangle △(V1,V2,V3) and the center of projection c. The line cm

intersects the plane spanned by the triangle orthogonally.

σ : x 7→
1

1 + x1
2 + x2

2 + x3
2 + 2 x3











2x1(1 + x3)

2x2(1 + x3)

1 − x1
2 − x2

2 + x3
2 + 2x3











. (3)

Any special spherical patch P in standard form and canonical position can be
constructed by applying this mapping to the linear triangular Bézier patch

T(u, v, w) = uV1 + vV2 + wV3, (u, v, w) ∈ ∆, (4)

with the three vertices (control points)

Vℓ =

(

2rcℓ

1 + r2
,

2rsℓ

1 + r2
,
1 − r2

1 + r2

)⊤

, ℓ = 1, 2, 3, (5)

where the parameter r ≥ 0 controls the common vertical coordinate. Here we
use the abbreviations cℓ = cos φℓ and sℓ = sin φℓ, where the three angles φℓ

specify the position of the three vertices on the circle of latitude C obtained
by intersecting the plane x3 = (1 − r2)/(1 + r2) with the unit sphere.

This patch will be called the reference triangle. Since the inverse stereographic
projection σ preserves points on the sphere, the three points (Vℓ)ℓ=1,2,3 are
the vertices of the patch P.

Remark 1 After substituting the linear patch (4) into σ and a short com-
putation, one obtains the control points and weights b200 = V1, b020 = V2,
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b002 = V3, ω200 = ω020 = ω002 = 1 + r2 and

bijk =
1

1 + r2dℓm











r(cℓ + cm)

r(sℓ + sm)

1 − r2dℓm











, ωijk = 1 + r2dℓm, (6)

where (i, j, k, ℓ, m) ∈ {(1, 1, 0, 1, 2), (1, 0, 1, 1, 3), (0, 1, 1, 2, 3)} and

dℓm = cℓcm + sℓsm.

2.2 The equal chord lengths property

The following theorem extends a result of Farin (2006) to the case of surfaces.

Theorem 2 We consider a special quadratic triangular patch P on the sphere
in standard form with associated reference triangle T, cf. (4). The distances

rℓ(u, v, w) = ||Vℓ − P(u, v, w)|| and Rℓ(u, v, w) = ||Vℓ − T(u, v, w)|| (7)

from the three vertices of the patch to the points of the surface and to the
points of the reference triangle (ℓ = 1, 2, 3), respectively, satisfy

∀(u, v, w) ∈ ∆0 :
R1

r1
=

R2

r2
=

R3

r3
, (8)

where ∆0 is the parameter domain of the patch without its three vertices.

Proof. Let d be the distance between the center of projection c and any of
the vertices Vℓ. The three distances have the same value, since the patch is
assumed to be special. We consider the circumcircle C of the three vertices
(Vℓ)ℓ=1,2,3 (and hence of the reference triangle). The plane spanned by Vℓ, c

and P intersects this circle in Vℓ and in another point V′
ℓ, which also possesses

the distance d from c. Moreover, the lines connecting Vℓ with V′
ℓ and c with P

intersect at the corresponding point T = T(u, v, w) of the reference triangle,
see Fig. 2. We have P 6= T, as the the parameters (u, v, w) are contained in
the domain ∆0 without vertices.

According to the intersecting chord theorem, when two chords intersect each
other inside a circle, the products of their segments are equal. Using this
theorem for T with respect to the circumcircle Cℓ of Vℓ, P, V′

ℓ and c we get

‖Vℓ −T‖ · ‖V′

ℓ −T‖ = ‖P −T‖ · ‖c −T‖. (9)
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Fig. 2. The points used for the proof of Theorem 2 – the spatial situation
(left) and the planar section through the points c,P,V1 (right).

Since ∠(Vℓ,T,P) = ∠(c,T,V′
ℓ), we conclude that the two triangles △(Vℓ,T,P)

and △(c,T,V′
ℓ) are similar. Consequently,

Rℓ

rℓ

=
‖Vℓ − T‖

‖Vℓ −P‖
=

||c −T||

||V′
ℓ − c||

=
||c− T||

d
. (10)

This proves the assertion, since the ratio is the same for ℓ = 1, 2, 3. 2

Remark 3 As demonstrated by the proof, the ratio R/r is even the same
for the distances r̂ = ||V̂ − P|| and R̂ = ||V̂ − T|| to any point V̂ on the
circumcircle C.

As a consequence of this observation, one can conclude that the boundary
curves of a special quadratic triangular patch are parameterized by chord
length. This is even true for any spherical quadratic Bézier patch in standard
form, not just for special ones. However, Theorem 2 cannot be extended to
general quadratic patches on the sphere.

3 Bipolar and tripolar coordinates

We recall the notion of bipolar coordinates in the plane and its relation to
curves with chord length parameterization. In the second part, we extend
these observations to the case of surfaces.
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ρ23 = const.

ρ31 = const.

φ = const.

Fig. 3. Bipolar coordinates in the plane (left) and tripolar coordinates in
three-dimensional space (right).

3.1 Bipolar coordinates in the plane

Recall that bipolar coordinates in the plane, which are defined with the help
of the distances r1, r2 of any point x to two fixed vertices (or poles) V1, V2,
are based on the following geometric facts (see Bateman, 1938; Sánchez-Reyes
and Fernández-Jambrina, 2008; Farouki and Moon, 2000), see Fig. 3 (left):

(1) The set of all points with constant ratio ρ = r1/r2 is a circle (Apollonius’
definition of a circle).

(2) The set of all points x with constant oriented angle φ = ∠(V1,x,V2) is
a circular arc. (This follows from the inscribed angle theorem)

(3) Any two of the circles which are obtained for constant values of φ or ρ
intersect each other orthogonally.

Consequently, the ratio ρ, which will be called the bipolar distance ratio, and
the angle φ uniquely determine the location of a point x ∈ R

2 \{V1,V2}. The
ratio ρ takes its values in R

+. The angle φ should be chosen in (0, π) and in
(π, 2π) if x lies in the left and right-hand side of the oriented line from V1 to
V2, respectively. Moreover, it is equal to π / to 0 for points on the line which
are between / not between the two vertices.

The curves of constant φ or ρ are the circles through the two vertices and their
orthogonal system. By applying an inversion at a circle with center V2 and
radius ||V1 − V2||, the two systems of isocurves are mapped to the pencil of
lines through V1 and to concentric circles around V1, respectively.

Bipolar coordinates can be used to characterize curves with chord length pa-
rameterization.
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Definition 4 A curve segment P : [t0, t1] → R
2 is said to be parameterized

by chord length, if the bipolar distance ratio ρ of a curve point with respect to
the segment end points is equal to the bipolar distance ratio of the parameter
value to the boundary points t0, t1 of the parameter domain.

3.2 Tripolar coordinates in space

The observations about special spherical quadratic patches, which were pre-
sented in the previous section, serve as the motivation for the definition of
tripolar coordinates in space. Note that these coordinates are different from
the concept of tripolar coordinates in the plane (see e.g. Farouki and Moon
(2000); Bottema (2008)).

We consider the distances r1, r2, r3 of any point x to three non–collinear ver-
tices V1,V2,V3 (poles). Let C be the circumcircle of the three vertices.

Similar to the planar case, we formulate three geometric observations, see
Fig. 3 (right):

(1) The set of all points with constant ratios

ρℓm = rℓ/rm, (ℓ, m) ∈ I = {(1, 2), (2, 3), (3, 1)} (11)

is a circle. Any single constant ratio ρℓm defines a sphere with an axis
through Vℓ and Vm (by using again Apollonius’ definition of a circle).
Obviously, the three ratios are not independent. They are related by

ρ12ρ23ρ31 = 1. (12)

The three spheres defined by the three ratios intersect in a single circle.
(2) For any point x, let x′ be its orthogonal projection into the plane con-

taining the circumcircle C (see Fig. 3b). We consider a line in this plane
that passes through the center m of the circumcircle and through x′. It
intersects the circumcircle in two points p, q, i.e., pq is a diameter of the
circumcircle. We consider the angle

φ(x) = ∠(p,x,q). (13)

This angle is well defined for all points x 6∈ C, since the diameter pq is
unique, except for the points where x′ = m. In this situation, however,
the angle is independent of the choice of the diameter.

For any given diameter p′q′ of the circumcircle, the points that pos-
sess a certain constant value of their angle φ(x) at this diameter form
two circular arcs which intersect the circumcircle orthogonally at p′ and
q′ (inscribed angle theorem). The two circular arcs are symmetric with
respect to p′q′. The collection of these circular arcs for all diameters gives
two spherical caps.
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The set of all points x with constant angle φ(x) lies on two spheres,
which pass through the circumcircle C. More precisely, it consists of two
spherical caps that meet along the circumcircle C and are symmetric with
respect to the plane containing it.

(3) Any spherical cap and any of the circles which are obtained for constant
values of φ or (ρℓm)(ℓ,m)∈I , respectively, intersect each other orthogonally.

Any of the circles and spherical caps possess a unique intersection. Conse-
quently, the ratios ρℓm and the angle φ uniquely determine the location of
a point x ∈ R

3 \ C, provided that it is known on which side of the plane
containing C it lies.

The three ratios ρℓm, which we will call the tripolar distance ratios, determine
a point in a three-dimensional space with coordinates ρ12, ρ23 and ρ31. Let
R be the part of the surface defined by (12) which is contained in the first
octant of this space (all ratios positive). The ratios (ρ12, ρ23, ρ31) take their
values in R.

The angle φ takes its values in [0, π]. In order to uniquely characterize the
location of a point, one can redefine it using the oriented volume V of the
tetrahedron with vertices V1, V2, V3, and x,

φ′ =































φ if V > 0,

2π − φ if V < 0,

π if V = 0 and x ∈ int C,

0 if V = 0 and x 6∈ int C.

(14)

If we identify 0 and 2π, then the angle φ′ depends continuously on x, except
for the points on C.

The surfaces and curves of constant φ′ or (ρℓm)(ℓ,m)∈I ∈ R are the spheres
through the circumcircle C and their orthogonal system, respectively. By ap-
plying an inversion at a sphere with its center on the circumcircle and whose
radius is equal to the diameter of the circumcircle, the two systems of iso-
surfaces and isocurves are mapped to the pencil of planes through a line (the
tangent of the circumcircle at the point where the inversion sphere touches it)
and to coaxial circles around this line.

Since the orthogonal circles of the system of spheres through the circumcircle
C do not depend on the choice of the inscribed triangle △(V1,V2,V3), we
also have the following result.

Proposition 5 For any two points V̂ and Ṽ of the circumcircle, the ratio
r̂/r̃ is constant for all points x on one of the circles which are characterized
by the three constant ratios (11), where r̂ and r̃ are the distances to V̂ and Ṽ,
respectively.
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Finally we use tripolar coordinates in order to characterize surface patches
with a chord lengths parameterization.

Definition 6 A triangular surface patch P : ∆∗ → R
3 is said to be param-

eterized by chord length, if the tripolar distance ratios (ρij)(i,j)∈I of a surface
point with respect to the three vertices are equal to the tripolar distance ratios
of the parameter point in ∆∗ to the three vertices of the domain triangle ∆∗.

Clearly, according to this definition, the property depends on the choice of
the domain triangle. For instance, a special spherical patch does not possess
this property with respect to the standard domain ∆, but only with respect
to the reference triangle (or any other triangle which is similar to it). Only
equilateral special spherical triangles possess this property with respect to ∆.

3.3 Computation of parameter values from distances

Consider a point P(u, v, w) on the given general (i.e., not only spherical)
patch parameterized by chord lengths and its distances r1, r2, r3 to the vertices
V1,V2,V3 of the reference triangle △(V1,V2,V3). The question is how to
compute the parameters (u, v, w) ∈ ∆0 from the values r1, r2, r3.

This problem is equivalent to finding the point T inside △(V1,V2,V3) which
fulfills the condition R1 : R2 : R3 = r1 : r2 : r3, where Rℓ = ‖Vℓ − T‖,
ℓ = 1, 2, 3. Then we obtain

u =
area△(V1,V2,T)

area△(V1,V2,V3)
, v =

area△(V2,V3,T)

area△(V1,V2,V3)
,

w =
area△(V3,V1,T)

area△(V1,V2,V3)
,

(15)

where the areas of the triangles are computed using Heron’s formula. Using the
Euler identity relating (Rℓ)ℓ=1,2,3 and the sides a, b, c of the reference triangle
(see Fig. 4)

R4
1a

2+R4
2b

2+R4
3c

2+(−a2+c2−b2)R2
1R

2
2+(−a2+b2−c2)R2

1R
2
3+

+(a2−b2−c2)R2
2R

2
3+(a2−b2−c2)a2R2

1+(−a2−c2+b2)b2R2
2+

+(−a2−b2+c2)c2R2
3+a2b2c2 = 0

(16)

cf. Bottema (2008), and substituting Rℓ = trℓ into (16) we arrive at a quadratic
equation in t2

At4 + Bt2 + C = 0, (17)

where
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V1

V2

V3

R1

R2

R3

T

a

b

c

Fig. 4. The notions used in the Euler identity for tripolar coordinates in
the plane.

A = r4
1a

2+r4
2b

2+r4
3c

2+r2
1r

2
2(−a2−b2+c2)+r2

1r
2
3(−a2+b2−c2)+

+r2
2r

2
3(a

2−b2−c2),

B = r2
1a

2(a2−b2−c2)+r2
2b

2(b2−a2−c2)+r2
3c

2(c2−a2−b2),

C = a2b2c2.

(18)

The discriminant δ = B2 − 4AC of this equation has the form

δ = (a + b + c)(a − b − c)(a + b − c)(a − b + c)(r1a + r2b − r3c)·

· (r1a + r2b + r3c)(r1a − r2b − r3c)(r1a + r3c − r2b).
(19)

As a, b, c are sides of the reference triangle and thus they fulfil the triangle
inequalities, the roots t2 are real only if there exists a triangle with sides
r1a, r2b, r3c. Moreover, both roots t2 are positive (which gives two positive
roots for t) iff

δ > 0, and A > 0, B < 0, C > 0, (20)

for more details see Bottema (2008). It follows that under the conditions (20)
we obtain two points, which are the intersections of the three Apollonius circles
defined by the points (Vℓ)ℓ=1,2,3 and the ratios R1 : R2, R2 : R3 and R3 : R1.
Clearly, only one of these two points lies inside △(V1,V2,V3).

4 Conclusion and future work

We identified a class of rational triangular Bézier surface patches which possess
a parameterization which preserves the distance ratios to the vertices of the
domain triangle. This extends the property of chord-length parameterization
of quadratic rational curves, which was analyzed by Farin (2006), to the case
of surfaces. In addition, we described the relation of this property to tripolar
coordinates in space.
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A construction for general general rational surface patches with this property
is presented in the forthcoming paper Bastl et al. (201x), which also demon-
strates that there exists a fairly large class of surface patches with rational
chord-length parameterization.
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Dietz, R., Hoschek, J., Jüttler, B. (1993), An algebraic approach to curves and

surfaces on the sphere and on other quadrics, Computer Aided Geometric
Design 10, 211–229.

Farin, G. (1999), NURBS. From projective geometry to practical use. AK
Peters, Natick MA.

Farin, G. (2002), Curves and Surfaces for CAGD. Morgan Kaufmann.
Farin, G. (2006), Rational quadratic circles are parametrized by chord length.

Computer Aided Geometric Design 23, 722–724.
Farouki, R., Moon, H.P. (2000), Bipolar and multipolar coordinates, in: The

Mathematics of Surfaces IX (R. Cippola and R. Martin eds.), Springer,
348–371.

Farouki, R. (2008), Pythagorean-Hodograph Curves: Algebra and Geometry
Inseparable, Springer, Berlin.
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