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Abstract. We present a framework for generating a trivariate B-spline
parametrization of turbine blades from measurement data generated by
optical scanners. This new representation replaces the standard patch-
based representation of industrial blade designs. In a first step, the blade
surface is represented by a smoothly varying family of B-spline curves. In
a second step, the blade is parametrized by a trivariate B-spline volume.
The resulting model is suitable for numerical simulation via isogeometric
analysis, as well as for a fully automatic structured mesh generation
with standard finite elements. We focus on the industrial applicability of
the framework, by using standard turbine blade features throughout the
process.
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1 Introduction

The commercial activities of MTU Aero Engines focus on developing, manu-
facturing and repairing turbine engines for aircrafts. The volumetric B-spline
parametrization – which is discussed in the present paper – enables us to explore
new approaches to the challenging tasks of high-quality and efficient numerical
simulations of turbine blades.

First, the new numerical simulation approach of isogeometric analysis (IGA),
introduced by Hughes et al. [10], uses geometry mappings represented by volu-
metric NURBS parametrizations, and the finite-dimensional spaces needed for
the Galerkin projection are defined with the help of these parametrizations. As
a major advantage, only one representation of the blade geometry is required,
which is used throughout the entire process of design, simulation, and manufac-
turing. Consequently, the geometrical errors introduced by approximating the
blade geometry by finite element meshes are eliminated and the number of un-
knowns at the coarsest discretization level is significantly decreased. This new
approach seems to be particularly well suited for blade geometries, since they
are less complex than general CAD models.

Second, the volumetric description can be used for automatically partition-
ing the blade into several volumetric patches. Consequently, a fully automatic
structured mesh generation for standard finite elements becomes possible.
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B-spline volumes have been discussed in the classical literature in Computer
Aided Design, e.g see [9]. The existing literature on volume parametrizations by
B-splines concentrates mostly on applications to object modeling via free-from
deformations. More recently, the construction of B-spline volume parametriza-
tions for isogeometric analysis was discussed. The paper [2] designs B-spline vol-
umes by sweeping and uses them for isogeometric analysis. In [14], the authors
use harmonic functions to generate a spline parametrization of general cylinder-
type objects. The regularization of B-spline volumes is addressed in [18].

With the focus on the industrial applicability, we present a process that gen-
erates a volumetric B-spline parametrization of a turbine blade. Our approach
is fully compatible with the natural process flow in turbine blade engineering.
Furthermore we can cover the industrial standards and requirements of a ge-
ometric blade model, and the intermediate results and methods are useful for
performing standard CAD and CAE operations.

After presenting an outline of our approach, the paper describes the steps
needed for the volumetric model generation. We conclude with some final re-
marks.

2 Problem Specification and Outline

We assume a triangular mesh of a turbine blade, generated by an optical mea-
surement system or by sampling a standard (surface) CAD description of the
blade. Therefore, our framework is usable for the integration of physical objects
and geometric models.

Based on the mesh representation of the blade, we generate a volumet-
ric tensor-product B-spline model of the blade by an almost automatic ge-
ometry reconstruction process, which requires only very little interaction with
the user. The surface parametrization of the resulting model is suitable for a
new parametrization of the blade surface which replaces the traditional blade
parametrization with multiple trimmed surface patches. The volume parametriza-
tion of the model is suitable for high-quality numerical simulations using the
isogeometric analysis or by a fully automatic structured mesh generation with
standard finite elements.

Fig. 1 shows a disk with blades in a modern turbine, the standard position of
a single blade and the typical shape of a blade. For the sake of brevity we shall
denote both turbine blades and compressor blades as turbine blades or blades
only.

The remainder of this section summarizes the proposed modeling framework.
Starting with a triangular mesh M of a blade as input, we generate a volumetric
tensor-product B-spline model in the following steps:

1. The user defines the number of slicing surfaces and the desired number of
degrees of freedom for the tensor-product B-spline volume.

2. We generate two families of slicing surfaces Fα and Fβ which intersect the
blade in well-behaved slices Cω between the blade boundary and the tip.
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Fig. 1. From left to right: A disk with blades of a modern turbine engine. For our
framework we assume the standard position of a disk, where the x-axis equals the
turbine axis in the direction of the current. Considering a single blade, the z-axis equals
the radial direction and the y-axis completes the right-handed orthonormal system. The
shape of a blade consists of several parts, the endwall (red), the fillet (green), the airfoil
with side parts (magenta) and edge parts (orange), and the tip (light blue).

3. We segment the slices Cω into edge and side parts, preparing them for the
generation of a volumetric tensor-product B-spline model and considering
the blade topology. For the airfoil part, the transitions between the four
parts are called wedge points.

4. We fit the slices Cω by B-spline curves cω(u) with identical degrees d and knot
vectors U . We use an iterative process to optimize the parametrization. The
parameters associated with the wedge points (which we call wedge knots),
however, are kept fixed.

5. We split the closed B-spline curves cω(u) at the wedge knots into four bound-
ary curves and generate surfaces sω(u, v) by extending the boundary curves
bilinearly to the inner part of the blade using Coons patches.

6. We interpolate the surfaces sω(u, v) in sweeping direction w for a volumetric
tensor-product B-spline model v(u, v, w) of the blade. An additional B-spline
block at the bottom completes the model.

3 Slicing Surfaces

We represent the slicing surfaces Fα and Fβ as implicitly defined algebraic sur-
faces. This allows us to use their advantages compared to parametric surfaces,
e.g. no data parametrization is needed for fitting processes and relatively simple
algorithms for computing intersections with meshes and for blends are available.

An algebraic spline surface F is defined as the zero level set of a tensor-
product spline function of (tri-) degree d (d ≥ 2),

f(x, y, z) =
∑

(i,j,k)∈J

ci,j,k Ni,d(x) Nj,d(y) Nk,d(z) (1)
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Fig. 2. From left to right: The blade boundary and the tip. The tensor-product splines
are defined by three uniform knot sequences (top view). Several level sets Fα of the
scalar field.

with the real coefficients (control points) ci,j,k, where J is the appropriate index
set. The basis functions (Ni,d(x)i=1,...,ni

), (Nj,d(y)j=1,...,nj
) and (Nk,d(z)k=1,...,nk

)
are B-splines of degree d with respect to uniform knot sequences X = (βi)i=1,...,ni+1,
Y = (ηj)j=1,...,nj+1 and Z = (ζk)k=1,...,nk+1 for the three coordinate directions
x, y and z. These knot sequences partition a bounding box Ω (domain of the
tensor-product spline functions) into axis-aligned boxes. By using B-splines as
basis functions we can use their advantageous properties such as local support
and the increased flexibility compared to polynomials.

3.1 Slicing Surfaces for the Airfoil Part

We construct a family of slicing surfaces Fα between the endwall (α = 0) and
the tip (α = 1) of the blade, so that they generate well-behaved intersections
(single connected components) for the airfoil part of the blade. The surfaces are
designed in three steps, which are visualized in Fig. 2:

1. The tip T is represented by all tip points of the mesh, automatically detected
by an adapted region-growing algorithm, while the endwall is represented by
the blade boundary CB .

2. We fit these two data sets simultaneously using the techniques described in
[12] (by minimizing the squared algebraic distances of a function fα, con-
strained by some additional normal- and tension-terms) and by generalizing
the term of minimizing the squared algebraic distances to∑

v∈CB

[f(v)]2 +
∑
v∈T

[f(v)− 1]2 . (2)

The B-spline basis functions are defined on the bounding box with uniform
knot sequences for all three dimensions.

3. Finally, a finite subset of the set of level sets of the scalar field f defines the
airfoil slicing surfaces

Fα = {(x, y, z) ∈ Ω | fα(x, y, z) = α} for α ∈ [ᾱ, 1] , (3)
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Fig. 3. The intersections of the slicing surfaces and the mesh have to be well-behaved
and uniformly distributed in sweeping direction. To meet these conditions, we bend
them up from horizontal to vertical positions.

where the value ᾱ is chosen such that Fᾱ (0 < ᾱ < 1) is the lowest surface
intersecting the airfoil part.

3.2 Slicing Surfaces for the Base Part

The family of (airfoil) slicing surfaces Fα cannot be used for the base part
because their intersections with the blade base are not well-behaved, see Fig. 3.
Hence we define a second family of slicing surfaces Fβ for the base part which we
have to bend up from a horizontal position at the airfoil transition to a vertical
position at the blade boundary.

In general, the transition curves between endwall and fillet are not useful to
slice the base part, because there exists no clear segmentation between them in
modern turbine blade geometries. Usually the fillet (and the endwall) is trun-
cated at the front and rear of the endwall to save space and the endwall is
designed with streamlined elements transitioned into the fillet, e.g. with a non-
axisymmetric endwall contouring [8]. To address this problem we reconstruct the
fillet curve CF as a clear and significant feature for the base part of the blade.

The fillet curve CF is the intersection of the airfoil and the endwall before the
fillet has been generated. As a consequence, this curve CF is a valuable indicator
for the natural flow of the blade and for the transition between the endwall and
the airfoil. Fig. 4 illustrates the reconstruction of the fillet curve.

Now, with the help of the fillet curve, we can define a family of ruled surfaces
obtained by auxiliary slices and directions vectors. We define the auxiliary slices
in four steps, see Fig. 5:

1. An algebraic spline surface is fitted to the airfoil data. The intersections of
this surface with a family of airfoil slicing surfaces Fα for 0 < α < ᾱ defines
the auxiliary airfoil slices.

2. The blade boundary curve CB and the fillet curve CF are projected on a cone
whose axis equals the turbine axis.

3. A scalar field f is fitted to the curves CB and CF forced to f = 0 for CB and
f = 1 for CF . We use the same techniques as for the scalar field of the airfoil
slicing surfaces.



6 David Großmann and Bert Jüttler

Fig. 4. To reconstruct the fillet curve CF , we fit an algebraic spline surface to all airfoil
data points above the curve CA and intersect this surface with the endwall surface
Fα=0. CA denotes the intersection of the lowest airfoil slicing surface Fα=ᾱ with the
blade.

Fig. 5. The endwall surface and the (extended) airfoil surface are associated with fitted
scalar fields. There level sets defines the auxiliary slices.

4. The level sets of the scalar field f defines the auxiliary endwall slices which
we finally project back on the endwall surface Fα=0.

The corresponding slicing directions are defined in five steps, see Fig. 6:

1. The auxiliary endwall slices are divided into an inner and an outer part.
The transition between them is called transition slice and their position is
defined by the user.

2. A transition surface is defined as a ruled surface which is produced by the
transition slice and directions which originate in the center of the turbine
axis.

3. The intersection of this transition surface and the airfoil slicing surface Fα=ᾱ

is called the bending curve.
4. The points on the outer auxiliary endwall slices are associated with vertical

direction vectors that originate in the center of the turbine axis.
5. The points on the inner auxiliary endwall slices and on the auxiliary airfoil

slices are associated with direction vectors that point to the closest points
on the bending curve.
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Fig. 6. Left: The slice directions are generated with the help of a bending curve C.
Right: A slicing surface.

Each of the auxiliary slices, along with the associated direction vectors, defines a
ruled surface. We approximate these ruled surfaces by algebraic spline surfaces.
This gives us the second family of slicing surfaces Fβ , see Fig. 6.

Remark In our framework, the intersection curve of the two algebraic surfaces
in step 3 is traced by a predictor-corrector method with curvature-based stepsize
control, cf. [3, 7]. This method generates a piecewise linear approximation of the
bending curve.

4 Segmentation of the Slices

The (closed) piecewise linear slices Cω are generated by intersecting the mesh
with the slicing surfaces Fα and Fβ . In addition we have to consider two special
cases: The lower blade boundary CB can be taken directly from the mesh. For the
uppermost slice, we intersect the slicing surface Fα=1 with an algebraic spline
surface approximating the airfoil data. We cannot use the original mesh data
here, since the mesh is slightly topped of and noisy on the transition between
the tip and airfoil, due to errors introduced be the optical measurement process.
Fig. 7 shows the resulting slices.

The slices Cω are now subdivided into four segments. This prepares them for
the generation of the tensor-product spline volume. In addition, it complies with
the standard turbine blade geometry, specially the classification of the airfoil
into the edge and side parts.

4.1 Airfoil Part

In the airfoil part, the slices are called profiles (referring to the blade design
process) and can be segmented by the wedge points into the two edge parts
(trailing and leading edge) and the two side parts, see Fig. 8.
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Fig. 7. Piecewise linear slices with (right) and without (left) the underlying mesh.

Edge points In each profile, the two points where the extrapolated medial axis
intersects the profile are called the edge points. We need to locate them, in order
to perform a robust approximation of the (symmetric) wedge points later. Con-
sidering only one profile, the following heuristic method constructs an extended
medial axis in the edge part of the profile and generates the corresponding edge
point:

1. As an initial edge point pi=0 we take the point of the profile with the minimal
(respectively maximal) x-coordinate. In general, these points are situated
between their associated wedge points.

2. Starting from the edge point pi, we generate four auxiliary points on each
side of the profile. Each pair of auxiliary points has a fixed distance d, . . . , 4d
to the edge point, where d is a certain fraction of the profile length in x-
direction.

3. These four points are used to estimate the
4. medial axis of the blade in this slice.
5. An new edge point pi+1 is found by collecting the point of the profile with

the minimal distance to the extrapolated medial axis.
6. We continue with step 2 until the edge point has converged to a stable

position.

Fig. 8 shows two steps of the edge point iteration.

Wedge points For a robust approximation of the wedge points, we have to
consider the following requirements, which are due to the needs of our industrial
application.

1. In general, the curvature is not a distinctive feature for a wedge point of a
profile; less for the leading edge than for the trailing edge and less for turbine
blades than for compressor blades.
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Fig. 8. From left to right: Some design parameters for the airfoil profiles. Three different
types of profiles (two turbine blade profiles and one compressor blade profile at the
bottom) with their wedge points for the leading edge and their trailing edge point for
the trailing edge. Two steps of the edge point iteration process p0 → p1 → . . . where
a Bézier curve is generated by the center of four pairs of auxiliary points, giving a new
approximation of the edge point.

2. The optical measurement process generates some remarkable data noise in
regions of high curvature, e.g. in the trailing and leading edge. This leads to
low data quality in the wedge point regions.

3. The consistency of the wedge points for all profiles is considerably more
important than the exact detection of the wedge points for one profile.

As a consequence, we assume symmetric wedge points (in relation to the edge
points) and approximate the edge parts of the profiles with spheres. More pre-
cisely, we start with the edge point, consider one neighboring curve point on each
side of the profile and generate a sphere through these points, where we force
the center of the sphere to be located in the plane spanned by the points. Then,
we increase the number of (symmetric) neighboring profile points by a adding
neighboring points on both ends and create fitting spheres (using the method
described in [16]) with centers located in the plane of regression defined by them.
This process of adding points is stopped when the approximation error starts
to increase linearly with the number of points, i.e., when the profile segment
starts to deviate substantially from a spherical curve. At this point, the sphere
detaches itself from the edge part of the profile. This point defines the wedge
points. In order to increase the consistency of the wedge points over all profiles
we use standard data smoothing techniques. See Fig. 9 for some results.
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Fig. 9. Wedge points for all profiles. The plot on the right-hand side visualizes the
smoothing process.

Fig. 10. Based on the tangential and a normal direction of the airfoil wedge curves and
the bisector of the endwall surface at the corners, an auxiliary Bézier curve of degree
four is defined. The slice points with minimal distances to this curve defines the wedge
points for the base part.

4.2 Base Part

There exists no precise definition of edge points or wedge points for the slices of
the base part. Therefore we extend the wedge points of the airfoil part smoothly
into the base part, see Fig. 10.

5 Curve Fitting

In order to generate a volumetric tensor-product B-spline model, we have to
represent the closed piecewise linear slices Cω by closed B-spline curves cω(u)
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with identical degree and knot vector. We first generate initial B-spline curves
and optimize them using an iterative fitting process.

5.1 Initial B-spline Curves

For each slice C ∈ Cω, the initial B-spline curve c(u),

c(u) =
n∑

i=0

Ni,d(u) di, (4)

with B-spline basis functions Ni,d of degree d with respect to a periodic knot
sequence U and control points di ∈ R3, is generated in four steps:

1. We develop the piecewise linear slice C to U = [0, 1] and relate the four wedge
points to their parameters on U , called wedge knots.

2. The remaining knots are distributed in the resulting four segments of U ,
as specified by the wedge knots, by taking into account two requirements:
First, the knots have to be distributed uniformly on each segment. Second,
the length of the knot spans are identical for the edge parts and for the side
parts.

3. We insert d − 2 additional wedge knots to relax the built-in smoothness to
C1 because the transitions between edges and sides of a profile are designed
to be C1 only.

4. Finally, we calculate the Greville abscissas of the knot sequence U and use the
related points on the slice C as the initial positions of the control points di.

Considering the whole blade, all initial B-spline curves cω(u) have to be based on
identical knot sequences, in order to be able to extend them to a tensor-product
B-spline volume. Therefore we perform the first three steps for only one slice
(representing the average geometry of the profiles) and use the obtained knot
vector for all slices.

5.2 Fitting Process

We consider a slice C ∈ Cω, which is described by the points pj ∈ R3 obtained by
intersecting the initial triangulated data with one of the slicing surfaces. In addi-
tion, we have an initial B-spline curve c(u). The four wedge knots û0, û1, û2, û3

are linked to the four wedge points p̂0, p̂1, p̂2, p̂3.
In order to obtain a better approximation, we minimize the objective function

∑
k

‖pk − c(uk)‖2 +
4∑

j=1

‖p̂j − c(ûj)‖2 → min
di,uk

. (5)

This problem is solved numerically by a Gauss-Newton-type method, which can
be interpreted geometrically as an evolution process, as described in [1, 13, 15].
An overview about some standard B-spline fitting techniques are given in [6, 17].
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Fig. 11. Top left: One fitting step and the final B-spline curve of the evolution process.
The red lines indicate the relation to the point data points with fixed parameters
(wedge points, and possibly some additional points), and the green are associated with
data points possessing floating parameters. Bottom left: A mesh obtained by piecewise
linear interpolation of the B-splines curves. Right: The final set of B-spline curves that
represent the blade surface.

In each iteration step, the data points pj (with free parameters) are related
to their closest points on the curve c(uj) in a least-square sense. The wedge
knots ûj are kept fixed. We use regularization terms (Tikhonov regularization
combined with constraints on the tangential movement) in order to obtain a
unique solution and a well-distributed parametric speed along the curve. Fig. 11
shows the resulting B-spline curves.

The profile curves are fitted independently, except for using identical degrees,
knot sequences and wedge knots. This can lead to some unacceptable distortions
of the curve parametrizations between the wedge knots by comparing neighbor-
ing curves. We suggest two approaches to overcome this problem. First, one may
use more (uniformly distributed) points with fixed parameters between the wedge
knots. Alternatively, one may apply a smoothing step (simultaneously across all
profile curves) to the parametrization of the closest points of the data points
after every iteration step. Fig. 11 shows the optimized curve parametrizations
for the base part.

The used fitting framework is applicable to all manifolds of curves which
are controlled by a certain system of shape parameters. Thus it is a highly
valuable tool for turbine blade engineering. For example, in the aerodynamic
optimization process the airfoil is designed by (lofted) streamlines represented
as four C1-connected Bézier curves of a fixed degree d, and the method can easily
be adapted to this situation.
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Fig. 12. Three possible parametrizations of a circular patch: A single-patch represen-
tation with a highly singular point in the center (left), a single-patch quadrilateral
parametrization with four singular points on the boundary (center), and a regular
five-patch representation (right).

6 Surface Generation

In this section we describe how to generate a B-spline surface for each slice. In
the next section, we collect these slices to form a volume parametrization of the
entire blade.

Any slice of the blade is topologically equivalent to a circle. A circular surface
patch can be parametrized using different patch layouts, see Fig. 12 for three of
them. In consideration of the blade proportions and the partition of the airfoil
profiles by the wedge points, we use the quadrilateral representation with four
singular points on the boundary which we relate to the wedge points. In the fu-
ture, we plan to use the regular five-patch representation to generate a collection
of tensor-product spline volumes (’multiple-patch volume’) respecting the wedge
point segmentation. Also, we plan to construct parametrizations that respect
the interior structure of the blade, where cooling channels may be present.

The B-spline surfaces sω(u, v) are generated by extending the B-spline curves
cω(u) in three steps, as follows:

1. The closed B-spline curve c(u) is subdivided at the wedge points by inserting
one more knot on each wedge knot. This results in four B-spline curves of
degree d and with one of the two different knot sequences U and V.

2. The control points of the four curves are extended to the inner by a bilinearly
blended discrete Coons patch di,j , see [5].

3. For the base part, we move the inner control points smoothly in direction to
the turbine axis to ensure a well-behaved (non-intersecting) parametrization
there.

Finally, for each slice, we obtain a tensor-product B-spline surface

s(u, v) =
n∑

i=0

m∑
j=0

Ni,du(u) Nj,dv (v) di,j , (6)

with degrees du = dv = d, knot sequences U ,V and control points di,j . Fig. 13
shows several of the generated B-splines surfaces sω(u, v).
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Fig. 13. Several B-spline surfaces representing the slices of the blade are shown. Two
of them (left) are shown in detail. The highlighted surface points are the singularities
of the patches, which correspond to the profile’s wedge points.

7 Volume Generation

All B-spline surfaces sω(u, v) have identical degrees and knot sequences. Thus
we can generate a tensor-product B-spline volume v(u, v, w),

v(u, v, w) =
n∑

i=0

m∑
j=0

l∑
k=0

Ni,du(u) Nj,dv (v) Nk,dw(w) di,j,k, (7)

by interpolating the surfaces in three steps:

1. The user defines a degree dw.
2. A knot sequence W is defined by averaging the chord length parametrization

of the surface points sω(0.5, 0.5).
3. The control points di,j,k are generated by interpolating the control points of

all surfaces with B-spline curves of degree dw and knot sequence W.

In order to cover the entire bade geometry, we add an appropriate trivariate
B-spline block to the base part of the blade. Fig. 14 shows the final tensor-
product B-spline volume.

8 Conclusions

The paper proposed a framework to model a single trivariate B-spline of a turbine
blade from input triangle meshes of the blade. In order to be compatible with
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Fig. 14. The final trivariate B-spline model. The figure shows several parametric curves
and surfaces.

the industrial process for blade design, we considered all standard blade features,
such as wedge points, fillet curve and the natural flow of the blade at the fillet,
when generating the parametrization.

The surface of the blade is represented by one surface patch with a smooth
and well-behaved bivariate B-spline parametrization between the endwall bound-
ary and the tip. It is ready for the (standard) commercial CAD and CAE applica-
tions. The volume is represented by a single trivariate B-spline parametrization
and therefore usable both for isogeometric simulations and for a fully automatic
structured mesh generation with standard finite elements.

To increase the quality of the model in the future, we want to investigate in
the quality of the inner parametrization of the base part and in the generation
of a multi-patch volumetric representation, respecting the blade features. Fur-
thermore, local refinement techniques should be useful to avoid the restrictive
tensor-product property of the B-splines geometries which may lead to distor-
tions in the blade parametrization.

The framework is implemented in Common LISP and generates a volumet-
ric blade model in a fully-automatic process using the user-defined degrees of
freedom for the resulting model. For a triangle mesh with around 300.000 data
points as input, the total computation time is around 20min, based on an Intel
Core 2 duo processor with 3.0GHz and 8GByte memory. Nevertheless all steps
of the process can be used separately in an object-oriented framework for blade
modeling.
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