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Abstract

While isogeometric analysis has the potential to close the gap between Computer Aided Design and Finite
Element Methods, the underlying structure of NURBS (non-uniform rational B-splines) is a weakness when
it comes to local refinement. We propose a hybrid method that combines a globally C1-continuous, piecewise
polynomial finite element basis with rational NURBS-mappings in such a way that an isoparametric setting
and exact geometry representation are preserved. We define this basis over T-meshes with a hierarchical
structure that allows locally restricted refinement. Combined with a state-of-the-art a posteriori error
estimator, we present an adaptive refinement procedure. This concept is successfully demonstrated with the
Laplace equation, advection-diffusion problems and linear elasticity problems.
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1. Introduction

Geometry representations in Computer Aided Design (CAD) software and Finite Element Method (FEM)
have been developed independently and differently. Hence, when FEM is applied to domains constructed
with CAD tools, which is often the case in practice, a transformation of the geometry data is necessary. One
issue in this context is whether these transformations can be carried out automatically and efficiently, or if
manual user interaction is necessary, and if so, to what extent. Another issue is that transforming geometry
data is bound to require some approximations, which results in inaccuracies and geometry errors.

In classic FEM, the geometry is approximated by polygonal, i.e. by piecewise linear elements. It is
obvious that these elements fail to exactly represent curved geometries and that a good approximation of
such geometries might require an undesirably high number of elements. With higher-order isoparametric
FEM it is possible to obtain a better geometry approximation by using elements that may have curved
boundaries. Either way, the geometry representation remains inexact, and refining complicated parts of the
boundary of the computational domain requires costly communication with the CAD programme in order
to preserve the best possible geometry representation.

Isogeometric analysis (IgA) was introduced by Hughes et al. [21] in order to overcome these difficulties.
It is based on the fact that it is a standard in CAD to use Non-Uniform Rational B-Splines (NURBS) as
basis functions for the geometry representation, and that these NURBS have properties that make them
suitable as FEM shape functions. The direct use of geometry data from CAD eliminates the need for costly
and inaccurate data transformation. Exact geometry representation is given in the first, coarsest mesh, and
preserved throughout the refinement process, which makes further communication with the CAD programme
unnecessary.
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The potential of this approach has already been shown by applying IgA to, for example, plane linear
incompressible elasticity [3], gradient elasticity [19], structural vibrations [14], electromagnetics [10], arterial
blood flows [7, 37], incompressible turbulent flows [1], or trimmed CAD surfaces [23]. Efficient quadrature for
NURBS-based IgA has been investigated by Hughes et al. [22], locking-phenomena of NURBS-based finite
elements by Echter and Bischoff [18], and the robustness of IgA under severe mesh distortion by Lipton et
al. [26].

NURBS can be refined by knot insertion, which corresponds to h-refinement in FEM, or by order eleva-
tion, which corresponds to p-refinement in FEM. As an additional, NURBS-specific method, a combination
of these two can be applied, namely k-refinement (see, e.g. [13, 21]). Cottrell et al. [13] compared h-,
p-, and k-refinement and showed examples where k-refinement produced a significantly better accuracy on
degree-of-freedom basis than the other methods. When it comes to adaptive, i.e. local refinement, however,
NURBS show a weakness, because they are defined over a grid-like structure that can not be refined locally.

In the context of geometry modeling, the discussion of local refinement of B-splines dates back to Forsey
and Bartels [20]. Sederberg et al. [32, 33] introduced T-splines for local refinement of rational spline surfaces
and gap-free merging of several spline surfaces with different knot vectors. The application of T-splines in
IgA has been investigated by Bazilevs et al. [5], Dörfel et al. [17], and Uhm and Youn [36] and the results
show that T-splines have the potential to provide a tool for local refinement. One drawback of T-splines
is that a specific structure of the underlying mesh has to be preserved (see [5, 17, 32, 33] for details). In
special cases, this might require the insertion of additional knots in the vicinity of the actual area that has
to be refined. In a worst-case example shown in [17], these additional knots trigger a snowball-effect leading
to almost global refinement and thereby jeopardizing the gained advantages.

Another question is that of linear independence of T-splines and the characterization of the corresponding
function spaces. Under certain smoothness conditions, Deng et al. [15] provide a formula for the dimension
of the spanned spline space over T-meshes. Buffa et al. [9] discuss a very specific refinement process that
ensures linear independence of T-splines, but also give an example of linearly dependent T-splines.

Sufficient and necessary conditions for linear independence of T-splines have been presented recently by
Li et al. [25]. Recent work [24, 31] shows that linear independence and a locally restricted refinement can
be obtained by using the restricted set of analysis suitable T-splines.

Hughes et al. [21] already mention that, while NURBS are in most widespread use, they are “not a
requisite ingredient in isogeometric analysis”. For example, Manni et al. [27] propose the use of general-
ized B-splines as an alternative to NURBS-based IgA. Deng et al. [16] introduced polynomial splines over
hierarchical T-meshes (PHT-splines), which allow local refinement. Recently, Nguyen-Thanh et al. [29] ap-
plied piecewise bicubic, globally C1-continuous PHT-splines to two-dimensional elasticity problems in the
isogeometric framework.

Similar to the concept in [29], we propose the use of basis functions which are piecewise bicubic and
globally C1-continuous on the parameter domain, and which are transformed to the physical domain by
the NURBS geometry mapping. We define a hierarchical T-mesh with hanging nodes that is structured by
relations between hanging nodes at T-shaped junctions and primary nodes at X-shaped junctions.

As a difference to [29], we use a nodal-based representation of the basis functions. We extend the Bogner-
Fox-Schmit rectangle to hierarchical T-meshes (this element was also considered by Stogner et al. [34]). This
way, the procedure for obtaining the local representation of a function is straight-forward and requires only
a minimum of information to be stored, which makes it convenient to implement. The refinement of this
T-mesh is restricted locally, without any unwanted fill-in effects, and linear independence of the used basis
functions is guaranteed throughout the refinement process. Compared to analysis-suitable T-splines (see
again [24, 25, 31]), our method provides a more local refinement with a simpler refinement algorithm.
Indeed, the refinement of analysis-suitable T-splines still requires additional knot insertions beyond the ones
marked by the error estimator. On the other hand, our approach suffers from a reduced smoothness of the
spline space.

This finite element basis allows us to combine it with the a posteriori error estimator discussed by Dörfel
et al. [17]. Hence, we present an adaptive local refinement procedure.

Instead of a simple push-forward to the physical domain, we incorporate the denominator of the ratio-
nal NURBS-mapping into the transformation of the basis functions, such that an isoparametric setting is
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preserved. The benefits of IgA with regard to exact geometry representation on the first, coarsest mesh are
inherited and also preserved.

The proposed method is tested with advection-dominated advection-diffusion problems, the Laplace
equation, and linearized elasticity problems.

The remainder of this paper is organized as follows: Hierarchical T-meshes and additional preliminary
work are discussed in Section 2. The proposed hybrid method is defined in Section 3. The applied adaptive
refinement procedure and the a posteriori error estimator are described in Section 4. Finally, the results of
numerical tests are presented in Section 5, and a conclusion is presented in Section 6.

2. Preliminaries

As preliminary work, we describe hierarchical T-meshes. In order to fix notation and for the sake of
completeness, we also define B-spline- and NURBS-mappings, and we recall and compare some main aspects
of IgA and classic FEM.

2.1. Hierarchical T-Meshes

We define a T-mesh T as a subdivision of a rectangular domain Q ⊂ R
2 into rectangular, non-

degenerated, axis-aligned cells K by a grid that may possess T-junctions such as illustrated in the example
in Fig. 1. The gridpoints of the mesh are called nodes and denoted by ν(i). The gridlines are called edges,
and the edge from node ν(i) to ν(j) will be denoted by (ν(i)ν(j)).

Nodes on the boundary of Q are called boundary nodes (e.g. ν(1), ν(2), and ν(5) in Fig. 1), all other
nodes are called interior nodes (e.g. ν(6), ν(7), and ν(8) in Fig. 1). Except for the nodes at the corners of
the domain Q, we require all nodes to be the vertices of at least three edges, i.e. we do not allow L-shaped
junctions, nodes on straight lines, edges with loose ends, or isolated nodes. We distinguish between the
following two main types of nodes:

• Hanging nodes : Interior nodes at T-shaped junctions (e.g. ν(7), ν(8), ν(9), and ν(10) in Fig. 1).
• Primary nodes : Boundary nodes and interior nodes at X-shaped junctions (such as, e.g. ν(1), ν(2),
ν(6), and ν(14) in Fig. 1).
The set of indices of primary nodes will be denoted by IX , their total number by NX .

We define a principal edge (p-edge) as the longest possible line segment that only contains hanging nodes
in its interior. We then define the two endpoints of a p-edge to be the parent nodes of all hanging nodes
contained in the p-edge. For example, in Fig. 1, (ν(11)ν(14)) is a p-edge; ν(11) and ν(14) are the parent nodes
of ν(12) and ν(13). (ν(6)ν(12)) is also a p-edge, while (ν(12)ν(13)) and (ν(14)ν(19)) are not.

ν(1) ν(2) ν(3) ν(4)

ν(5) ν(6) ν(7) ν(8)

ν(9) ν(10)

ν(11) ν(12) ν(13) ν(14) ν(15) ν(16)

ν(17) ν(18)

ν(19) ν(20)

ν(21) ν(22) ν(23) ν(24)

Figure 1: Example of hierarchical T-mesh (obtained from mesh in Fig. 2(d) by inserting edge (ν(9)ν(10))).
� primary node, � hanging node.
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We focus on a specific class of T-meshes, namely hierarchical T-meshes, which we define as follows: We
start from an initial mesh T0 of Q consisting of rectangular, axis-aligned cells without hanging nodes, such
as the one in Fig. 2(a). We then refine cells by edge insertion: We split a cell into two smaller cells by
inserting one axis-aligned edge as illustrated in Fig. 2. The hierarchical T-mesh is structured by assigning
levels to nodes and requiring the following to be fulfilled:

(T1) The level of a primary node is always 1.
(T2) The level of a hanging node is always higher than the levels of its two parent nodes.

For example, in Fig. 1, the hanging nodes are structured as follows:
Level 2: ν(8), ν(12), ν(13), ν(15), ν(17), ν(19).
Level 3: ν(7), ν(9), ν(18), ν(20).
Level 4: ν(10).

(a) (b) (c) (d)

Figure 2: Example of hierarchical T-mesh and three steps of edge insertions into the shaded cells.

Figure 3: Non-hierarchical T-mesh. (T2) is violated by circular dependencies of hanging nodes marked by �.

Fig. 3 shows an example of a T-mesh that is not hierarchical. The circular dependencies of the hanging
nodes cause a violation of (T2).

In the initial subdivision, in which we only have primary nodes, we assign level 1 to every node. If a new
hanging node is created during refinement, (T2) is easily fulfilled by assigning any level that is higher than
the levels of its parent nodes (a natural choice would be to add 1 to the higher one of the two parent nodes’
levels). If an already existing hanging node is changed into a primary node, we assign level 1 to it, thereby
fulfilling (T1) while (T2) remains valid. Note that, if a p-edge (ν(i)ν(j)) contains a hanging node ν(k), and
this node is changed into a primary node, then the p-edge is split into two smaller p-edges (ν(i)ν(k)) and
(ν(k)ν(j)). In this case, it might be necessary to re-assign the parent nodes of other hanging nodes lying on
the original p-edge (ν(i)ν(j)).

We say that a T-mesh T2 is a refinement of T1, if T2 can be obtained from T1 through one or multiple
consecutive edge insertions.

2.2. NURBS Geometry Mapping

We briefly recall the definition of B-spline basis functions and NURBS mappings. Let p be a non-negative
integer and let s = (s1, . . . , sm) be a sequence of knots in the parameter space with si ≤ si+1 for all i. The
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n = m− p− 1 univariate B-spline basis functions Bs
i,p : [s1, sm] → R, i = 1, . . . , n, are defined recursively as

follows:

Bs
i,0(ξ) =

{
1 for si ≤ ξ < si+1

0 else

Bs
i,p(ξ) =

ξ − si
si+p − si

Bs
i,p−1(ξ)

+
si+p+1 − ξ

si+p+1 − si+1
Bs

i+1,p−1(ξ).

p is called the degree of the B-spline basis functions and s the knot vector.
Whenever a zero denominator appears in the definition above, the corresponding function Bs

i,p is zero
and the whole fraction is considered to be zero. We only consider open knot vectors, i.e. knot vectors in
which the first and last knot appear p+ 1-times.

Let Bs
i,p and Bt

j,q be two families of B-spline basis functions defined by the degrees p and q, and the
open knot vectors s = (s1, . . . , sns+p+1) and t = (t1, . . . , tnt+q+1), respectively. Let wij ∈ R+, (i, j) ∈
{1, . . . , ns} × {1, . . . , nt}, be positive weights. We define the bivariate NURBS basis functions as follows:

Rij(ξ1, ξ2) =
RN

ij (ξ1, ξ2)

RD(ξ1, ξ2)
(1)

where the numerator RN
ij and the denominator RD are given by:

RN
ij (ξ1, ξ2) = Bs

i,p(ξ1) B
t
j,q(ξ2) wij , (2)

RD(ξ1, ξ2) =

ns∑

k=1

nt∑

l=1

Bs
k,p(ξ1) B

t
l,q(ξ2) wkl

=

ns∑

k=1

nt∑

l=1

RN
kl(ξ1, ξ2). (3)

Given a control net of control points Pij ∈ R
2, (i, j) ∈ {1, . . . , ns} × {1, . . . , nt}, the two-dimensional

NURBS-surface G : Q → Ω is defined by

G(ξ1, ξ2) =

ns∑

i=1

nt∑

j=1

Rij(ξ1, ξ2) Pij , (4)

where Q = [s1, sns+p+1]× [t1, tnt+q+1].
For a more detailed definition and introduction of NURBS mappings and B-spline basis functions, and

for a discussion of the properties of these functions and mappings we refer to, e.g. [5, 13, 14, 21] and the
references therein. Note that NURBS basis functions of degree p are, in general, globally Cp−1-continuous.
If a knot is appears k + 1 times, the continuity is reduced by k. For example, at a double knot si = si+1, a
NURBS basis function of degree 3 is C1-continuous.

For our purposes, we assume that the geometry mapping is continuous and bijective (i.e. not self-
penetrating), which are natural assumptions for CAD-applications.

2.3. Isogeometric Analysis and Isoparametric FEM

Let L be a second order elliptic operator on the Lipschitz domain Ω ⊂ R
2 with boundary ∂Ω = ΓD∪ΓN .

We want to find a solution u of the problem

Lu = f on Ω (5)

for a given f , with Neumann boundary conditions on ΓN , and Dirichlet boundary conditions u = gD on ΓD.
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The variational form (or weak form) obtained from (5) is written as follows:

Find u ∈ Vg such that

a(u, v) = 〈F, v〉 for all v ∈ V0

with V0 = {v ∈ H1(Ω) : v|ΓD
= 0} ⊂ H1(Ω) and Vg = {v ∈ H1(Ω) : v|ΓD

= gD} ⊂ H1(Ω), where H1(Ω)
denotes the standard Sobolev space of order 1. Assuming that a(·, ·) is a bounded and coercive bilinear form
and that F is a bounded linear form, the theorem of Lax-Milgram guarantees existence and uniqueness of
a solution.

We use Galerkin’s principle for discretization: We choose an appropriate finite-dimensional subspace
Vh ⊂ V and corresponding spaces Vgh and V0h, and compute an approximate solution uh as the solution of
the finite-dimensional variational problem

Find uh ∈ Vgh such that

a(uh, vh) = 〈F, vh〉 for all vh ∈ V0h.

We refer to uh as the discrete solution. Existence and uniqueness of the discrete solution are again guaranteed
by the theorem of Lax-Milgram under the standard assumptions (see, e.g. [8, 12]).

Choosing a basis {ϕ(i), i = 1, . . . , n} of Vh, we can express the discrete solution uh as a linear combination
of these basis functions with constant real coefficients u(i), i.e. in the following, general form:

uh(x) =

n∑

i=1

u(i) ϕ(i)(x). (6)

Starting point of isogeometric analysis proposed by Hughes et al. [21] is the NURBS geometry mapping
as in (4). As discussed in [21], the NURBS basis functions Rij have properties that make them suitable
as finite element basis functions. Hence, their span is used as the finite-dimensional space Vh. The basis
functions are globally defined over the parameter domain Q and transformed to the physical domain by the
global geometry mapping G, which is illustrated in Fig. 4(a). The representation of the discrete solution (6)
is re-formulated as follows:

uh(x) =

ns∑

i=1

nt∑

j=1

u(ij) (Rij ◦G−1)(x).

The advantages of this approach regarding the exact geometry representation, as well as its weakness with
regard to local refinement, even when using T-splines, have already been mentioned in Section 1.

In the classic FEM, the domain Ω is partitioned into disjoint cells Ωj . Each cell Ωj is constructed as

the image of the same reference element Ω̂ under the local geometry mapping Gj , which is illustrated in
Fig. 4(b). Here, the finite element basis functions ϕ(i) are represented as follows: On a single reference

element Ω̂, m basis functions p̂i are defined (e.g., for linear elements on a triagular element, m = 3). For
each cell Ωj, the local degrees of freedom have a local numbering, which we indicate with the index i. A
local index is linked to the global index of the corresponding control variable, which we indicate by writing
k(i, j). The local representation of the discrete solution can thus be written as follows:

uh|Ωj
(x) =

m∑

i=1

u(k(i,j))
(
p̂i ◦G−1

j

)
(x).

In isoparametric FEM, it is required that the geometry mappings Gj are in the space of shape functions,
i.e. that they can be represented as linear combinations of the shape functions p̂k.

While higher-order isoparametric finite elements may be capable of representing a piecewise curved
approximation of boundaries, they still suffer the disadvantages mentioned in Section 1, such as inexact
geometry representation, the need for data transformation, and the need for costly communication with the
CAD-programme in the course of refinement.

In order to combine the advantages of these approaches, we suggest a hybrid method, which we discuss
in the following section.
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(a) Isogeometric approach:
One globally defined mapping.

(b) Classic FEM:
Element-wise defined mappings.

Figure 4: Illustration of mapping of geometry and basis functions in IgA and in classic FEM.

3. Hybrid Isogeometric FE Method

At first, we define the finite element space over a hierarchical T-mesh T of Q in Section 3.1. Its
transformation to the physical domain in the isogeometric framework will then be discussed in Section 3.2.

3.1. FE Basis Functions over Q

Let the space of piecewise bicubic functions over T be denoted by

Q3(T ) =
{
u : Q → R :

u|K(ξ1, ξ2) =
3∑

i,j=0

c
(ij)
K ξi1ξ

j
2, c

(ij)
K ∈ R, for all K ∈ T

}
.

We choose the set of piecewise bicubic and globally C1-continuous functions as finite element space Xh:

Xh = Q3(T ) ∩ C1(Q). (7)

We now discuss some properties and the construction of the used nodal basis for Xh.

3.1.1. C1-Continuity on T-Meshes

Let the restriction of a function u ∈ Q3(T ) to a cell K ∈ T be denoted by uK = u|K . We fix the 16 local
degrees of freedom of uK by prescribing the Hermite data uK , ∂1uK , ∂2uK , and ∂12uK at the four corners
of K. Here, ∂1 and ∂2 denote the derivatives with respect to ξ1 and ξ2, respectively, and ∂12 denotes the
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mixed derivative. For brevity, we will also write ∂0u = u and ∂3u = ∂12u. Over a rectangular mesh without
hanging nodes, this finite element is known as the Bogner-Fox-Schmit rectangle [8, 12].

Let Iα = {0, 1, 2, 3}, and let T (i) denote the set of all cells K ∈ T that contain ν(i) in their closure. The
following condition given in [34] is sufficient and necessary for global C1-continuity of the extension of the
Bogner-Fox-Schmit rectangle to T-meshes:

∂αuK(ν(i)) = ∂αuK′(ν(i)),

for all α ∈ Iα, for all K,K ′ ∈ T (i),

for all nodes ν(i).





(8)

For an illustration of (8) refer to Fig. 5: If we prescribe Hermite data of our choice at the primary nodes
ν(i) and ν(k), condition (8) is automatically fulfilled by uK and uK′ at ν(i) due to the way we define u. The
same holds for uK and uK′′ at ν(k). This is indicated by the green, dashed circles and arrows in Fig. 5(b).
In order to ensure C1-continuity of u across the edges (ν(i)ν(j)) and (ν(j)ν(k)), we also have to ensure that
(8) is fulfilled at ν(j). Here, we can not choose the Hermite data freely. We have to prescribe the data
determined by uK(ν(j)), which is indicated by the red circles and arrows in Fig. 5(b).

ν(i)

ν(j)

ν(k)

K

K ′

K ′′

(a) Part of mesh
with hanging node
ν(j).

ν(i)

ν(j)

ν(k)

uK

uK′

uK′′

(b) Function values, first and mixed
derivatives must be equal at nodes.

Figure 5: Illustration of condition (8) for global C1-continuity.

3.1.2. Functions on a Hierarchical T-Mesh

We utilize the proof of the C1-continuity in [12] to derive a procedure for determining the local repre-
sentation of a function u ∈ Xh. We give a sketch of the procedure based on the situation illustrated in
Fig. 5. The procedure for cases with more additional hanging nodes on the edge (ν(i)ν(k)) is the same; the
procedure for p-edges which are parallel to the ξ1-axis is analogous.

We note that the restriction of uK to the edge (ν(i)ν(k)) is a univariate cubic polynomial in ξ2. We
denote this polynomial by vik:

vik = uK |(ν(i)ν(k))

The four degrees of freedom associated with ∂0uK and ∂2uK (i.e. function value and first derivative with
respect to ξ2) at the nodes ν(i) and ν(k) uniquely determine vik. In the same manner, the four degrees
of freedom associated with ∂1uK and ∂3uK at ν(i) and ν(k) uniquely determine another univariate cubic
polynomial which we denote by wij . This polynomial describes the derivative of uK with respect to ξ1 along
the edge (ν(i)ν(k)), which here is also the outer normal derivative of uK :

wik = (∂1uK)|(ν(i)ν(k))
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In order to derive the local representation uK′′ , we need to determine the Hermite data at the four corners
of K ′′, in particular at ν(j) and ν(k). As mentioned above, we can prescribe Hermite data of our choice at
ν(k), because it is a primary node and (8) is fulfilled automatically. To obtain the Hermiate data at ν(j), we
proceed as follows:

1. Identify the parent nodes ν(i) and ν(k) of ν(j).
2. Determine vik and wik from the Hermite data at these parent nodes.
3. Evaluate vik and wik and prescribe the following Hermite data at ν(j):

∂0uK′′(ν(j)) = vik(ν
(j))

∂2uK′′(ν(j)) = v′ik(ν
(j))

∂1uK′′(ν(j)) = wik(ν
(j))

∂3uK′′(ν(j)) = w′
ik(ν

(j))

This choice guarantees that (8) is fulfilled at ν(j). Whenever one of the parent nodes is a hanging node itself,
the this procedure is applied recursively. This is where the rules (T1) and (T2) imposed on hierarchical
T-meshes in Section 2.1 come into play, as they guarantee that the recursion terminates at a primary node,
where we can choose the Hermite data.

By this, we have shown the following theorem:

Theorem 3.1. Let T be a hierarchical T-mesh. Then any function in the finite element space Xh (see (7))
is uniquely determined by its Hermite data at the primary nodes of the T-mesh.

For later reference, we define the ancestors of a node ν(i) as the set of all primary nodes that are reached
in the recursive procedure above. For example, in Fig. 1, the ancestors of ν(9) are {ν(6), ν(11), ν(14)}, while
the set of ancestors of ν(6) is {ν(6)}. The set of ancestors of a cell K is defined as the union of the ancestors
of the corner nodes of K. Hence, if all four corners of a cell K are primary nodes, these four primary nodes
form the set of ancestors of K.

While steps 2. and 3. of the procedure above might seem costly, they are, in fact, combined into one
calculation. The formula used to calculate the Hermite data at a hanging node from the data at its parent
nodes is straightforward to derive by direct calculation.

From [12, 34] and the procedure given above, one can see that the Hermite data at a hanging node only
depends on the data at its parent nodes (and the coordinates of these three nodes), but not on any other
information. Hence, the only additional information that needs to be stored besides the coordinates of a
node are the indices of its two parent nodes (see also Section 3.3).

3.1.3. Definition of Basis Functions

Since the Hermite data at a hanging node is already uniquely determined by the Hermite data at its
parent nodes, the degrees of freedom at hanging nodes are restricted. Hence, the dimension of the space Xh

corresponds to the number of degrees of freedom associated with primary nodes:

dimXh = 4NX . (9)

This corresponds to the dimension formula provided in [15]. Recall that IX denotes the set of indices of

primary nodes, and that Iα = {0, 1, 2, 3}. For a fixed (i, α) ∈ IX × Iα, the basis function ϕ̂
(i)
α : Q → R of

Xh is uniquely determined by the 4NX conditions:

∂βϕ̂
(i)
α (ν(j)) = δijδαβ , for all (j, β) ∈ IX × Iα, (10)

where δij denotes Kronecker’s delta. The set of functions Φ̂ = {ϕ̂(i)
α |(i, α) ∈ IX ×Iα} defined by (10) forms

our basis of Xh. Linear independence of the functions in Φ̂ follows directly from their definition and holds
for any hierarchical T-mesh. Hence, linear independence is preserved in any refinement procedure that can
be realized by consecutive edge insertions. This basis Φ̂ does not form a partition of unity, which is not a
problem in the finite element-context. If desired, the partition of unity property can be achieved easily by
adapting the nodal values on the right-hand-side of the definition (10).
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On a rectangular mesh without hanging nodes, the support of a basis function ϕ̂
(i)
α is contained in the

four cells that have the node ν(i) as a corner, i.e. to T (i). When any of these cells are refined, the support of

ϕ̂
(i)
α is reduced. For the process of cell-wise assembling of the stiffness matrix, one needs to know which basis

functions have support on one specific cell K. The local representation a basis function ϕ̂
(i)
α is determined

through the recursive procedure given in Section 3.1.2, and when a primary node is reached in this recursion,
(10) is evaluated. Hence, only those basis function which are associated with the ancestors of a cell K have
support on K. Identifying these basis functions is done by following the same recursion from hanging nodes
to their parent nodes. Note that it is possible to construct hierarchichal T-meshes where the number of
ancestors of a specific cell can increase with the number of levels. In practice, however, this number of
ancestors is usually limited to 5 or, at the most, 6 primary nodes.

While Nguyen-Thanh et al. [29] use the same space of piecewise bicubic, globally C1-continuous test
functions, the nodal representation used herein does not need the computation of Bezier segments for
refinement.

3.2. Hybrid Isogeometric-FE Basis Functions

Instead of transforming the basis functions ϕ̂
(i)
α from Q to Ω by the simple push-forward ϕ̂

(i)
α ◦G−1, we

incorporate the denominator RD (3) of the NURBS mapping in the transformation as follows: At first, we

define the rational basis functions ϕ̃
(i)
α over Q:

ϕ̃(i)
α =

ϕ̂
(i)
α

RD

,

X̃h = span{ϕ̃(i)
α }. (11)

Then, we transform these rational functions to the physical domain Ω:

ϕ(i)
α = ϕ̃(i)

α ◦G−1 =
ϕ̂
(i)
α ◦G−1

RD ◦G−1
,

Vh = span{ϕ(i)
α }. (12)

The discrete solution uh ∈ Vh is now represented analogously to (6) in the following form:

uh(x) =
∑

i∈IX

∑

α∈Iα

u(i)
α

( ϕ̂(i)
α ◦G−1

RD ◦G−1

)
(x).

We can define (11) and (12) for any NURBS mapping, but the most interesting case is the following:

(i) Let the initial mesh T0 be the grid defined by the knot vectors s and t of the geometry mapping G in
(4) (or a refinement thereof),

(ii) let the degrees p and q be less or equal to 3, and
(iii) let the NURBS mapping be C1-continuous.

Then, the bivariate B-spline basis functions Bs
i,p(ξ1)B

t
j,q(ξ2) can be represented exactly as a linear combi-

nation of the basis functions ϕ̂
(i)
α (ξ1, ξ2). Hence, the numerator RN

ij (2) of the NURBS mapping is in Xh.
With (11), this means that

Rij ∈ X̃h for all i, j.

To summarize, the use of these hybrid isogeometric-FE basis functions has the following consequences:

(a) The setting is isoparametric, because the NURBS basis functions can be represented exactly as linear

combinations of the finite element basis functions ϕ̃
(i)
α . The element passes the standard patch test.

(b) The geometry is represented exactly on the coarsest mesh.
(c) The exact geometry representation is preserved in the refinement process.
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(d) The possibility for local refinement is gained by the change of the basis: The finite element basis
functions are defined over hierarchical T-meshes.

(e) By construction, the refinement of a cell effects only the cell itself and nodes on its boundary. In this
sense, the refinement is locally restricted.

(f) Linear independence of the basis functions follows directly from their definition in Section 3.1, and
linear independence is preserved in the refinement process.

Furthermore, from [6], the following approximation property of the finite element space immediately follows:

Theorem 3.2. There exists a projector Πh : V → Vh such that

‖v −Πhv‖H1(Ω) ≤ C h3 ‖v‖H4(Ω) for all v ∈ H4,

where h denotes the mesh size, i.e. the diameter of the largest cell in the physical domain Ω, and where C
is a constant which depends on the specific geometry mapping G but is independent of the mesh size.

A corresponding approximation result is also available for functions v with v|G(K) ∈ H4(G(K)) for all
cells K ∈ T , see [6].

One can always choose the initial mesh T0 as a refinement of the grid determined by s and t, and in
practical applications, the degrees of the NURBS geometry mappings usually are less or equal to 3. Hence,
assumptions (i) and (ii) are easily fulfilled. The C1-continuity of the geometry mapping (iii) is a more
restrictive requirement. If the geometry mapping is only C0-continuous, the setting is no longer isopara-
metric and we have to expect slower convergence rates due to the reduced smoothness of the transformed
basis functions. However, note that, even in this case, statements (b)-(f) regarding the exact geometry
representation, local refinement capabilities and linear independence of the basis functions remain valid.

Depending on the parametrization of a NURBS surface, an equally-spaced mesh of the parameter domain
may be mapped to a distorted mesh in the physical domain. Hughes et al. [21] describe an algorithm that
provides a more balanced mesh of the physical domain. This algorithm can also be applied to the T-meshes
used herein.

If all weights wij of the geometry mapping G are equal, then the NURBS geometry mapping is reduced
to a B-spline surface S of the form

S(ξ1, ξ2) =

ns∑

i=1

nt∑

j=1

Bs
i,p(ξ1) B

t
j,q(ξ2).

In this case, it is sufficient to transform the polynomial basis functions without incorporating the denominator

RD, i.e. ϕ
(i)
α = ϕ̂

(i)
α ◦G−1. The isoparametric setting is then preserved under the same assumptions (i)-(iii)

mentioned above.

3.3. Implementational Issues

As discussed in Section 2.2, the NURBS geometry mapping has an underlying grid-structure. This does
not only motivate the use of rectangular finite elements, but also automatically provides an initial, coarse
mesh.

To fully describe the hierarchical T-mesh, we store the following information:

• For each cell:

– The indices of the four nodes at the cell’s corners.

• For each node:

– Its coordinates.
– A flag indicating if the node is primary or hanging.
– The indices of the two parent nodes, if any.

11



As we have elaborated in Section 3.1.2, identifying the parent nodes of a hanging node is necessary for
obtaining the local representation of a function in Xh. Obviously, the primary/hanging-flag listed above
can be omitted, if, for example, a primary node is marked by setting its parent node indices to zero. Hence,
when compared to classical FEM mesh structures, the only additional information that needs to be stored
are the two indices of the parent nodes.

As mentioned in Section 2.1, changing a hanging node ν(i) into a primary node might split one p-edge
into two p-edges. Since this might require that the parent nodes of some hanging nodes are re-assigned, one
needs to find those hanging nodes which have ν(i) as a parent. This information can be retrieved directly
from the stored nodal data, if a fast method is available. If not, it would be convenient to store the following
additional information:

◦ For each primary node ν(i):

– The indices of the hanging nodes that have ν(i) as parent node.

Re-assigning parent nodes in the course of splitting a p-edge is simple: Due to the axis-aligned structure,
we only have to check one coordinate in order to determine which one of the new p-edges contains a certain
hanging node.

Note that, even though, in priciple, each node has an assigned level, it is neither necessary to store nor
to update these levels. Rule (T2) states that the levels of the parent nodes have to be smaller, but the
actual number of the level is irrelevant. As long as the re-assignment of parent nodes is done properly in
the refinement process, the hierarchical structure is preserved.

With this general approach to cell-refinement, any refinement procedure can be applied as long as it can
be realized by consecutive edge insertions.

4. Adaptive Refinement

In the previous section, we have discussed the local refinement concept. We now discuss the ingredients
needed for the implemented adaptive refinement procedure: The cell refinement procedure, the a posteriori
error estimator, and the definition of refinement criteria.

4.1. Cell Refinement Procedure

In the refinement process illustrated in Fig. 2, several edge insertions result in the creation of only one
new interior primary node. However, as discussed in Section 3.1, the number of degrees of freedom is directly
related to the number of primary nodes by (9). Naturally, one desires a refinement procedure that guarantees
the creation of new degrees of freedom, i.e. of at least one new primary node, when a cell is refined. The
simplest such procedure is cross insertion, which was applied to the numerical test described in Section 5:
We split a cell into four smaller, axis-aligned cells, such that one new primary node is created in the interior
of the original cell. In addition, we align the new nodes in such a way that, when two neighbouring cells are
refined, a primary node is created on their common edge. Note that a cross insertion can be interpreted as
three consecutive edge insertions, hence all statements from above remain valid.

4.2. A Posteriori Error-Estimator

We apply the a posteriori error estimator discussed by Dörfel et al. [17] to our situation. It is based
on an concept presented by Bank and Smith [4]: We enlarge the function space Vh by additional basis
functions which are in V . Let Bh denote the space that is spanned by these additional functions, and let
V̄h = Vh ⊕Bh ⊂ V . Let ūh denote the solution of the partial differential equation in V̄h. Assuming that V̄h

is a better approximation of V than Vh, we can expect ūh to be a better solution than uh. Hence, we may
use eh = ūh − uh ∈ Bh as an indicator to identify areas with large local error.
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One could obtain eh by setting up and solving the variational formulation for ūh in V̄h, which would be
very costly. Instead, as discussed in [17], we determine eh from known data without having to calculate ūh

explicitly, which is done with a special choice of Bh. We define the univariate bubble function as follows:

β̂a,b(ξ) =





ξ − a

b− a

b− ξ

b− a
, ξ ∈ (a, b)

0 , else

For a cell K ∈ T , K = (a1, b1)× (a2, b2), we define the bivariate bubble function β̂(K):

β̂(K)(ξ1, ξ2) = β̂a1,b1(ξ1) β̂a2,b2(ξ2).

Note that the support of β̂(K) is the cell K. We define their transformations to the physical domain and Bh

as their span:

β(K)(x) = β̂(K) ◦G−1(x)

Bh = span{β(K),K ∈ T }

We can now re-formulate the variational formulation for ūh in V̄h to obtain the following variational form
for eh in Bh:

Find eh ∈ Bh such that

a(eh, v) = 〈F, v〉 − a(uh, v) for all v ∈ Bh.

Expressing eh =
∑

K∈T e(K)β(K), inserting all bubble functions β(K) as test functions, and noting that

a(β(K), βK′

) = 0 for K 6= K ′, we obtain the following formula for the coefficients e(K) of eh:

e(K) =

〈
F, β(K)

〉
− a(uh, β

(K))

‖β(K)‖2E
,

where the energy norm ‖ · ‖E is defined by ‖u‖E =
√
a(u, u) for bounded and coercive bilinear forms a(·, ·).

We obtain the following a posteriori error estimator η:

η2 = ‖eh‖2E
=

∑

K∈T
‖e(K)β(K)‖2E =

∑

K∈T
η2K , (13)

where

ηK =

〈
F, β(K)

〉
− a(uh, β

(K))

‖β(K)‖E
. (14)

In the case of two-dimensional, vector-valued solutions, we define the vector-valued bubble-functions

β
(K)
1 = (β(K), 0)T , β

(K)
2 = (0, β(K))T ,

and we express eh =
∑

K∈T
∑

d=1,2 e
(K)
d β

(K)
d . Analogously to above, we obtain the following formula for

the coefficients e
(K)
d :

(
e
(K)
1

e
(K)
2

)
=

(
A

(K)
ββ

)−T

(
R

(K)
1

R
(K)
2

)

where
(
A

(K)
ββ

)
ij

= a(β
(K)
i , β

(K)
j ), i, j = 1, 2,

R
(K)
d =

〈
F, β

(K)
d

〉
− a(uh, β

(K)
d ), d = 1, 2.
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The 2× 2-matrix A
(K)
ββ is inverted easily. The error estimator is then again defined as

η2 = ‖eh‖2E
=

∑

K∈T

∑

i,j=1,2

e
(K)
i e

(K)
j a(β

(K)
i , β

(K)
j )

︸ ︷︷ ︸
=η2

K

. (15)

For an error estimator to be useful, it must be both reliable and efficient (see [11] for detailed definitions).
The efficiency of this error estimator defined in (14) and (15) follows directly from the boundedness of the
bilinear form a(·, ·), while its reliability depends on the specific problem. For a detailed discussion of the
reliability and efficiency of this error estimator, refer to [4, 17].

Once we have calculated the local errors ηK for each cell K ∈ T , we can mark those cells for refinement,
for which the criterion

ηK > Θ (16)

is fulfilled with a threshold Θ. In the examples in Section 5, two methods for determining Θ are applied:
Choosing a parameter α ∈ (0, 1), we calculate Θ = Val[α] or Θ = Qua[α], where

Val[α] = α ·maxK∈T {ηK}, (17)

Qua[α] = α− quantileK∈T {ηK}, (18)

In the first case (17), we mark all cells K for refinement for which ηK is larger than α-times the largest
appearing local error. In the second case (18), Θ is chosen such that the (1 − α) · 100 percent of all cells
with the largest local errors are refined (e.g. if α = 0.85, then 15% of the cells are refined). In both cases,
the smaller the value of α, the more cells will be refined; α = 0 corresponds to global refinement.

When Θ = Val[α] in (16), the number of marked cells varies, depending on the distribution of the error.
This way, on the one hand, it is possible to achieve a concentrated refinement in areas with large local errors,
even if these areas are very small. On the other hand, if the local error in a certain area is much larger than
in the rest of the domain, and if α is chosen too large, this criterion might fail to identify other areas that
need refinement. When Θ = Qua[α] in (16), a specific percentage of all cells is marked for refinement and
the resulting refinement is more balanced. However, if α is chosen too small, an “over-refinement” might
occur in areas in which the discrete solution is already accurate.

The adaptive refinement procedure can be summarized as follows:

1. Create the initial mesh T0 from knot vectors s and t of the geometry mapping (or let it be a refinement
thereof).

2. Define the basis functions on the T-mesh Tk over Q, incorporate the denominator RD in the transfor-
mation to Ω.

3. Solve the discretized system and obtain the discrete solution uk
h.

4. If the desired accuracy is not reached, refine adaptively:

(a) Calculate the local error estimator ηK for each cell K, determine threshold Θ for the chosen
parameter α.

(b) Refine all cells for which ηK > Θ by cross insertion, thereby obtaining the refined T-mesh Tk+1.
Return to step 2.

5. Numerical Examples

We apply the described method to advection-dominated advection-diffusion problems, to the Laplace
equation and to linear elasticity problems.

For better readability, we will express Cartesian coordinates as (x, y) instead of (x1, x2) throughout this
section.
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5.1. Advection-Dominated Advection-Diffusion Problems

We solve the advection-diffusion equation

−κ∆u+ bT ∇u = 0 in Ω

with

κ = 10−6,

b = (cosφ, sinφ)T ,

and Dirichlet boundary conditions, i.e. ∂Ω = ΓD.
We consider two cases: In Case 1, we set φ = 45◦ and Ω = (0, 1)2, and we apply the following boundary

conditions (see also Fig. 6(a)):

gD(x, y) =





0, if (x = 1) ∨ (y = 1)
∨(x = 0 ∧ y > 0.2),

1, else.

In Case 2, we set φ = 15◦, and Ω is the curved domain illustrated in Fig. 7(a). In polar coordinates, this
domain is given by Ω = {(r, θ) ∈ (1, 2)×(0, π/2)}; the complete geometry data is given in Appendix Appendix
A.1. The boundary conditions in this case are as follows:

gD(x, y) =

{
1, if (x < 0.8) ∧ (y < 1.2),
0, else.

The Peclet number Pe is defined by Pe = L|b|/κ, where L is the side length of the domain. If Pe ≫ 1,
the advection dominates the diffusion, which is clearly the case in our examples with Pe ≈ 106. This requires
the use of a stabilization method, and as in [17, 21], the Streamline Upwinding Petrov Galerkin (SUPG)
stabilization method is used (see, e.g., [30]). The stabilization parameter τ is set to

τ(K) =
hb(K)

2 |b| ,

where hb(K) is the length of the cell K in direction of the flow b.
The strong advection and the discontinuous boundary conditions result in sharp layers. The numerical

results in Fig. 6 and Fig. 7 show that the a posteriori error estimator detects the interior and boundary layers
in both cases. The refined areas correspond to the expected positions of the layers, which are indicated by
thin blue lines in Fig. 6(a) and Fig. 7(a).

Note that Case 1 is used by Dörfel et al. [17] to illustrate how the refinement with T-splines requires
an unwanted insertion of additional knots in the process of mesh refinement. This triggers a snowball-effect
where more additional knots are inserted consecutively, leading to almost global refinement. Clearly, the
refinement by cross-insertion in hierarchical T-meshes is locally restricted and additional nodes are created
only in the area of interest.

5.2. Laplace Equation on L-Shaped Domain

This example was also considered by Dörfel et al. [17]: We solve the Laplace equation

∆u = 0 (19)

on the L-shaped domain Ω = (−1, 1)2 \ [0, 1]2 that is illustrated in Fig. 8(a). We use double control points
to model the corners at (0, 0) and (−1,−1); the complete geometry data is given in Appendix Appendix
A.2.
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(a) Problem setting.

(b) T-mesh. (c) Numerical solution.

Figure 6: Problem setting, T-mesh and solution for Case 1 after 6 refinements with Θ = Val[0.2].

The following function u solves (19) and is used as our exact solution:

u : R
+ × (0, 2π] → R

(r, θ) 7→ r
2
3 sin

(
2θ − π

3

)

We define the following boundaries (see also Fig. 8(a)):

ΓD = {0} × [0, 1] ∪ [0, 1]× {0}
ΓN = ∂Ω\ΓD

The corresponding boundary conditions are u = gD on ΓD and ∇u · ~n = gN on ΓN , where ~n denotes the
outer unit normal vector. gD and gN are determined by the exact solution u.

The exact solution has a singularity at the corner (0, 0), and we test the ability of the error estimator to
detect this. We calculate the refinement threshold as Θ = Val[α]. Since the local errors near the singularity
are very large in comparison with other areas, we use the small parameter α = 0.1 in order to achieve a
proper refinement.

The T-mesh after 5 adaptive refinement steps with Θ = Val[0.1] is depicted in Fig. 8(b) and illustrates
that the singularity is detected correctly. The error in the energy norm ‖u − uh‖E is plotted in Fig. 8(c)
versus the degrees of freedom (DoF) and shows the faster convergence of the adaptive method (solid line)
in comparison to uniform refinement (dashed line).

When comparing the results for uniform refinement to those of Dörfel et al. [17], we see that we do not
only reach the same convergence rate, but surprisingly, a better accuracy as well.

5.3. Linear Elasticity Problems

We study the linear elastic behaviour of the displacement field u : Ω → R
2 described by

−div σ(u) = 0 in Ω

with the boundary conditions u = uD on ΓD and σ(u) · ~n = tN on ΓN .
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(a) Problem setting.

(b) T-mesh. (c) Numerical solution.

Figure 7: Problem setting, T-mesh and solution for Case 2 after 4 refinements with Θ = Qua[0.6].

The Lamé’s parameters λ and µ are given by

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
,

where E denotes the Young’s modulus and ν the Poisson’s ratio.

5.3.1. Bending of a Cantilever Loaded at the End

We consider a cantilever of length L and thickness D. It is fixed at x = 0 and subject to a parabolic
traction at x = L with resultant P as illustrated in Fig. 9(a). We choose the parameters as follows: L = 48m,
D = 12m, E = 3 · 107kPa, ν = 0.3, and P = 1000N.

An analytical solution for the displacement field u = (u1, u2)
T can be found in [29, 35]:

u1 =
Py

6E0I

(
(6L− 3x)x + (2 + ν0)

(
y2 − D2

4

))
,

u2 = − P

6E0I

(
3ν0y

2(L− x) + (4 + 5ν0)x
D2

4

+(3L− x)x2

)
,

where I = D3/12 is the moment of inertia of the cross section of the cantilever.
When we consider the plane stress problem, we set E0 = E and ν0 = ν. For the plane strain problem,

we set E0 = E/(1− ν2) and ν0 = ν/(1− ν). Then, in both cases, the resulting exact stress components are
as follows:

σ11 =
P (L− x)y

I
,

σ12 = − P

2I

(
D2

4
− y2

)
,

σ22 = 0.
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(a) Problem setting.
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Figure 8: Laplace equation on L-shaped domain. Refinement with Θ = Val[0.1].

We apply exact Dirichlet boundary conditions at the boundary x = 0, and the exact traction tN as
Neumann boundary condition at x = L. The remaining boundaries at y = ±D/2 are free of traction.

Due to the simple geometry mapping, the denominator RD of the NURBS mapping (1) cancels out, and
since the exact solution is a bicubic polynomial, the exact solution u is in Vh. By using a 4-point Gaussian
quadrature rule, we can exactly calculate the integrals necessary for assembling the stiffness matrix and the
right-hand-side of the discrete variational form. Hence, both in the plane stress and the plane strain case,
our numerical solution is exact up to machine precision. The stress components σ11 and σ12 of the calculated
solution are illustrated in Fig. 9(b) and Fig. 9(c), respectively. The same problem was considered in [29],
where a mesh-dependent discretization error was observed. This may be due to numerical errors introduced
by the computation of Bezier segments, which is not necessary in our approach.

5.3.2. Bending of a Curved Bar by a Force at the End

We now consider the following plane stress problem: A curved bar is fixed on one end and bent by a
traction with resultant P acting at the other end, as illustrated in Fig. 10(a). This example can also be found
in [2]. Note that, like in the previous example, the traction is not distributed uniformly, but determined
by the exact solution presented below. We set the inner radius of the bar a = 13m, and the outer radius
b = 17m. The other parameters are chosen as E = 105Pa, ν = 0.3, and P = 1N. The exact solution is again

18



L

D x

y

P
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(c) Stress component σ12.

Figure 9: Bending of a cantilever loaded at the end.

presented in [35]:

ur =
sin θ

E

(
D(1− ν) log r +A(1− 3ν)r2 +

B(1 + ν)

r2

)

+
1

E
(−2Dθ cos θ +K sin θ + L cos θ) ,

uθ = −cos θ

E

(
−D(1− ν) log r +A(5 + ν)r2

+
B(1 + ν)

r2

)
+

1

E
(2Dθ sin θ +D(1 + ν) cos θ

+K cos θ − L sin θ),

where the constants are set as follows:

N = a2 − b2 + (a2 + b2) log(b/a)

A = P/(2N)

B = −Pa2b2/(2N)

D = −P (a2 + b2)/N

L = Dπ

r0 = (a+ b)/2

K = −D(1− ν) log r0 −A(1− 3ν)r20

−B(1 + ν)/r20

We apply exact Dirichlet boundary conditions at the boundary x = 0 (i.e. θ = π/2), and the exact
traction tN as Neumann boundary condition at y = 0 (i.e. θ = 0). The curved boundaries (i.e. r = a and
r = b) are free of traction. The calculated stress component σ22 is depicted in Fig. 10(b).
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(a) Problem setting.

(b) Stress component σ22. (c) Errors ‖u − uh‖E , uniform
refinement.

Figure 10: Bending of a curved bar by a force at the end.

The circular boundary of the domain is represented exactly by the NURBS mapping, and different to
the previous example 5.3.1, we now have a mapping with unequal weights and a denominator RD that does
not cancel out. For the geometry data, see Appendix Appendix A.1.

In this example, we investigate the effect of the rational character of the geometry mapping: We solve
the problem by transforming the basis functions to the physical domain as described in Section 3.2. This

method will be referred to as hybrid method. We also solve the problem by using basis functions ϕ̄
(i)
α that

result from the simple push-forward to the physical domain ϕ̄
(i)
α = ϕ̂

(i)
α ◦ G−1. This will be referred to as

push-forward method. The corresponding errors are plotted in Fig. 10(c) and show that the hybrid method
(solid line), in which the isoparametric setting is preserved, leads to more accurate results than just using
the push-forward method (dashed line).

5.3.3. Infinite Plate with Circular Hole

The following plane strain problem has also been discussed in, e.g., [17, 21, 27, 29]: We consider an
infinite plate with a circular hole with radius r = 1m in its center. We choose E = 105Pa and ν = 0.3. The
plate is subject to an in-plane force of magnitude T1 = 10N in x-direction, as illustrated in Fig. 11. The
exact solution for the displacement field u = (u1, u2)

T can be found, for example, in [27, 28]:

u1(x, y) =
xT1A1

4µ(λ+ µ)(x2 + y2)3

u2(x, y) =
yT1A2

4µ(λ+ µ)(x2 + y2)3
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where

A1 = −(λ+ µ)x2 + (3λ+ 5µ)x4 + (λ+ 2µ)x6

+(3λ+ 3µ)y2 + (2λ+ 6µ)x2y2 + (3λ+ 6µ)x4y2

−(λ− µ)y4 + (3λ+ 6µ)x2y4 + (λ + 2µ)y6,

A2 = −(3λ+ 3µ)x2 + (3λ+ µ)x4 − λx6

+(λ+ µ)y2 + (2λ− 2µ)x2y2 − 3λx4y2

−(λ+ 3µ)y4 − 3λx2y4 − λy6.

Due to the symmetry of the problem, we solve the problem on a quarter of the domain. As in [27], we do

x

y

r = 1

4

Figure 11: Infinite plate with circular hole: Problem setting.

this on the circular domain indicated by the dashed lines in Fig. 11 and depicted in Fig. 13(a). For the
geometry data see Appendix Appendix A.1.

(a) Stress component σ11. (b) Stress component σ22.

Figure 12: Stress components of uh.

We apply symmetry conditions at the boundaries x = 0 and y = 0, and traction free Neumann conditions
at the circular hole. At the remaining boundary, the exact traction is applied as a Neumann boundary
condition (see Fig. 13(a)).

In this example, large stresses appear in the area near the circular hole, which can be seen in Fig. 12,
where the stress components σ11 and σ22 are plotted. The maximum of the stress component σ11 is 3T1

and appears at the top end of the circular hole at (0, 1). The a posteriori error estimator identifies and
marks the area near the circular hole for refinement. The adaptively refined T-mesh after 4 refinements
with Θ = Qua[0.5] is depicted in Fig. 13(b). Note that, even though the stresses are greatest near the
circular hole, the exact solution of the displacement field in the domain is smooth. Hence, the adaptive
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refinement is not only concentrated near the hole, but gradually results in an over-all refinement of the
whole domain. The error ‖u − uh‖E in Fig. 13(c) also shows that, while the convergence rate achieved by
the adaptive refinement procedure (solid line) is indeed higher than with uniform refinement (dashed line),
the quantitative differences are not very dramatic due to the absence of a peak or singularity in the exact
solution. This result corresponds to the findings in [17, 29].

ex
ac
t t

N

sy
m
m
et
ry

symmetry
tN
=
0

1

1

4

4

(a) Boundary conditions.

(b) T-mesh after 4 refine-
ments.

(c) Errors ‖u− uh‖E .

Figure 13: Infinite plate with circular hole. Refinement with Θ = Qua[0.5].

6. Conclusion

We have extended the piecewise bicubic, globally C1-continuous Bogner-Fox-Schmit rectangle to hierar-
chical T-meshes in the isogeometric framework. The findings and advantages gained thereby are manifold:

Coupling bicubic elements with NURBS geometry mappings provides a simple approach to isogeometric
analysis. The chosen representation over hierarchical T-meshes allows a simple implementation for local
refinement. By embedding the well-known finite element in the isogeometric framework, the advantage of
exact geometry representation on the first, coarsest mesh is inherited. The exact geometry representation is
preserved throughout the refinement process without the need for additional communication with the CAD
programme.

We can combine this approach with the discussed a posteriori error estimator, which results in an adaptive
refinement procedure. The presented numerical tests illustrate that this procedure is capable of identifying
and adaptively refining areas with large local errors. The results show the desired, faster convergence.

The incorporation of the NURBS-denominator in the transformation of the basis functions is essential to
preserve the isoparametric setting. The numerical test carried out on a domain with an exactly represented,
circular boundary shows that a naive push-forward method leads to a less accurate solution.

Since the used basis functions are only C1-continuous, we have to expect a higher error compared to
smoother B-spline basis functions. However, this was not confirmed in the numerical test on the L-shaped
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domain.

Appendix A. Geometry Data

Appendix A.1. Curved Domains

We give the geometry data for the curved domain in Case 2 of the advection-dominated advection-
diffusion problem, Section 5.1. The curved geometries in Section 5.3.2 (bending of a curved bar by a force
at the end) and Section 5.3.3 (plate with circular hole) are variations of this mapping.

Degrees: p = q = 2
Knot vectors: s = (0, 0, 0, 1, 1, 1)

t = (0, 0, 0, 0.5, 1, 1, 1)

Coordinates of control points and weights (i = 1, 2, 3):

j Pij wij

1 ki(1, 0) 1

2 ki(1,
√
2− 1) (1 + 1√

2
)/2

3 ki(
√
2− 1, 1) (1 + 1√

2
)/2

4 ki(0, 1) 1

with k1 = 1, k2 = 1.5, and k3 = 2.

Appendix A.2. L-Shaped Domain

Geometry data for the L-shaped domain in Section 5.2.

Degrees: p = q = 2
Knot vectors: s = (0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1)

t = (0, 0, 0, 0.5, 1, 1, 1)
Weights: wij = 1 for all i, j

Coordinates of control points:

i Pi1 Pi2 Pi3 Pi4

1 (−1, 1) (−0.75, 1) (−0.3, 1) (0, 1)
2 (−1, 0.2) (−0.7, 0.35) (−0.3, 0.5) (0, 0.5)
3 (−1,−1) (−0.6,−0.3) (−0.2,−0.05) (0, 0)
4 (−1,−1) (−0.3,−0.6) (−0.05,−0.2) (0, 0)
5 (0.2,−1) (0.35,−0.7) (0.5,−0.3) (0.5, 0)
6 (1,−1) (1,−0.75) (1,−0.3) (1, 0)
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