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Abstract

Given a rational family of planar rational curves in a certain region of interest, we are in-
terested in computing an implicit representation of the envelope. The points of the envelope
correspond to the zero set of a function (which represents the envelope condition) in the param-
eter space combining the curve parameter and the motion parameter. We analyze the connection
of this function to the implicit equation of the envelope. This connection enables us to use ap-
proximate implicitization for computing the (exact or approximate) implicit representation of the
envelope. Based on these results, we formulate an algorithmfor computing a piecewise algebraic
approximation of low degree and illustrate its performanceby several examples.

1 Introduction

The concept of anenvelope, which is a curve or surface that touches all members of a given family
of curves or surfaces, is useful in a variety of applications. In the theory of gearings, envelopes are
used to find matching pairs of tooth flanks. In robotics, they are strongly related to the problem of
collision detection, due to the close connection of the envelope and the swept volume of a moving
solid. Furthermore, envelopes are also of great interest ingeometrical optics and NC machining
(caustics, path planning) and in Computer-Aided Design (offset curves and surfaces).

Envelopes of curves and surfaces and methods for computing them are discussed in the classical
literature from kinematics and differential geometry, cf.[7, 19]. A survey on the topic is given in a pa-
per by Pottmann and Peternell [22]. Abdel-Malek et al. [1] present several approaches for computing
swept volumes. An algorithm for computing a boundary representation of swept volumes generated
by moving free-form surfaces is presented and discussed in [21].

Special classes of moving surfaces have been studied in moredetail. Kim et al. [18] consider
swept volumes of moving polyhedra and Flaquer et al. [14] study envelopes of moving quadrics. In
a recent paper, Rabl et al. [23] analyze envelopes of moving surfaces which are characterized by a
special form of their support function.

The envelope of a rational family of rational curves is generally not rational and its implicit rep-
resentation is usually of high degree (compared to the degrees of the family). In particular, this is true
for offsets, which form an important subclass of envelopes. The offset of a curve can be obtained as
the envelope of the family of circles with fixed radius which move along the curve. It is well known
that the class of algebraic curves and surfaces is closed with respect to the offsetting.
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Due to their technical importance, the construction and analysis of offset curves has attracted
the attention of many researchers from fields of geometric design, algebraic geometry and symbolic
computation. In particular, a substantial number of publications discusses curves and surfaces with
rational offsets, see [13] and the references cited therein. The existing literature also includes results
concerning offsets of general rational curves. For instance, the implicit equation of the offset curves
was shown to be useful for analyzing of topological changes of offset curves, see [2, 3, 4, 24].

Due to its potentially high degree, it is difficult to computethe implicit equation of general en-
velopes. In order to address this difficulty, we propose to use the technique ofapproximate impliciti-
zationfor envelope computation in this paper.

Given a parametric description of a curve (or surface), the process of finding the implicit de-
scription is calledimplicitization. In the case of a rational parametrization, this conversionis always
possible, and the result is an algebraic hypersurface (curve in 2D or surface in 3D), represented as
the zero set of a polynomial (see [25, 27]). Several techniques for solving the implicitization problem
are available, e.g. Gröbner bases, moving curves/surfaces, or methods based on resultants (cf.[6, 12]
and [17]). While planar curves can be handled efficiently with these approaches, their application to
surfaces is problematic due to the increased computationalcomplexity. in practice, the use of exact
methods for implicitization is only reasonable for surfaces of low degree. Furthermore, the variety
provided by the exact implicitization may contain branchesand self-intersections that the user would
have liked to avoid for certain reasons.

The idea ofapproximate implicitization[8] is to generate an approximation (of low degree) of the
exact algebraic representation, which represents the shape of the given curve or surface in the region
of interest. Using approximate implicitization it is possible to avoid the difficulties associated with
the exact method.

In this paper we will restrict ourselves to the case of a family of planar, rational curves, following
the approach introduced by Dokken (cf. [8, 10]). A comparative benchmarking of this technique and
of other methods for approximate implicitization may be found in [28] and [31]. Since we are aiming
at a local (rather than a global) approximation and on numerical evaluation, we will mainly use the
weak formulation of approximate implicitization [9, 11]. It will be shown that the algebraic error of
the approximation of the envelope is bounded in a similar wayas in the original approach.

This paper is organized as follows. The next two sections recall the concepts of approximate
implicitization and envelope computation, respectively.The fourth section introduces the combination
of both concepts. Based on these results, we present an algorithm for computing a piecewise, algebraic
approximation of a family of rational curves in Section 5. Moreover, several examples will illustrate
its performance. Finally we conclude this paper.

2 Approximate implicitization

We recall the classical version of approximate implicitization (AI) and its weak formulation. We also
give an outline of how to deal with interpolation constraints in this framework. See [8, 9, 10, 11] for
additional details.

2.1 Dokken’s first method

Consider a segment of a planar rational parametric curves 7→ p(s), s∈ I , of degreen, where the
compact intervalI ⊂ R is the parameter domain. We assume that this curve segment iscontained in a
bounded open subsetΩ ⊂ R

2, which we call the region of interest.
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In order to approximatep(s), s∈ I , by an algebraic curve, which is defined as the zero set

q−1(0) = {p ∈ Ω : q(p) = 0} (1)

of a bivariate polynomialq : R2 → R of degreem, we consider the composition

(q◦p)(s) = q(p(s)). (2)

The polynomialq has a representation of the form

q(x) =
(m+2

2 )

∑
i=1

βi(x)ci = cTβ (x) (3)

where the functionsβi are a basis of the space of bivariate polynomials of maximum degreemand the
ci ∈R are the coefficients with respect to it. We collect the coefficients in the coefficient vectorc of q
and the basis functions in another vectorβ (x).

The first approach to approximate implicitization is based on a factorization of the composition
(2),

(q◦p)(s) = q(p(s)) = (Dc)Tα(s), (4)

where the vectorα(s) = (α0(s), . . .αmn(s))T contains a basis of the polynomials of maximum degree
mn in s, which is non-negative and forms a partition of unity onI . For instance, one may take the
Bernstein polynomials on the intervalI . The matrixD, which is determined by the given curve and
by the chosen basisα , hasmnrows and

(m+2
2

)

columns.
In order to eliminate the parameters (and hence to implicitize the given curve), Dokken considers

the norms of the vectors and matrices in (4). For alls∈ I we have that

∑
i
(αi(s))

2 ≤ ∑
i

αi(s) = 1, (5)

hence‖α(s)‖ ≤ 1, where‖.‖ is the usual Euclidean norm of vectors. Thus,

max
s∈I

|q(p(s))| = max
s∈I

|(Dc)Tα(s)| (6)

≤ ‖Dc‖max
s∈Ω

‖α(s)‖ ≤ ‖Dc‖. (7)

An approximate implicitization of the given curve can now befound by minimizing‖Dc‖ subject to
‖c‖= 1. The latter constraint is needed in order to exclude the trivial solution.

The solutionc̃ can be found efficiently by performing a singular value decomposition (SVD) of
D (see [16]) and choosing the singular vector corresponding to the smallest singular valueσmin. This
gives

‖Dc̃‖ ≤ σmin.

Summing up, the approximate implicitization is defined by the bivariate polynomial ˜q with coefficient
vectorc̃. This polynomial satisfies

max
s∈I

|q̃(p(s))| ≤ σmin. (8)

This result possesses the following geometric interpretation: The given curve segmentp(s) with s∈ I
is contained in the “fat” algebraic curve

q−1([−σmin,σmin])∩Ω = {x ∈ Ω : −σmin ≤ q(x)≤ σmin}. (9)
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This region of the plane is bounded by the two algebraic offset curvesq(x) =−σmin andq(x) = σmin.
In particular, if the matrixD possesses the singular value zero, then the corresponding singular vector
gives the coefficients of an exact implicitization of the given rational curve.

As shown by Dokken, approximate implicitization possessesa high order of approximation. Thus,
the error converges to zero very quickly if the length of the interval I is decreased. However, the
method certainly only considers metric aspects. Additional considerations need to be taken into ac-
counct to certify, that the approximate implicitization possesses the correct topology, cf. [26].

As a problem for the implementation and practical usage of approximate implicitization, the nu-
merically stable computation of the matrixD in (4) is relatively complicated, requiring composition
algorithms for polynomials in Bernstein-Bézier form. In addition, the number of entries grows quite
fast withm. Also, the technique is not suitable for approximate implicitization by spline functionsq,
since the space of functions generated by the compositionsq◦p depends on the given curve and does
not possess a simple basis.

2.2 Weak approximate implicitization

In order to avoid these computational difficulties, the weakmethod for approximate implicitization
(cf. [9]) considers directly the basisβ (x), which was already introduced in (3), and integrates the
squared residualsq(p(s)) over the intervalI ,

∫

I
q(p(s))2ds=

∫

I

(

cTβ (p(s))
)2

ds= cTMc, (10)

with the symmetric matrix

M =

∫

I
β (p(s))β (p(s))Tds. (11)

Clearly, one may use numerical methods for evaluating the integrals.
Note that the choice of the basisβ depends on the region of interestΩ, which reflects the local

character of the weak approach. For instance, one may consider the Bernstein-Bézier polynomials
with respect to a triangle containing the region of interest.

The weak approximate implicitization of the given curve is found by minimizing the objective
function defined in (10) subject to the constraint‖c‖ = 1. Similar to the original method, SVD can
be used to find the solution ˜q with the coefficient vector̃c. The value of (10) is equal to the smallest
singular valueσmin of M .

Since we are considering a compact intervalI and the space of polynomials of degreemndefined
on it, there exists a constantC (depending on the degreemnand onI , but not on the given curve) such
that

max
s∈I

|q̃(p(s))|= ‖q̃◦p‖∞ ≤C‖q̃◦p‖2 =C
√

σmin, (12)

where the norms‖.‖2 and‖.‖∞ are theL2 and the maximum norm of polynomials inI . Thus, the weak
approximate implicitization admits a similar geometric interpretation as the original approach, cf. (9).

2.3 Interpolation constraints

Additional interpolation constraints, which force the approximate implicitization to match a certain
number of given points, can be added either before or after the SVD.

Consider the first possibility. Suppose that we want our approximation to interpolate a pointp0.
Following the weak approach, this gives the condition

q(p0) = cTβ (p0) = 0. (13)
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Using a Lagrangian multiplier, one is led to apply the SVD to the modified matrix

M̃ =

(

M β (p0)
β (p0)

T 0

)

, (14)

and then to omit the last entry of the singular vector.
As a second method, one may compute a linear combination of the singular vectors ofM which

are associated with the smallest singular values, in order to satisfy the interpolation condition(s). In
the remainder of the paper we will use the first (Lagrange-multiplier-based) interpolation method.

3 Envelopes

The envelope of a family of curves is a curve which touches each member of the family. Following
the approach in [22], we will use a spatial interpretation todescribe this property. First we explain this
in the case of an implicitly defined family of curves, and thenwe proceed to the case of parametric
curves.

3.1 Implicitly defined curves

We consider a family of real, planar curves which are defined as the zero sets of a trivariate polynomial
F(p, t), wherep = (p1, p2) ∈ Ω ⊂ R

2 are the coordinates andt ∈ J ⊆ R is the time-like parameter
identifying the members of the family. The domainΩ represents the region of interest, and the time-
like parametert varies in an intervalJ ⊂R. For each constant valuet = t0, the set of points satisfying
F(x, t0) = 0 forms a planar curve. Ast varies inJ, we obtain a one-parameter family of curves.

Let ∂t denote the partial differentiation with respect tot. The envelopeD of the family is defined
as

D = {p ∈ Ω : ∃t ∈ J : F(p, t) = ∂tF(p, t) = 0}. (15)

Note that the setD may be empty and that in this case no real part of the envelope exists.
This definition can be understood with the help of the following spatial interpretation, see Fig. 1.

The equationF(p, t) = 0 defines a surfaceS in three-dimensional space with coordinatesp = (p1, p2)
andt. The intersections with the planest = constant, give – after projecting them orthogonally into
the(p1, p2)-plane – the curves which belong to the family. We will denotethis orthogonal projection
by π.

The set of all points of the surfaceSsatisfying∂tF(x, t) = 0 forms thecontourwith respect to the
projectionπ, and their image is thesilhouetteof the surface. The tangent planes of the surface along
the contours are projected into lines, since their normal vectors are perpendicular to the direction of
projection.

For any pointP= (p, t0) of the contour, we consider the intersection curve with the planet = t0
through this point. Both this curve and the contour touch thetangent plane at the pointP. Thus,
the projections – which are the curve of the family and the envelope – possess the same tangent at
p = π(P), which is obtained as the image of the tangent plane.

Therefore we can think of an envelope as the silhouette of a surface underπ. The contour – which
is projected into the silhouette – is defined as the intersection of the two surfacesF = 0 and∂tF = 0.
The implicit equation of the envelope can be found by eliminating t from both equations.
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Figure 1: Spatial interpretation of envelopes:
The contour of the surfaceS is projected into
the silhouette. Simultaneously, this gives the en-
velope of the family of curves obtained by pro-
jecting the intersections ofS with planest =
constant into the(p1, p2)-plane.

3.2 Parametric curves

In this paper we are mainly interested in the case of a rational family of rational curves. More precisely,
we consider a family of curves

p(s, t) =
(

x(s, t)
w(s, t)

,
y(s, t)
w(s, t)

)T

, (s, t) ∈ I ×J (16)

wherex, y andw are bivariate polynomials of degree(n1,n2) with gcd(x,y,w) = 1 and the domain is
the Cartesian product of two closed intervalsI ,J ⊂R. We assume thatw(s, t) 6= 0 for all (s, t) ∈ I ×J.
For each constant value of the second (time-like) parametert = t0, we obtain a segment of a rational
curves 7→ p(s, t0) with domainI .

We consider the embedding

p̃(s, t) =
(

x(s, t)
w(s, t)

,
y(s, t)
w(s, t)

, t

)T

(17)

of the family of curves into the three-dimensional space with coordinates(p1, p2) andt.
In order to find an implicit equation of the envelope, one could proceed as follows: First one

might compute at-dependent implicit equation of the formF(p, t) = 0, i.e. an implicit equation of the
surfacep̃. Second, one could derive the implicit equation as described in the previous section. This
approach – which requires the elimination of three variables – is fairly complicated, and we prefer to
work directly with the parametric representation.

As in the previous section, we are interested in thecontourof the surfacẽp with respect to the
parallel projectionπ. The contour consists of all points whose normal vector is parallel to the(p1, p2)-
plane. The third coordinate of the normal vectors∂sp̃×∂t p̃ is the rational functionh(s, t)/w(s, t)3 with
the numerator

h(s, t) = det





x(s, t) ∂sx(s, t) ∂tx(s, t)
y(s, t) ∂sy(s, t) ∂ty(s, t)
w(s, t) ∂sw(s, t) ∂tw(s, t)



 . (18)

The zero setZ = h−1(0) of this bivariate polynomialh defines the points inI ×J which correspond to
the envelope.
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We will refer toh(s, t) as theenvelope functionand toh(s, t) = 0 as theenvelope condition. Note
that h is independent of the choice of the third coordinate ofp̃, i.e. for any embedding of the form
(p1, p2,z(s, t))

T with an arbitrary functionz(s, t), the envelope function is the same. This is due to the
fact that all these embeddings generate the same silhouette.

If a rational parameterization(s(ξ ), t(ξ )) of the curve defined byh(s, t) = 0 were available,
we could obtain a parametric descriptionk(ξ ) of the envelope by composing it withp, k(ξ ) =
p(s(ξ ), t(ξ )). However, the envelope condition does not define a rational curve in general.

The envelope functionh equals the numerator of the Jacobian determinant ofp. Indeed, the
envelope consist of the singular points of the mappingp (cf.[5]). Thus singularities of the specific
parametrization are a part of the envelope andh necessarily depends on the parametrization.

4 Approximate implicitization of envelopes

We present a modification of weak approximate implicitization which is well suited for the computa-
tion of envelopes. More precisely, we consider the following problem.

Given a family of rational curves (16), find an approximate implicit representation of the envelope.
Several possible approaches exist, which we list below.

1. One could implicitize the surfacẽp(s, t) (see (17)) in order to obtain an implicit representation
F(p, t) = 0 of the family of curves. It is then possible to use the technique outlined in Section
3.1, i.e., to find the implicit equation of the envelope by eliminatingt from F = 0 and∂tF = 0.
Generally, the degree ofF will be rather high, making this method impractical.

Applying approximate implicitization tõp is also inadequate, since one first has to compute a
surfaceand then compute its contour to get the envelopecurve.

2. Sometimes it may be possible to find a (rational) parameterization of the curve represented by
the envelope conditionh(s, t) = 0. By composing it with the parametric representation of the
family of curves one then obtains a parametric representation of the envelope. This possibility is
rather theoretical, since the curveh(s, t) = 0 can generally not be parameterized by elementary
functions (in the sense of [29]) and it is generally not knownhow to generate such a parametriza-
tion, except for rational [27] or square-root parametrizations [30]. Also, this approach would
give a parametric representation of the envelope, instead of an implicit one.

3. An implicit equationq(x) = 0 of the envelope can also be derived directly by eliminatingthe
parameterss, t,T from the four equations

{Xw(s, t)−x(s, t) = 0, Yw(s, t)−y(s, t) = 0, h(s, t) = 0,T w(s, t) = 1}, (19)

wherex = (X,Y)T . The last equation with the new variableT ensures thatw(s, t) does not
vanish. We will present a special approximate technique forperforming this elimination.

4.1 Jacobian embedding

Motivated by the system of equations (19), we define another embedding of the family of curves as

p̂(s, t) =
(

x(s, t)
w(s, t)

,
y(s, t)
w(s, t)

,h(s, t)

)T

. (20)
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Figure 2: Transforming the embeddingp̃ (left) into the Jacobian embeddingp̂ (right): The points on
the contour are pushed into the plane, but the silhouette of the surface (which is simultaneously the
envelope of the family of curves) remains the same.

We call it theJacobian embedding, since the third coordinate is the numerator of the Jacobiandeter-
minant of the mappingp.

By comparing this embedding with the spatial interpretation from section 3, one realizes that the
Jacobian embedding possesses the same silhouette (envelope), since the envelope condition does not
depend on the choice of the third coordinate. Moreover, all points that satisfy the envelope condition
are embedded in the(p1, p2)-plane. Consequently,the zero contour of the Jacobian embeddingp̂
equals its silhouette, hence the envelope.

As an example, Figure 2 shows the original embeddingp̃ of a family of curves and the Jacobian
embeddinĝp.

The (approximate) implicit equationq(x) = 0 of the envelope could be found in the two steps of (1)
(approximately) implicitizing the Jacobian embedding and(2) restricting the result to the points where
the third coordinate is equal to zero. Consequently, the most direct approach is the use of approximate
implicitization for finding a low degree approximation ˜q(x,h) of the Jacobian embedding. The curve
q̃(x,0) gives an approximation of the envelope. However, this situation is similar to the approximate
implicitization of p̃. In order to find ˜q, one has to compute an approximate implicitization of asurface,
although we are only interested in thecurveobtained as the intersection of that surface with the plane
h= 0. Instead of this direct approach, we suggest to couple the envelope condition with the parametric
representation in a different way, which is described in thenext section.

4.2 Implicitization and the envelope function

When approximating the envelope of a rational familyp with an algebraic curveq= 0, it is natural
to consider their compositionq◦ p. Now there is a difference to the standard case of approximate
implicitization: even for the exact equation of the envelope, we getq(p(s, t)) = 0 only for specific
values ofsandt, which are determined by the envelope functionh.

In this section, we consider the family of curves and its envelope in the complex affine planeC2.
The envelope function possesses a factorization

h(s, t) =
M

∏
i=1

hi(s, t)
ki (21)
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in C[s, t] with relatively prime, irreducible factorshi and multiplicitieski ∈ Z+. We say thathi is a
proper factor of the envelope function if the image of the algebraiccurvehi(s, t) = 0 – considered in
the complex affine planeC2 – under the rational mappingp does not degenerate into a single point.
Otherwisehi is said to beimproper.

Any improper factor hi of the envelope function is characterized by the fact that the directional
derivative ofp along the tangent vectors ofhi = 0 is the null vector. Consequently, improper factors
can be found in two steps. First one computes the squarefree representation

ĥ(s, t) =
M

∏
i=1

hi(s, t) (22)

of the envelope function. Second, one finds the greatest common divisor of the two numerator poly-
nomials in

−(∂t ĥ)(∂sp)+ (∂sĥ)(∂tp) (23)

and the squarefree representationĥ of the envelope function. This gcd is the product of all improper
factors.

We consider thereduced envelope function

h̃(s, t) = ∏
i=1,...,M

hi is proper

hi(s, t) (24)

which is obtained by eliminating all improper factors and redundant powers of proper ones. The
image of the algebraic curvẽh(s, t) = 0 under the rational mappingp is said to be theproper part
of the envelope. Note that this may include complex components that were not considered in the
previous discussion.

In addition to its proper part, the envelope consists of several (possibly complex) points, which
are obtained as the images of the algebraic curveshi(s, t) = 0 defined by improper factors underp.
These points are either contained in almost all curves of thefamily, or one of these curves degenerates
into this single point. We illustrate the situation by a simple example.

Example 1 We consider the family of circles through the point(0,1)T that touch the x-axis. It pos-
sesses the rational parameterization

p =

(

(s+ t)(st+1)
1+s2 ,

s2(1+ t2)

1+s2

)T

. (25)

Its envelope function
h= (t + I)(t − I)s(1+st) (26)

possesses the three improper factors h1 = t + I, h2 = t − I and h4 = 1+ st. The algebraic curves
h1 = h2 = h4 = 0 are mapped to the three points(I ,0), (−I ,0) and (0,1). The first two points are
obtained as degenerate circles for t=±I, while the third point is contained in almost all circles. The
only proper factorh̃= h3 = s is mapped to the envelope, which is the zero set of the linearpolynomal
q(X,Y) =Y. It satisfies

(q◦p)(s, t)w(s, t) = (1+ t2)h3(s, t)
2. (27)

Therefore, the reduced envelope function appears with multiplicity 2 in q◦p.

We show that this observation is true in general:
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Theorem 1 Let p(s, t) =
(

x(s,t)
w(s,t) ,

y(s,t)
w(s,t)

)T
be a rational family of planar rational curves, with w(s, t) 6≡

0. Let q(x) = 0 be the square-free implicit equation of the proper part of the envelope and let d be its
degree. There exists a bivariate polynomial g(s, t) such that

(q◦p)(s, t)w(s, t)d = g(s, t) h̃(s, t)2.

Proof 1 The proper part of the envelope consists of all pointsp(s, t) satisfyingh̃(s, t) = 0and w(s, t) 6=
0. Each proper factor hi defines a (not necessarily real) component of the envelope. Since (q◦
p)(s, t)) = 0 holds for the infinite number of points satisfying hi(s, t) = 0, we conclude that hi is a
factor of the numerator of q◦p.

We show that h2i is a factor of the numerator of(q◦ p), provided that hi is proper. Since hi is
squarefree, it suffices to show that

[∇st(q◦p)](s0, t0) = 0 (28)

for all points(s0, t0) ∈C
2 satisfying hi(s0, t0) = 0. Here∇st denotes the gradient with respect to(s, t).

Almost all points satisfying hi(s0, t0) = 0 are regular (i.e. (∇sthi)(s0, t0) 6= 0). We consider all
points satisfying∂thi(s0, t0) 6= 0. Unless hi(s, t) is a scalar multiple of(t − t0), this covers almost all
points on hi(s0, t0) = 0. For each one of them, there exists a local regular parameterization σ →
(σ , t(σ)), whereσ varies in a certain open neighborhood of s0 in the complex planeC. For almost
all points among them, the correponding local parameterization of the envelopeσ 7→ p(σ , t(σ)) is
regular at s0, i.e.

(

d
dσ

p(σ , t(σ))

)

(s0) = (∂sp)(s0, t0)+ (∂tp)(s0, t0) t ′(s0) 6= 0, (29)

as the algebraic curve hi = 0 was assumed to be a proper component of the envelope function. Since
the algebraic curve q= 0 covers all proper components of the envelope, we have that

0=
d

dσ
[q◦p(σ , t(σ))] = (∇xyq)(p(s0, t0)) · [(∂sp)(s0, t0)+ (∂tp)(s0, t0) t ′(s0)]. (30)

On the one hand, the vector(∂sp)(s0, t0)+ (∂tp)(s0, t0)t ′(s0) is not the null vector, since the param-
eterization was assumed to be regular(29). On the other hand, the two vectors(∂sp)(s0, t0) and
(∂tp)(s0, t0) are linearly dependent, as h(s0, t0) = 0. Consequently,

0= (∇xyq)(p(s0, t0)) · (∂sp)(s0, t0) = (∇xyq)(p(s0, t0)) · (∂tp)(s0, t0) (31)

which implies(28). The case where hi is a scalar multiple of t− t0 can be dealt with similarly.

This result admits the following simple geometric interpretation: Consider the Jacobian embed-
ding p̂ along with the implicit equation of the envelopeq. At regular intersection points with the plane
h = 0, the tangent plane of this embedding is orthogonal to the planeh = 0. In three-dimensional
XYh-space, the equationq(X,Y) = 0 defines a generalized cylinder which touchesp̂ at all points in
the planeh= 0, since the Jacobian embedding has vertical tangent planesthere.

4.3 Coupled method for approximate implicitization of envelopes

Theorem 1 motivates us to find the approximate implicitization q of the envelope curve as an approx-
imate solution of the equation

(q◦p)wm = λh2, (32)
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where bothq andλ are unknown. More precisely,λ is another polynomial in(s, t) ∈ I × J, the free
parameterm is the degree ofq andw is the denominator ofp.

The polynomialq approximates the implicit equation of the envelope, while the auxiliary polyno-
mial λ simultaneously approximates the factorg in theorem 1. We compute an approximate solution
of (32) by minimizing the objective function

F =
∫

I×J

(

q(p(s, t))w(s, t)m−λ (s, t)h(s, t)2)2
d(s, t), (33)

that couples the compositionq◦ p with the envelope functionh. We will refer to λ as coupling
function.

Let q(x) be of degreem andλ (s, t) of bidegree(k1,k2). After choosing basesα(s, t) andβ (x)
of the bivariate polynomials of degreem and bidegree(k1,k2), respectively, we may represent the
unknown polynomials as

q(x) = cT
q β (x) and λ (s, t) = cT

λ α(s, t). (34)

After substituting them into the objective function (33) wearrive at

F =
∫

I×J

(

cTγ
)2
, (35)

where

c=
(

cq

cλ

)

and γ =

(

w(s, t)mβ (p(s, t))
−h(s, t)2α(s, t)

)

. (36)

The minimizer of (35) subject to‖c‖2 = 1 can be found by applying SVD to the matrix

M =

∫

I×J
γγT . (37)

The first (m+ 1)(m+ 2)/2 entries of the solution vector are the coefficients of the approximating
curveq= 0. Interpolation conditions (e.g., interpolation of points) can be incorporated by introducing
constraints on this part of the solution.

Theorem 2 Consider the rational family(16) of rational curves. We assume that the denominator
w satisfies|w(s, t)| ≥ ε for a positive constantε , for all (s, t) ∈ I × J. Let c̃ be the unit vector which
corresponds to the smallest singular valueσmin of M , q̃= 0 be the corresponding algebraic curve and
λ̃ be the coupling function, respectively. We consider the envelope function h and its zero set

H = {(s, t) ∈ I ×J : h(s, t) = 0}.

Then
max

(s,t)∈H

|q̃(p(s, t))| ≤C
√

σmin,

where C is a positive constant which depends only onε , I ,J and on the degrees ofp, q andλ .

Proof 2 For any compact set S and any function f: S→ R , let ‖ f‖∞,S be the supremum of f on S.
Due to|w(s, t)| ≥ ε > 0 we have in particular,

max
(s,t)∈H

|q̃(p(s, t))| = ‖q̃◦p‖∞,H . (38)
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and moreover, there exists a positive constantC̃∈ R such that

‖w−m‖∞,H ≤ C̃. (39)

This leads to

‖q̃◦p‖∞,H = ‖(q̃◦p)wmw−m‖∞,H ≤ ‖w−m‖∞,H ‖(q̃◦p)wm‖∞,H

≤ C̃ ‖(q̃◦p)wm‖∞,H . (40)

Recall thatH ⊂ I ×J and‖h‖∞,H = 0. Therefore

‖(q̃◦p)wm‖∞,H = ‖(q̃◦p)wm− λ̃h2‖∞,H ≤ ‖(q̃◦p)wm− λ̃h2‖∞,I×J. (41)

Since I×J is compact, there exists a positive constantĈ ∈ R which depends solely on the degrees of
the polynomials q,p, λ and on the intervals I,J, such that

‖(q̃◦p)wm− λ̃h2‖∞,I×J ≤ Ĉ ‖(q̃◦p)wm− λ̃h2‖2,I×J, (42)

where‖.‖2,I×J is the L2 norm of a function on I×J. Sincẽc minimizes (35),

(‖(q̃◦p)wm− λ̃h2‖2,I×J)
2 = σmin. (43)

Combining(38) and (40)–(43) we get

max
(s,t)∈H

|q̃(p(s, t))|= ‖q̃◦p‖∞,H ≤C
√

σmin, (44)

where C∈ R is a positive constant depending onε , I ,J and the degrees ofp, q̃, λ̃ .

Thus,all points of the envelope are contained in an algebraic offset of the approximating curve.
This geometric interpretation of the result is analogous tothe case of weak approximate implicitiza-
tion.

We demonstrate the performance of our method by a first example.

Example 2 Consider the family of curves which is shown in Fig. 3. This isa family of bidegree(1,3)
and the exact envelope is an algebraic curve of degree 10. Thefamily of linesp has been derived by
slightly perturbing the coefficients of the family of tangents of a planar cubic.

Fig. 4 shows the results of two approximate implicitizations with conics (m= 2) and cubics
(m= 3). In both cases we used bilinear coupling functions. Note that the exact solution (dashed
curve) possesses a self-intersection, which is not reproduced by the low-degree approximate solutions.

5 Piecewise approximate implicitization of envelopes

In principle, the presented method is capable of computing the exact implicit equation of the envelope.
However, the degrees needed for that are generally rather large. For example, if the familyp is
described by a bivariate, quadratic polynomial, then the envelope functionh is in the generic case of
bidegree(3,3). Thus the implicit equation of the Jacobian embedding can have a maximal degree
2 ·3 ·3 = 18 and the same is true for the implicit equation of the envelope. Since we want to satisfy
q◦p = λh2, both degrees of the coupling functionλ need to be 2·18−2·3= 30.

In total we get12(19·20)+312 = 1151 degrees of freedom. Solving such a high degree problem is
computationally expensive, since it requires the construction and SVD of a 1151×1151 matrix. For
practical purposes, a piecewise approximation by low degree curves is more useful.
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Figure 3: Example 2. A cubic family of lines
(grey), their control polygon and the region of in-
terest (dashed box) which is used for the approxi-
mate implicitization in Fig. 4.

5.1 The Algorithm

As before, we are considering a (rational) family of rational curves (cf. (16)). Without loss of gen-
erality we can assume thatI × J = [0,1]× [0,1]. Let the degrees ofp be (n1,n2). We describep in
Bernstein-Bézier representation:

p(s, t) =
∑i, j pi j wi j B

n1
i (s)Bn2

j (t)

∑i, j wi j B
n1
i (s)Bn2

j (t)
, (45)

with Bn
k(z) =

(n
k

)

(1−z)kzn−k andpi j ∈ R
2,wi j ∈ R,0≤ i ≤ n1,0≤ j ≤ n2.

We formulate an algorithm which computes an approximation of the envelope curve by pieces of
algebraic curves. The segments of the curves are joined continuously at their end points. Moreover,
if the envelope curve possesses different branches in the region of interest, then all of them will be
approximated.

The algorithm is based on two assumptions onh:

(i) The envelope functionh is squarefree and does not possess improper factors.

(ii) The zero set ofh has no singularities inI ×J.

The first assumption is needed for the stability of the numerical computations, which are per-
formed by using floating point numbers, and in order to use Theorem 1. If improper factors are
present, then the algorithm can still be executed, but it maynot give optimal results.

As a possible extension of our approach, one might use a factorization ofh and gcd computations
in order to identify the reduced envelope functionh̃. This extension, however, requires special tech-
niques for polynomials with coefficients given by floating point numbers, cf. [15]. The degree of the
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without boundary conditions withC0 boundary conditions

m
=

2
m
=

3

Figure 4: Example 2. Approximate implicitization of the family of lines from Fig. 3. In addition to
the family of curves (grey), the figure shows approximationsof the envelopes for degreesm= 2,3
and(k1,k2) = (1,1) (black, solid) and the exact envelopes (dashed). The circles mark the segment
end points of the envelope in the region of interest. The curves in the right column interpolate these
points.

approximation segments and the degrees of the coupling functions are the free parameters. We denote
them withmand(k1,k2), respectively.

The main idea of the approach is a recursive subdivision of the parameter domainI ×J into four
(squared) subdomains. We use a minimum recursion depthr ≥ 0 in order to control the detection of
small closed loops which may be part of the envelope. Thus, each box in the parameter domain which
contains a part of the zero set ofh has at most a diameter of 2−r

√
2.

The algorithm consists of four steps:

1.) Compute the Bernstein-Bézier representation of the envelope function, denoting its coefficient
matrix withH.

2.) If the entries ofH are either all positive or all negative, then no envelope exists in this domain
(convex hull property) and the algorithm terminates. Otherwise continue with step 3.

3.) Compute all real intersection points(sl , tl ) of h(s, t) = 0 with the boundaries of the considered
domain. Collect the coordinatesp(sl , tl ) in a setS .

4.) If |S | = 2 andr ≤ 0 compute an approximate implicitization of the envelope, interpolating the
points inS and using degreesm and(k1,k2) (cf. Section 4.3). Otherwise, subdividep into four
parts and apply the algorithm to each of them, usingr −1 as their minimum recursion depth.

In our current implementation, the computation in step 3 is performed numerically. Alternatively
one might be using Sturm sequences or the variation diminishing property of the Bernstein-Bézier
representation ofh to certify the number of intersections.
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5.2 Discussion

The recursive subdivision stops, if after at leastr steps exactly two solutions ofh= 0 are found on the
boundary of the currently considered parameter domain. Dueto the previous assumptions onh, the
algorithm always terminates in the generic case. Problems may occur if the zero set ofh incidentally
touches one of the boundaries of the boxes generated by the subdivision. In the generic case this does
not occur.

We aim to approximate always just one (part of a) branch of theenvelope with one algebraic curve.
If closed loops of the zero set ofh are contained in one subdomain, then each of them contributes an
additional branch to the envelope. Since we perform at leastr subdivision steps, all loops with a
diameter which is bigger than 2−r

√
2 are found. Loop detection is a well known problem and has

been extensively studied (see for example [20]).
There is no special treatment of singularities of the envelope. Usually, after some subdivisions,

the approximation interpolates at least one point close to the singularity. The segments are connected
at these points and theirC0-transition mimics the behavior of a cusp point.

In order to bound the region of each segment generated by the approximate implicitization, we use
the convex hull of the control points which correspond to theassociated box in the parameter domain.
These convex hulls necessarily intersect each other. An example of this behavior is given in Fig. 5. It
shows some segments of an approximation of the family from Fig. 3. The domains of these segments
intersect themselves in a quite large area and thus introduce some ambiguity. However, this can often
be resolved by analyzing the location of the segment end points.

Figure 5: Piecewise approximation of a part of the family from Fig. 3 (grey). Three approximating
segments (black, solid) and their domains (black, dashed) are shown. Each domain contains two
associated interpolation points (circles) and the relevant part of their segment is the arc in between
them. In order to improve the visibility, each of the three arcs have been extrapolated slightly beyond
its boundary points.

In addition, by repeating the first two steps of the algorithm– without further approximation –
we can identify smaller domains for each segment. This decreases the area of mutual intersection.
In a final step, we can use the control net of the Jacobian embedding for each part of the parameter
domain. The projection of this control net to the planez= 0 exactly gives the control net of the
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corresponding part of the parameter domain. Now we compute the three-dimensional convex hull
CH(p̂) of the control net of the Jacobian embedding. Due to its definition, all points of the envelope
must be contained in the intersection of CH(p̂) with the planez= 0. This reduces the domain for each
approximating segment even further.

It may happen that single segments of the approximation consist of unconnected branches. So
far, no part of the algorithm prohibits an approximation with separate branches. In our experience the
unconnected, interpolating segments typically get connected after some subdivision steps. However,
this issue is a common feature of most methods for approximate implicitization.

The values fork1,k2 should depend on the value ofm and a good choice for them is hard to make
in general. However, so far we experiencedk1 = k2 = mgiving good results in our test cases.

5.3 Examples

We will illustrate the performance of the algorithm by several examples. The algebraic curves were
plotted via a predictor-corrector method, using the interpolation points (circles) as initial values.

Example 3 Offsets of a parabola. If the distance is chosen high enough,the offset of a parabola
contains a “swallowtail” in one of its branches. This part ofthe offset contains two cusps and one
self-intersection. In Fig. 6, the relevant part of an offsetand approximations with conics of different
subdivision levels are depicted. Furthermore, the corresponding parameter domains are shown to
illustrate the subdivision process.

Example 4 WV-shaped curve. We used cubic splines and cubic coupling functions to approximate a
rational family of rational curves of bidegree(3,2) (see Fig. 7). The subdivision clearly improves the
reproduction of singularities and gives connected segments.

Example 5 Closed curve with cusps. Closed loops of the envelope may possess several cusps - Fig.
8 shows such an example. The considered rational family of curves is of bidegree(2,2) and quadratic
splines and coupling functions were used for the envelope approximation.

Example 6 Envelope of circles. We approximated the envelope of a medial axis transformation. Two
rational functions of bidegree(5,3) described the family of circles. Conic sections and bivariate,
quadratic coupling functions were used (see Fig. 9).

6 Conclusions

We have shown that approximate implicitization can be adapted to compute the envelope of a family
of curves. Additionally we described an algorithm for computing a piecewise approximation of the
envelope with algebraic curves of chosen degree. The numerical examples show that approximate
implicitization is well suited for the computation of envelope curves.

As a topic for future work, we will analyze the approximationorder of the curves generated by
approximate implicitization of envelopes. Furthermore, we are currently working on an extension to
envelope surfaces.
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Curves and envelope approximation Parameter domain and zero set ofh
r
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r
=
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Figure 6: Example 3. Approximation of an offset of a parabola. The family of curves consists of
circular arcs with constant radius, which are centered along a parabola. In each row a piecewise
approximation with conics (m= 2,(k1,k2) = (2,2)) and their corresponding parameter domains are
shown. In addition, the zero set of the envelope function is plotted. Each circle on the left side is
interpolated and corresponds to a diamond on the right. The minimum recursion depth isr = 0,1,2,3,
respectively.
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Curves and envelope approximation Parameter domain and zero set ofh

r
=

1
r
=

2

Figure 7: Example 4. Approximate implicitization of an envelope curve consisting of several branches
with cubic curves (m= 3, (k1,k2) = (3,3)). The right side shows the corresponding parameter do-
mains and the zero set of the envelope function. Each branch of this curve gives one branch of the
envelope. First row (r = 1): Several segments are unconnected and the singularitiesare not repro-
duced properly. Second row (r = 2): Further subdivision gives connected segments and an improved
approximation of the singularities.
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r = 2 r = 3

Figure 8: Example 5. Loops of envelopes usually contain several cusps. In this example the degrees
werem= 2 and(k1,k2) = (2,2), so the segments cannot contain singularities. Left (r = 2): The cusps
are not represented very well, since the segment end points are too far away. Right (r = 3): After an
additional subdivision step some segment end points are close to the cusps, so that the singularities
are approximated well.

Figure 9: Example 6. Piecewise approximation of the envelope generated by a medial axis trans-
formation with 53 segments using the degreesm= 2 and(k1,k2) = (2,2). The right picture shows
a enlarged version of the dashed region in the left one. Note the dense distribution of interpolation
points near the singularities.
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