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Abstract

Given a rational family of planar rational curves in a carteggion of interest, we are in-
terested in computing an implicit representation of theedmwe. The points of the envelope
correspond to the zero set of a function (which represeetgtivelope condition) in the param-
eter space combining the curve parameter and the motiompeéea We analyze the connection
of this function to the implicit equation of the envelope.i§honnection enables us to use ap-
proximate implicitization for computing the (exact or appimate) implicit representation of the
envelope. Based on these results, we formulate an algofithoomputing a piecewise algebraic
approximation of low degree and illustrate its performalmgseveral examples.

1 Introduction

The concept of aenvelope which is a curve or surface that touches all members of andamily

of curves or surfaces, is useful in a variety of applicatiolmsthe theory of gearings, envelopes are
used to find matching pairs of tooth flanks. In robotics, they sirongly related to the problem of

collision detection, due to the close connection of the lepesand the swept volume of a moving

solid. Furthermore, envelopes are also of great interegeometrical optics and NC machining

(caustics, path planning) and in Computer-Aided Desigfsébicurves and surfaces).

Envelopes of curves and surfaces and methods for compinimg are discussed in the classical
literature from kinematics and differential geometry,[@f.19]. A survey on the topic is given in a pa-
per by Pottmann and Peternell [22]. Abdel-Malek et al. [Hgant several approaches for computing
swept volumes. An algorithm for computing a boundary regmétion of swept volumes generated
by moving free-form surfaces is presented and discusseiljn [

Special classes of moving surfaces have been studied in deted. Kim et al. [18] consider
swept volumes of moving polyhedra and Flaquer et al. [14]ysenvelopes of moving quadrics. In
a recent paper, Rabl et al. [23] analyze envelopes of movingaees which are characterized by a
special form of their support function.

The envelope of a rational family of rational curves is gallgmot rational and its implicit rep-
resentation is usually of high degree (compared to the dsgkthe family). In particular, this is true
for offsets which form an important subclass of envelopes. The offset@urve can be obtained as
the envelope of the family of circles with fixed radius whiclowa along the curve. It is well known
that the class of algebraic curves and surfaces is closéd@spect to the offsetting.



Due to their technical importance, the construction andyarsof offset curves has attracted
the attention of many researchers from fields of geometrsigde algebraic geometry and symbolic
computation. In particular, a substantial number of p@ions discusses curves and surfaces with
rational offsets, see [13] and the references cited thefidie existing literature also includes results
concerning offsets of general rational curves. For ingatite implicit equation of the offset curves
was shown to be useful for analyzing of topological chandesfeet curves, see [2, 3, 4, 24].

Due to its potentially high degree, it is difficult to computes implicit equation of general en-
velopes. In order to address this difficulty, we propose tthe technique cdipproximate impliciti-
zationfor envelope computation in this paper.

Given a parametric description of a curve (or surface), ttoegss of finding the implicit de-
scription is calledmplicitization In the case of a rational parametrization, this convergalways
possible, and the result is an algebraic hypersurface écnr2D or surface in 3D), represented as
the zero set of a polynomial (see [25, 27]). Several teclasdar solving the implicitization problem
are available, e.g. Grobner bases, moving curves/ssfacenethods based on resultants (cf.[6, 12]
and [17]). While planar curves can be handled efficienthhwlitese approaches, their application to
surfaces is problematic due to the increased computatmmaplexity. in practice, the use of exact
methods for implicitization is only reasonable for surfaaé low degree. Furthermore, the variety
provided by the exact implicitization may contain branched self-intersections that the user would
have liked to avoid for certain reasons.

The idea ofapproximate implicitizationf8] is to generate an approximation (of low degree) of the
exact algebraic representation, which represents theesbfape given curve or surface in the region
of interest. Using approximate implicitization it is pdssi to avoid the difficulties associated with
the exact method.

In this paper we will restrict ourselves to the case of a familplanar, rational curves, following
the approach introduced by Dokken (cf. [8, 10]). A compaebenchmarking of this technique and
of other methods for approximate implicitization may berfdun [28] and [31]. Since we are aiming
at a local (rather than a global) approximation and on nurakgvaluation, we will mainly use the
weak formulation of approximate implicitization [9, 11} Will be shown that the algebraic error of
the approximation of the envelope is bounded in a similar asin the original approach.

This paper is organized as follows. The next two sectionallrédlce concepts of approximate
implicitization and envelope computation, respectivdllye fourth section introduces the combination
of both concepts. Based on these results, we present aitlatlgéor computing a piecewise, algebraic
approximation of a family of rational curves in Section 5. tdaover, several examples will illustrate
its performance. Finally we conclude this paper.

2 Approximate implicitization

We recall the classical version of approximate impliciti@a (Al) and its weak formulation. We also
give an outline of how to deal with interpolation constraimt this framework. See [8, 9, 10, 11] for
additional detalils.

2.1 Dokken'’s first method

Consider a segment of a planar rational parametric carvep(s), s € |, of degreen, where the
compact interval C R is the parameter domain. We assume that this curve segnenitaned in a
bounded open subse c R?, which we call the region of interest.



In order to approximate(s), s<€ |, by an algebraic curve, which is defined as the zero set

q'0)={pcQ:q(p) =0} (1)
of a bivariate polynomiat]: R? — R of degreem, we consider the composition
(@op)(s) = a(p(s)). ()

The polynomialg has a representation of the form

)
a0 = 5 Ba =B ©

where the functiong; are a basis of the space of bivariate polynomials of maximegnektm and the
¢ € R are the coefficients with respect to it. We collect the coieffits in the coefficient vectarof g
and the basis functions in another vegigKx).
The first approach to approximate implicitization is basadadactorization of the composition
),
(@op)(s) =a(p(s) = (Do) a(s), (4)

where the vectow (s) = (ao(9),. .. amn(s))" contains a basis of the polynomials of maximum degree
mnin s, which is non-negative and forms a partition of unity lonFor instance, one may take the
Bernstein polynomials on the intervial The matrixD, which is determined by the given curve and
by the chosen basis, hasmnrows and(™}?) columns.

In order to eliminate the parametefand hence to implicitize the given curve), Dokken consder

the norms of the vectors and matrices in (4). Fosalll we have that

S (ai(s)?< 5 ai(s) = 1, (5)
| |
hence||a(s)|| < 1, where]|.|| is the usual Euclidean norm of vectors. Thus,
max|q(p(s))| = max|(Dc)"a(s)| (6)
scl scl
< ||Beffmaxija(s)|| < [|Defl. (")
scQ

An approximate implicitization of the given curve can nowfband by minimizing||Dc|| subject to
|lc|| = 1. The latter constraint is needed in order to exclude thi@trsolution.
The solutionC can be found efficiently by performing a singular value deposition (SVD) of
D (see [16]) and choosing the singular vector correspondiribe smallest singular valugy,. This
gives
HDEH < Omin-

Summing up, the approximate implicitization is defined by livariate polynomiad) with coefficient
vectorC. This polynomial satisfies
ngeéllxlq(p(S))\ < Omin- (8)

This result possesses the following geometric intergeetailhe given curve segmepts) with s€ |
is contained in the “fat” algebraic curve

a0 ([~ Omin, Omin]) NQ = {X € Q: —0min < q(X) < Omin}- 9)
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This region of the plane is bounded by the two algebraic béfaevesq(x) = —Omin andq(X) = Omin.
In particular, if the matriXD possesses the singular value zero, then the correspondmgdes vector
gives the coefficients of an exact implicitization of theagiwational curve.

As shown by Dokken, approximate implicitization possessieigh order of approximation. Thus,
the error converges to zero very quickly if the length of theivall is decreased. However, the
method certainly only considers metric aspects. Additli@oasiderations need to be taken into ac-
counct to certify, that the approximate implicitizationsgesses the correct topology, cf. [26].

As a problem for the implementation and practical usage pf@fimate implicitization, the nu-
merically stable computation of the matiixin (4) is relatively complicated, requiring composition
algorithms for polynomials in Bernstein-Bézier form. lddition, the number of entries grows quite
fast withm. Also, the technique is not suitable for approximate imfitiation by spline functions,
since the space of functions generated by the composijopsdepends on the given curve and does
not possess a simple basis.

2.2 Weak approximate implicitization

In order to avoid these computational difficulties, the weadthod for approximate implicitization
(cf. [9]) considers directly the basf$(x), which was already introduced in (3), and integrates the
squared residualsp(s)) over the interval,

Jatp(s)ds = [ (T B(p(s)))*ds = c"Mc, (10)
with the symmetric matrix
M = [ B(p(9)B(p(s) ds an

Clearly, one may use numerical methods for evaluating ttegals.

Note that the choice of the bagsdepends on the region of interedt which reflects the local
character of the weak approach. For instance, one may eorsie Bernstein-Bézier polynomials
with respect to a triangle containing the region of interest

The weak approximate implicitization of the given curve asifid by minimizing the objective
function defined in (10) subject to the constrdiiet) = 1. Similar to the original method, SVD can
be used to find the solutiogqwith the coefficient vecto€. The value of (10) is equal to the smallest
singular valuegmn of M.

Since we are considering a compact intedvahd the space of polynomials of degreadefined
on it, there exists a consta@t(depending on the degreenand onl, but not on the given curve) such
that

max|d(p(s))| = [|Goplle < Cli§opl2 = Cv/Omin, (12)
where the norm§. ||> and||. || are theL.? and the maximum norm of polynomials inThus, the weak
approximate implicitization admits a similar geometriteipretation as the original approach, cf. (9).
2.3 Interpolation constraints

Additional interpolation constraints, which force the egppmate implicitization to match a certain
number of given points, can be added either before or afeeBWD.

Consider the first possibility. Suppose that we want our @apration to interpolate a poirp.
Following the weak approach, this gives the condition

d(po) = ¢ B(po) = 0. (13)
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Using a Lagrangian multiplier, one is led to apply the SVDhe modified matrix

~ M B(po)
M_<B(po)T 0 ) (1)

and then to omit the last entry of the singular vector.

As a second method, one may compute a linear combinatioredfitigular vectors dfl which
are associated with the smallest singular values, in oadsatisfy the interpolation condition(s). In
the remainder of the paper we will use the first (Lagrangetiplidr-based) interpolation method.

3 Envelopes

The envelope of a family of curves is a curve which touche$ @aember of the family. Following
the approach in [22], we will use a spatial interpretatiodescribe this property. First we explain this
in the case of an implicitly defined family of curves, and tlvem proceed to the case of parametric
curves.

3.1 Implicitly defined curves

We consider a family of real, planar curves which are defirseti@ zero sets of a trivariate polynomial
F(p,t), wherep = (p1,p2) € Q C R? are the coordinates arid= J C R is the time-like parameter
identifying the members of the family. The domd&represents the region of interest, and the time-
like parametet varies in an interval C R. For each constant valiie= ty, the set of points satisfying
F(X,tp) = 0 forms a planar curve. Asvaries inJ, we obtain a one-parameter family of curves.

Let ¢ denote the partial differentiation with respecttdhe envelope? of the family is defined
as

2={peQ:3ted: F(p,t)=aF(p,t) =0}. (15)

Note that the seZ may be empty and that in this case no real part of the enveldptse

This definition can be understood with the help of the follagvspatial interpretation, see Fig. 1.
The equatiorF (p,t) = 0 defines a surfacBin three-dimensional space with coordinapes (p1, p2)
andt. The intersections with the planes= constant, give — after projecting them orthogonally into
the (p1, p2)-plane — the curves which belong to the family. We will dertbis orthogonal projection
by 1.

The set of all points of the surfa@satisfyingd:F (x,t) = 0 forms thecontourwith respect to the
projectionrt, and their image is thsilhouetteof the surface. The tangent planes of the surface along
the contours are projected into lines, since their normelore are perpendicular to the direction of
projection.

For any pointP = (p,tp) of the contour, we consider the intersection curve with taagt = to
through this point. Both this curve and the contour touchttreent plane at the poift. Thus,
the projections — which are the curve of the family and thesbape — possess the same tangent at
p = m(P), which is obtained as the image of the tangent plane.

Therefore we can think of an envelope as the silhouette offaciundert. The contour —which
is projected into the silhouette — is defined as the intei@ect the two surfaceb = 0 anddF = 0.

The implicit equation of the envelope can be found by elirtimgat from both equations.



Contour

Silhouette

Figure 1: Spatial interpretation of envelopes:
The contour of the surfac8 is projected into
the silhouette. Simultaneously, this gives the en-
velope of the family of curves obtained by pro-
jecting the intersections of with planest =
constant into thépy, p2)-plane.

3.2 Parametric curves

In this paper we are mainly interested in the case of a rdtfanaly of rational curves. More precisely,
we consider a family of curves

X(st) y(st)
Pt = <W(s,t)’W(s,t)

wherex, y andw are bivariate polynomials of degrée;, ny) with gcd(x,y,w) = 1 and the domain is
the Cartesian product of two closed interval3 C R. We assume that(s,t) # 0 for all (s,t) € 1 x J.
For each constant value of the second (time-like) paranietdp, we obtain a segment of a rational
curves+— p(s,tp) with domainl.

We consider the embedding

T
) , (st)yelxd (16)

T
B(s.t) = (X(S,t) y(st) ’t> (17)

w(s,t) w(s,t)

of the family of curves into the three-dimensional spacéwdordinategp;, p2) andt.

In order to find an implicit equation of the envelope, one doptoceed as follows: First one
might compute &-dependent implicit equation of the for(p,t) =0, i.e. an implicit equation of the
surfacef). Second, one could derive the implicit equation as desdribbéhe previous section. This
approach — which requires the elimination of three varigblés fairly complicated, and we prefer to
work directly with the parametric representation.

As in the previous section, we are interested indbatour of the surfaced with respect to the
parallel projectiort. The contour consists of all points whose normal vector ialfe to the(ps, p2)-
plane. The third coordinate of the normal vectdys x 4, is the rational functiom(s, t) /w(s,t)3 with

the numerator
X(st)  Oex(st)  ax(st)
h(st) = det( y(sit) dsy(sit) ay(st) )
w(s,t) dw(sit) aw(st)
The zero seZ = h~1(0) of this bivariate polynomiah defines the points ihx J which correspond to
the envelope.

(18)



We will refer toh(s,t) as theenvelope functiomand toh(s,t) = 0 as theenvelope conditionNote
thath is independent of the choice of the third coordinatgof.e. for any embedding of the form
(p1, P2,Z(s,t)) " with an arbitrary functiorz(s,t), the envelope function is the same. This is due to the
fact that all these embeddings generate the same silhouette

If a rational parameterizatios(§),t(¢)) of the curve defined by(s,t) = 0 were available,
we could obtain a parametric descripti@ié) of the envelope by composing it with, k(&) =
p(s(§),t(&)). However, the envelope condition does not define a ratiamakdn general.

The envelope function equals the numerator of the Jacobian determinarg. ofndeed, the
envelope consist of the singular points of the mappn@f.[5]). Thus singularities of the specific
parametrization are a part of the envelope amgcessarily depends on the parametrization.

4  Approximate implicitization of envelopes

We present a modification of weak approximate impliciti@atwhich is well suited for the computa-
tion of envelopes. More precisely, we consider the follayyimoblem.

Given a family of rational curves (16), find an approximatglicit representation of the envelope.
Several possible approaches exist, which we list below.

1. One could implicitize the surfaggs,t) (see (17)) in order to obtain an implicit representation
F(p,t) = 0 of the family of curves. It is then possible to use the tegheioutlined in Section
3.1, i.e., to find the implicit equation of the envelope byrgfiatingt from F = 0 andd;F = 0.
Generally, the degree &Ff will be rather high, making this method impractical.

Applying approximate implicitization t@ is also inadequate, since one first has to compute a
surfaceand then compute its contour to get the envelopee

2. Sometimes it may be possible to find a (rational) paranzetén of the curve represented by
the envelope conditioh(s,t) = 0. By composing it with the parametric representation of the
family of curves one then obtains a parametric representati the envelope. This possibility is
rather theoretical, since the curkigs,t) = 0 can generally not be parameterized by elementary
functions (in the sense of [29]) and it is generally not kndwm to generate such a parametriza-
tion, except for rational [27] or square-root parametiaa [30]. Also, this approach would
give a parametric representation of the envelope, instead imnplicit one.

3. An implicit equationg(x) = 0 of the envelope can also be derived directly by eliminathrey
parameters,t, T from the four equations

{Xw(s,t) —x(s,t) =0, YWs,t) —y(s,t) =0, h(s;t) =0, T w(s,t) = 1}, (29)

wherex = (X,Y)T. The last equation with the new varialifeensures thaw(s,t) does not
vanish. We will present a special approximate techniqu@éoforming this elimination.

4.1 Jacobian embedding

Motivated by the system of equations (19), we define anotimereelding of the family of curves as

pay
—~
)

—
~—
<

.
B(st) = < S ,h<s,t>> . (20)
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Figure 2: Transforming the embeddipgleft) into the Jacobian embeddifig(right): The points on
the contour are pushed into the plane, but the silhouetteeo$tirface (which is simultaneously the
envelope of the family of curves) remains the same.

We call it theJacobian embeddingince the third coordinate is the numerator of the Jacothéder-
minant of the mapping.

By comparing this embedding with the spatial interpretafimm section 3, one realizes that the
Jacobian embedding possesses the same silhouette (a)yalioge the envelope condition does not
depend on the choice of the third coordinate. Moreover,a@titp that satisfy the envelope condition
are embedded in thgps, p2)-plane. Consequentlyhe zero contour of the Jacobian embeddjing
equals its silhouettehence the envelope.

As an example, Figure 2 shows the original embeddirg a family of curves and the Jacobian
embedding.

The (approximate) implicit equatiag(x) = O of the envelope could be found in the two steps of (1)
(approximately) implicitizing the Jacobian embedding &i)drestricting the result to the points where
the third coordinate is equal to zero. Consequently, thd ditect approach is the use of approximate
implicitization for finding a low degree approximatiayix;h) of the Jacobian embedding. The curve
d(x,0) gives an approximation of the envelope. However, this 8inds similar to the approximate
implicitization of p. In order to findg; one has to compute an approximate implicitization sfidace
although we are only interested in tberveobtained as the intersection of that surface with the plane
h=0. Instead of this direct approach, we suggest to couplervel@pe condition with the parametric
representation in a different way, which is described inrtbet section.

4.2 Implicitization and the envelope function

When approximating the envelope of a rational fanilwith an algebraic curvg = 0, it is natural
to consider their compositiogo p. Now there is a difference to the standard case of approgimat
implicitization: even for the exact equation of the envelope getg(p(s,t)) = 0 only for specific
values ofs andt, which are determined by the envelope function

In this section, we consider the family of curves and its @pein the complex affine plang?.
The envelope function possesses a factorization

M

h(st) = r! hi(s,t)" (21)
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in C[s,t] with relatively prime, irreducible factors; and multiplicitiesk; € Z.,. We say thaty is a
properfactor of the envelope function if the image of the algebraicveh;(s,t) = 0 — considered in
the complex affine plan€? — under the rational mappirgdoes not degenerate into a single point.
Otherwiseh; is said to bémproper.

Any improper factor h; of the envelope function is characterized by the fact thatdinectional
derivative ofp along the tangent vectors bf = 0 is the null vector. Consequently, improper factors
can be found in two steps. First one computes the squarefpeesentation

h(st) = |M| hi(s,t) (22)

of the envelope function. Second, one finds the greatest comivisor of the two numerator poly-
nomials in

—(6h)(dsp) + (dsh) (ap) (23)

and the squarefree representaifoof the envelope function. This gcd is the product of all inpep
factors.
We consider theeduced envelope function

h(s,t) = ' ﬂM hi(s,t) (24)

h; is proper

which is obtained by eliminating all improper factors anduedant powers of proper ones. The
image of the algebraic cur\}@(s,t) = 0 under the rational mapping is said to be theproper part

of the envelope. Note that this may include complex comptntrat were not considered in the
previous discussion.

In addition to its proper part, the envelope consists of s\@ossibly complex) points, which
are obtained as the images of the algebraic cumvest) = O defined by improper factors under
These points are either contained in almost all curves dittmédy, or one of these curves degenerates
into this single point. We illustrate the situation by a sienexample.

Example 1 We consider the family of circles through the pai@t1)™ that touch the x-axis. It pos-
sesses the rational parameterization

C((s+)(st+1) (141"
(M) @
Its envelope function
h=({t+1)t—1)s(1+st) (26)

possesses the three improper factogs=ht +1, h, =t —1 and hy = 1+ st. The algebraic curves
hy = hp = hy = 0 are mapped to the three pointk,0), (—I,0) and (0,1). The first two points are
obtained as degenerate circles foet=l, while the third point is contained in almost all circlesh&
only proper factorh = hy = s is mapped to the envelope, which is the zero set of the Ip@gnomal
q(X,Y) =Y. It satisfies

(@op)(stiw(st) = (1+t?)ha(st)% (27)

Therefore, the reduced envelope function appears withiplicity 2 in qop.

We show that this observation is true in general:

9
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Theorem 1 Let p(s,t) = <\’,‘V((ztt>>,3’v((§tt)>) be a rational family of planar rational curves, with(a/t) #
0. Let gx) = 0 be the square-free implicit equation of the proper part & émvelope and let d be its

degree. There exists a bivariate polynomi&,¢) such that
(qop)(styw(st)? = g(st)h(st)*.

Proof 1 The proper part of the envelope consists of all popitst) satisfyingh(s,t) = 0and w(s,t) #
0. Each proper factor hdefines a (not necessarily real) component of the envelojrece & o
p)(s,t)) = 0 holds for the infinite number of points satisfyinddit) = 0, we conclude that;his a
factor of the numerator of gp.
We show that his a factor of the numerator ofgo p), provided that his proper. Since his
squarefree, it suffices to show that
[Ost(qop)](s0,to) =0 (28)

for all points (so, tp) € C2 satisfying h(so,to) = 0. Here g denotes the gradient with respect(t).

Almost all points satisfying; ey, tp) = 0 are regular (i.e. (Osth;)(So,to) # 0). We consider all
points satisfyingh;(so,to) # 0. Unless k(s,t) is a scalar multiple oft —tp), this covers almost alll
points on h(sp,to) = 0. For each one of them, there exists a local regular paranieaéon o —
(o,t(0)), whereo varies in a certain open neighborhood @fia the complex plan€. For almost
all points among them, the correponding local parametéiiaof the envelope — p(o,t(o0)) is
regular at g, i.e.

(G5P(0:1(0))) () = (O:p)(50t) + (AP} (50t) V() 2O, 29)

as the algebraic curvejh= 0 was assumed to be a proper component of the envelope fun8iiace
the algebraic curve g 0 covers all proper components of the envelope, we have that

0= [30p(01(0))] = (T (P(.10) () (Sot0) + (AP) (S0 to) V(). (30)

On the one hand, the vectdsp)(so,to) + (&pP)(So,to)t'(S0) is not the null vector, since the param-
eterization was assumed to be regul@9). On the other hand, the two vectof8sp)(so,tp) and
(ép)(so,to) are linearly dependent, ag&,to) = 0. Consequently,

0 = (Oxy@)(P(So,t0)) - (9sP) (S0 to) = (Txy@) (P(S0,t0)) - (4tP) (S0, o) (31)

which implies(28). The case whereg fis a scalar multiple of ttg can be dealt with similarly.

This result admits the following simple geometric intetpt®n: Consider the Jacobian embed-
ding p along with the implicit equation of the envelopgeAt regular intersection points with the plane
h = 0, the tangent plane of this embedding is orthogonal to thagi = 0. In three-dimensional
XY hspace, the equation(X,Y) = 0 defines a generalized cylinder which toucieat all points in
the planeh = 0, since the Jacobian embedding has vertical tangent plhees

4.3 Coupled method for approximate implicitization of envdopes

Theorem 1 motivates us to find the approximate implicit@atj of the envelope curve as an approx-
imate solution of the equation
(Qop)w™ = AR, (32)
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where bothq andA are unknown. More precisely, is another polynomial irgs,t) € | x J, the free
parametemis the degree off andw is the denominator gb.

The polynomialg approximates the implicit equation of the envelope, whikeauxiliary polyno-
mial A simultaneously approximates the factpin theorem 1. We compute an approximate solution
of (32) by minimizing the objective function

F= | (apst)wst™-A(sth(st)?) dist), (33)
that couples the compositiomo p with the envelope functiom. We will refer to A as coupling
function

Let g(x) be of degreem and A (s,t) of bidegree(ki, k2). After choosing basee (s,t) and 3(x)
of the bivariate polynomials of degree and bidegredk;,k,), respectively, we may represent the
unknown polynomials as

q(x) =cgB(x) and A(st)=cja(st). (34)

After substituting them into the objective function (33) amive at

F=| J(cTy)z, (35)
where
c:< Cq > and y= ( w(s,t)"B(p(s 1)) ) (36)
Cx —h(st)?a(st) /-

The minimizer of (35) subject tc||> = 1 can be found by applying SVD to the matrix

M=/ w'. (37)
IxJ
The first(m+ 1)(m+ 2)/2 entries of the solution vector are the coefficients of theragmating
curveqg = 0. Interpolation conditions (e.g., interpolation of pentan be incorporated by introducing
constraints on this part of the solution.

Theorem 2 Consider the rational family16) of rational curves. We assume that the denominator
w satisfiegw(s,t)| > ¢ for a positive constant, for all (s,t) € | x J. LetCT be the unit vector which
corresponds to the smallest singular valmgn of M, = 0 be the corresponding algebraic curve and
A be the coupling function, respectively. We consider thelepe function h and its zero set

A ={(s,t) el xJ: h(s;t) =0}.
Then

q 1)) <C :
(ngggf\q(p(s, )| < Cy/Omin,

where C is a positive constant which depends onlg,onJ and on the degrees pf q andA.

Proof 2 For any compact set S and any function$— R, let || f||» s be the supremum of f on S.
Due to|w(s,t)| > £ > 0 we have in particular,

g t = ¢ 00 . 38
(Sr{;gjf!qm(s, N| = l|Goplle.r -
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and moreover, there exists a positive constamt R such that
W ™o, < C. (39)

This leads to

1(GoPIW™W Moo < W oo ][ (G0 PIW o
ClI(Gop)Wleo - (40)

Recall that7#” C | x J and||h||. » = 0. Therefore
(@0 PIW" o = [ (@0 PIW™ — A0 < [ (@0 PIW™ — AEle 0. (41)

1Goplle, 7

IN

Since Ix J is compact, there exists a positive constart R which depends solely on the degrees of
the polynomials gp, A and on the intervals,lJ, such that

1(@oP)W" = AR w1 s <C [[(Gop)W™ — APJ2,5, (42)
where||.||2, < is the Lp norm of a function on k J. Since minimizes (35),
(H(ﬁop)\/\/’"—;\thszJ)zz Omin- (43)
Combining(38) and (40)+43) we get
(Sg;g;fld(p(s,t))l = [|Gopllesz < C/Onmin, (44)

where Ce R is a positive constant depending e, J and the degrees cpf,q,i.

Thus,all points of the envelope are contained in an algebraicatfts the approximating curve.
This geometric interpretation of the result is analogouth&case of weak approximate implicitiza-
tion.

We demonstrate the performance of our method by a first exampl

Example 2 Consider the family of curves which is shown in Fig. 3. Thisfiamily of bidegre€1, 3)
and the exact envelope is an algebraic curve of degree 10farhidy of linesp has been derived by
slightly perturbing the coefficients of the family of tanigeof a planar cubic.

Fig. 4 shows the results of two approximate implicitizasiomith conics (m= 2) and cubics
(m=3). In both cases we used bilinear coupling functions. Nog the exact solution (dashed
curve) possesses a self-intersection, which is not repediby the low-degree approximate solutions.

5 Piecewise approximate implicitization of envelopes

In principle, the presented method is capable of computiagkact implicit equation of the envelope.
However, the degrees needed for that are generally rattge. laFor example, if the familp is
described by a bivariate, quadratic polynomial, then theelepe functiorh is in the generic case of
bidegree(3,3). Thus the implicit equation of the Jacobian embedding cae lsamaximal degree
2-3-3 =18 and the same is true for the implicit equation of the emp&ldince we want to satisfy
gop = A2, both degrees of the coupling functidmeed to be 218—2-3 = 30.

In total we get%(19- 20) 4312 = 1151 degrees of freedom. Solving such a high degree prolslem i
computationally expensive, since it requires the constun@and SVD of a 115% 1151 matrix. For
practical purposes, a piecewise approximation by low degoeves is more useful.
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Figure 3: Example 2. A cubic family of lines
(grey), their control polygon and the region of in-
terest (dashed box) which is used for the approxi-
mate implicitization in Fig. 4.

5.1 The Algorithm

As before, we are considering a (rational) family of ratiooarves (cf. (16)). Without loss of gen-
erality we can assume that J = [0,1] x [0,1]. Let the degrees g be (n;,n,). We describep in
Bernstein-Bézier representation:

Y. Pijwij B (s)B}(t)
t = ni [ 9
Py %, Wij B (S)Bj* (t)

(45)

with BY(2) = (}) (1—2)*2" ¥ andpij € RZ,wij € R,0<i<ng,0< j < ny.

We formulate an algorithm which computes an approximatioth@ envelope curve by pieces of
algebraic curves. The segments of the curves are joinethconsly at their end points. Moreover,
if the envelope curve possesses different branches in gienref interest, then all of them will be
approximated.

The algorithm is based on two assumptionshon

(i) The envelope functioh is squarefree and does not possess improper factors.
(i) The zero set oh has no singularities ihx J.

The first assumption is needed for the stability of the nuoa¢rtomputations, which are per-
formed by using floating point numbers, and in order to useofidra 1. If improper factors are
present, then the algorithm can still be executed, but it ntygive optimal results.

As a possible extension of our approach, one might use aization ofh and gcd computations
in order to identify the reduced envelope functionThis extension, however, requires special tech-
niques for polynomials with coefficients given by floatingmicnumbers, cf. [15]. The degree of the
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without boundary conditions witG® boundary conditions

A\

Figure 4: Example 2. Approximate implicitization of the fdyrof lines from Fig. 3. In addition to
the family of curves (grey), the figure shows approximatiohshe envelopes for degrees= 2,3
and (ki,kp) = (1,1) (black, solid) and the exact envelopes (dashed). The sirolerk the segment
end points of the envelope in the region of interest. Theeasuim the right column interpolate these
points.

approximation segments and the degrees of the couplindgidmscare the free parameters. We denote
them withmand ks, ky), respectively.

The main idea of the approach is a recursive subdivisioneptirameter domainx J into four
(squared) subdomains. We use a minimum recursion deptb in order to control the detection of
small closed loops which may be part of the envelope. Thu kax in the parameter domain which
contains a part of the zero setlohas at most a diameter of 2/2.

The algorithm consists of four steps:

1.) Compute the Bernstein-Bézier representation of thvelepe function, denoting its coefficient
matrix withH.

2.) If the entries oH are either all positive or all negative, then no envelopetsxn this domain
(convex hull property) and the algorithm terminates. Othige continue with step 3.

3.) Compute all real intersection points,t) of h(s,t) = 0 with the boundaries of the considered
domain. Collect the coordinat@gs,t)) in a set¥.

4.) If || =2 andr < 0 compute an approximate implicitization of the envelopéeripolating the
points in. and using degrees and (ki, k) (cf. Section 4.3). Otherwise, subdivigeinto four
parts and apply the algorithm to each of them, usindl as their minimum recursion depth.

In our current implementation, the computation in step 3idggmed numerically. Alternatively
one might be using Sturm sequences or the variation dimitgsproperty of the Bernstein-Bézier
representation dfi to certify the number of intersections.

14



5.2 Discussion

The recursive subdivision stops, if after at lelasteps exactly two solutions af= 0 are found on the
boundary of the currently considered parameter domain. tBtiee previous assumptions dnthe
algorithm always terminates in the generic case. Problemsaucur if the zero set df incidentally
touches one of the boundaries of the boxes generated byll&/ision. In the generic case this does
not occur.

We aim to approximate always just one (part of a) branch oétivelope with one algebraic curve.
If closed loops of the zero set bfare contained in one subdomain, then each of them contsilaute
additional branch to the envelope. Since we perform at leastbdivision steps, all loops with a
diameter which is bigger than2y/2 are found. Loop detection is a well known problem and has
been extensively studied (see for example [20]).

There is no special treatment of singularities of the empaldUsually, after some subdivisions,
the approximation interpolates at least one point closkdaingularity. The segments are connected
at these points and thép-transition mimics the behavior of a cusp point.

In order to bound the region of each segment generated byprexdmate implicitization, we use
the convex hull of the control points which correspond todksociated box in the parameter domain.
These convex hulls necessarily intersect each other. Amgbesof this behavior is given in Fig. 5. It
shows some segments of an approximation of the family fragm &i The domains of these segments
intersect themselves in a quite large area and thus inteosloime ambiguity. However, this can often
be resolved by analyzing the location of the segment endsoin

Figure 5: Piecewise approximation of a part of the familynirBig. 3 (grey). Three approximating
segments (black, solid) and their domains (black, dashedslaown. Each domain contains two
associated interpolation points (circles) and the relepant of their segment is the arc in between
them. In order to improve the visibility, each of the threesanave been extrapolated slightly beyond
its boundary points.

In addition, by repeating the first two steps of the algorithrwithout further approximation —
we can identify smaller domains for each segment. This dseethe area of mutual intersection.
In a final step, we can use the control net of the Jacobian etiipéor each part of the parameter
domain. The projection of this control net to the plane 0 exactly gives the control net of the
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corresponding part of the parameter domain. Now we comp#tahree-dimensional convex hull
CH(p) of the control net of the Jacobian embedding. Due to its d&finiall points of the envelope
must be contained in the intersection of @hHiwith the planez= 0. This reduces the domain for each
approximating segment even further.

It may happen that single segments of the approximationistoasunconnected branches. So
far, no part of the algorithm prohibits an approximationhwseparate branches. In our experience the
unconnected, interpolating segments typically get coieaeafter some subdivision steps. However,
this issue is a common feature of most methods for approgimnaplicitization.

The values fok;, k, should depend on the value mfand a good choice for them is hard to make
in general. However, so far we experiended= ko = mgiving good results in our test cases.

5.3 Examples

We will illustrate the performance of the algorithm by selexamples. The algebraic curves were
plotted via a predictor-corrector method, using the irgéfion points (circles) as initial values.

Example 3 Offsets of a parabola. If the distance is chosen high enotlgh offset of a parabola
contains a “swallowtail” in one of its branches. This part thfe offset contains two cusps and one
self-intersection. In Fig. 6, the relevant part of an offaatl approximations with conics of different
subdivision levels are depicted. Furthermore, the coroesiing parameter domains are shown to
illustrate the subdivision process.

Example 4 WV-shaped curve. We used cubic splines and cubic coupliragidns to approximate a
rational family of rational curves of bidegre@®,2) (see Fig. 7). The subdivision clearly improves the
reproduction of singularities and gives connected segment

Example 5 Closed curve with cusps. Closed loops of the envelope maggoseveral cusps - Fig.
8 shows such an example. The considered rational familyreésus of bidegre¢2, 2) and quadratic
splines and coupling functions were used for the envelopecapnation.

Example 6 Envelope of circles. We approximated the envelope of a maximtransformation. Two
rational functions of bidegre€5,3) described the family of circles. Conic sections and bivaria
quadratic coupling functions were used (see Fig. 9).

6 Conclusions

We have shown that approximate implicitization can be aethpt compute the envelope of a family
of curves. Additionally we described an algorithm for coniipg a piecewise approximation of the
envelope with algebraic curves of chosen degree. The noatexkamples show that approximate
implicitization is well suited for the computation of engpk curves.

As a topic for future work, we will analyze the approximatiorder of the curves generated by
approximate implicitization of envelopes. Furthermore, ave currently working on an extension to
envelope surfaces.
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Figure 6: Example 3. Approximation of an offset of a parabdlde family of curves consists of
circular arcs with constant radius, which are centeredgakmparabola. In each row a piecewise
approximation with conicsni = 2,(k1,k2) = (2,2)) and their corresponding parameter domains are
shown. In addition, the zero set of the envelope functionléttgd. Each circle on the left side is
interpolated and corresponds to a diamond on the right. Tihiemam recursion depth is=0,1,2, 3,
respectively.
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Figure 7: Example 4. Approximate implicitization of an elogge curve consisting of several branches
with cubic curvesih = 3, (ki, ko) = (3,3)). The right side shows the corresponding parameter do-
mains and the zero set of the envelope function. Each brahttisocurve gives one branch of the
envelope. First rowr(= 1): Several segments are unconnected and the singulaitesot repro-
duced properly. Second row £ 2): Further subdivision gives connected segments and aroireg
approximation of the singularities.
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Figure 8: Example 5. Loops of envelopes usually containrsgeeisps. In this example the degrees
werem= 2 and(ky,k2) = (2,2), so the segments cannot contain singularities. lteft2): The cusps
are not represented very well, since the segment end pomte@far away. Rightr(= 3): After an
additional subdivision step some segment end points ase d¢ibthe cusps, so that the singularities
are approximated well.

Figure 9: Example 6. Piecewise approximation of the enelpgnerated by a medial axis trans-
formation with 53 segments using the degrees- 2 and (k,k2) = (2,2). The right picture shows
a enlarged version of the dashed region in the left one. Nmtalénse distribution of interpolation
points near the singularities.
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