
Horizontal Decomposition of Triangulated Solids

for the Simulation of Dip-coating Processes

B. Strodthoff a M. Schifko b B. Jüttler a

a Johannes Kepler University, Institute of Applied Geometry, Linz, Austria
b Magna Powertrain Engineering Center Steyr GmbH & Co.KG, St. Valentin, Austria

Abstract

In dip-coating processes a three-dimensional object, e.g.
an entire car body, is dipped into a liquid bath. In or-
der to simulate such processes, the space surrounding the
object is decomposed into the so-called flow volumes, for
which each intersection with a horizontal plane is con-
nected. At any time the liquid’s surface then has a unique
level within such a flow volume, which greatly simplifies
the simulation of the liquid. The decomposition into flow
volumes corresponds to the Reeb graph of the object’s
exterior (considered as 3-manifold with boundary) with
respect to the height function. This article presents an al-
gorithm which computes this decomposition for an object
represented as oriented triangular boundary mesh. First
critical vertices of the surface are identified, which include
the upper and lower ends of flow volumes. Using local
information about horizontal intersection planes near the
critical points, a sweep plane algorithm then constructs
the volume decomposition in a second step. It is shown
that the method can deal with realistic data.

1 Introduction

Car bodies or body parts in the automotive industry
are covered by several coatings, e.g. to prevent corrosion.
Those are often applied by electrophoretic dip coating [18],
where the objects are successively moved through tanks
of different coatings. Air bubbles may be created while
dipping an object into the liquid, and puddles of liquid
may remain when removing the object from the bath. It
is desirable, however, to achieve a uniform and complete
coverage of the surface. To ensure this, it is currently the
state of the art to build prototypes and perform the dip
coating. Afterward, the prototype is cut into slices to an-
alyze the coating’s quality, also in hidden areas. If surface
parts are detected where the dip coating has failed, the
car body has to be modified accordingly, e.g. by inserting
a small hole to release an air bubble.

Since this approach uses prototypes, tests cannot be
performed until a very late stage of the design process.
Each change of the car body design at this stage is ex-
pensive and exceedingly delays the development process.
Therefore a reliable simulation of the dip coating is desir-
able, as it allows not only optimizations of the diving path,
but also adaptations of the geometry in an early stage of

the design process.

This paper describes the geometric kernel of a dip-
coating simulation procedure, which analyzes specific
properties of an object’s surface to decompose the com-
putational domain. This has to be done frequently if the
mesh is rotated, therefore it is essential to use an efficient
algorithm. The decomposition serves as input data for a
simulation kernel, which computes the distribution of fluid
among the volume parts.

Objects in manufacturing processes are often described
by triangular surface meshes, mainly due to the needs of
data exchange. Indeed, triangular meshes are suitable for
merging components which are provided by different sup-
pliers, as they can be exported from any CAD-program.
The triangular boundary representation of a car consists of
up to 1010 triangles. We assume this triangulated solid to
be arranged in a halfedge data structure, where every tri-
angle can access its adjacent triangles, edges and vertices
in constant time. In the implementation, these halfedge
data structures are constructed from STL files exported
from CAD-programs.

The dip coating was so far mainly simulated using com-
putational fluid dynamics (CFD [37]) with the so-called
two-phase description. Theoretically, almost any detailed
description of the time-dependent diving process can be
calculated by CFD. However, according to experience in
industry, this method is not optimal, as it requires very
long computation times. Additionally, CFD simulations
are highly sensitive to the choice of boundary conditions.
This suggests considering alternative approaches to the
simulation.

In CFD and Finite Element Analysis, the computational
domain is usually divided into a large number of small
primitive volume parts, like tetrahedra or hexahedra (see
e.g. [19, 29, 31, 12, 40, 34, 28]). If the parts are suffi-
ciently small, computations can be simplified inside each
part without introducing substantial errors. In our appli-
cation, the main idea for improving computation times is
the use of fewer, larger volume parts. In order to preserve
accuracy, computations within these large volume parts
should no longer be approximated. Thus the simulation
of fluid inside a volume part needs to be relatively simple.

One approach ensuring this is a convex decomposition of
the computational domain: Within a convex volume part
a liquid’s surface is exposed to uniform pressure condi-
tions, such that the liquid will always be able to balance.

1



Therefore a unique filling height can be computed for a
volume part given the amount of contained liquid, tak-
ing into account only information about the volume part’s
geometry. Convex decompositions are computed e.g. by
sweep plane algorithms [10] comparable to the algorithm
presented here, by flooding algorithms where adjacent sur-
face triangles are collected for each patch until convexity
is violated [10, 17], or by repeatedly splitting the object
in areas of concavity [11, 3, 23, 21]. Such decompositions
consist of a large number of volume parts, which can be
reduced by allowing small concavities in the parts [41, 23].
However, these nearly complex decompositions still con-
tain more parts than necessary for our purpose.
Concave boundary parts or holes in a spatial area im-

pose many convex parts in the decomposition, often many
more than needed to achieve uniform physical conditions
as mentioned above. In an Alternating Sum of Volumes
[38, 39] decomposition, a spatial area is described by the
set-union and set-difference of convex volume parts. A
spatial area containing a hole thus is not segmented un-
necessarily, as the hole is represented separately. In certain
cases, however, concave boundary parts lead to violations
of the uniform physical conditions of a convex volume part,
which makes this approach inappropriate for our purpose.

In this paper, a new kind of decomposition of the com-
putational domain is introduced, which combines the pre-
viously described characteristics: Horizontal slices of the
volume parts are prescribed to be connected, which in-
duces the homogeneous physical conditions, avoiding over-
segmentation. Additionally the new volume parts, called
flow volumes, are defined such that they meet only along
horizontal boundary patches, which simplifies the interac-
tions between adjacent flow volumes.
These flow volumes are in some way monotonic: In the

planar case, a polygon is called monotonic with respect
to a straight line L if the intersection of the polygon with
any line orthogonal to L is connected [5]. As a general-
ization, we could call a spatial area (like the interior of
a polyhedron) monotonic with respect to a straight line
L if every intersection of the area with a plane orthog-
onal to L is connected. In this sense, flow volumes are
monotonic with respect to the z-axis. This form of mono-
tonicity, however, is even weaker than the concept of weak
monotonicity of polyhedra as described e.g. in [20], which
requires the intersection to be bounded by a simple poly-
gon.

Reeb graphs are an important concept in Morse theory
for gathering topological information. In Morse theory,
the topology of a manifold is analyzed using critical points
of a differentiable function f over the surface, the Morse
function [24, 25, 4]. A Reeb graph’s vertices represent
these critical points, its edges correspond to parts of the
manifold of which all points with the same f value are con-
nected (see [7] for an introduction). Applications of Reeb
graphs include shape abstraction [2, 6, 22] and recognition
[8, 36].
The flow volume decomposition motivated by the ap-

plication of dip-coating simulations corresponds to the
Reeb graph of the computational domain, considered as

3-manifold with boundary and using the height function
as Morse function. Each edge of this Reeb graph rep-
resents one flow volume. There exist several algorithms
for computing Reeb graphs (or the closely related con-
tour trees) for 3-manifolds. These algorithms use volu-
metric descriptions of the object, e.g. tetrahedral meshes
[9, 26, 15, 16, 35], or voxel based representations [30], and
they are able to deal with general Morse functions. In
the case of flow volumes, where the Morse function is the
height function, using a boundary representation is suf-
ficient and simplifies the computation. This is demon-
strated in our paper.

There exist also algorithms operating on surfaces. These
compute the Reeb graph of the surface, considered as 2-
manifold without boundary. As shown in Figure 1, the
Reeb graphs of the surface, the interior or exterior vol-
ume are in general different. Reeb graphs (or contour
trees) of a surface with respect to the height function are
typically computed by tracking intersection components
while sweeping the surface with a horizontal intersection
plane [32, 14, 6]. Similarly the surface can be dissected
into horizontal slices of a certain thickness, using refine-
ments until no topologically important features are lost
[2]. However, these setups typically use many horizontal
intersections. Other approaches [22, 9, 13, 16, 27] first
identify critical points, and then find connections between
them, which dramatically decreases the required number
of intersections. They compute only incomplete horizontal
intersections, if any.

(a) (b) (c) (d)

z

Figure 1: Reeb graphs with respect to the height function.
(a) Sample object: sphere with a bowl-shaped hole. (b) Reeb
graph of the surface. (c) Reeb graph of the solid’s interior
(shaded area). (d) Reeb graph of the solid’s exterior. In this
example the three Reeb graphs are different. The flow volumes
correspond to the edges in (d).

For computing flow volumes for an object represented
by a boundary surface mesh, we adapt algorithms for sur-
face Reeb graphs. Additional information about the rel-
ative spatial position of intersection polygons is required
in order to determine intersection polygons’ connections
through the computational domain. To this end, the ob-
ject is swept with a horizontal plane, computing global
intersections, but only in critical points where they are
needed for the flow volume computation. Between those,
intersection components are traced by monotone paths
similar to [16, 13].

2



2 Problem description

The geometric kernel of the dip-coating simulation decom-
poses the free volume, i.e. the volume outside the triangu-
lated solid, into the so-called flow volumes :

Definition 2.1. A connected part F of the three-
dimensional space is called flow volume for a given tri-
angulated solid if

• The boundary of F consists of triangles of the trian-
gulated solid and parts of horizontal planes on top
and bottom.

• F does not intersect the interior of the solid.

• Every horizontal slice of F is connected.

• F is maximal among all volumes satisfying the previ-
ous conditions.

Due to the third property in Definition 2.1 there can be
only one filling level within a flow volume without violating
physical laws. For example the inside and outside of a bowl
cannot belong to the same flow volume, because the filling
level inside the bowl might be different than the filling
level on the outside. On the other hand the inside of a
simple bowl is contained in one flow volume, as any liquid
in the bowl will balance such that a unique filling level is
achieved.
The last property makes sure that the computed vol-

ume parts are not too small, as otherwise arbitrarily small
volume slices would be allowed. Figure 2 shows the vol-
ume decomposition for a simple object. Note that flow
volumes need not be topologically simple, as they may
contain holes.

3
4

A

B

CD D E

F G HHHHH
IIIII

J

K

K

K

L

M

Figure 2: Decomposition of free volume. Left: A given object.
Right: Vertical cut through the object with the flow volumes
marked by letters. Flow volume H is an example for a flow
volume with holes (one hole for each pipe)

The decomposition of free volume into flow volumes is
unique and always possible. To visualize this, consider a
horizontal plane sweeping through the object from bottom
to top. Each connected area where the plane intersects free
volume corresponds to one flow volume. Whenever such an
area appears in the intersection plane, a new flow volume
is started, the disappearance of such an area from the
intersection plane marks the end of a flow volume. When
such areas are joined or separated, the corresponding flow
volumes are closed and new ones are started, as otherwise
the horizontal intersections would no longer be connected.

3 Overview of the algorithm

For the computation of flow volumes, a plane sweep al-
gorithm is applied. A horizontal plane is moved through
the object in direction of increasing z coordinates. Once
a spatial region has been passed by this sweep plane, the
decomposition of this region is completed. In order to
achieve this, the sweep plane carries a certain status, in
which it keeps track of intersection components, i.e. of
parts of the triangulated solid which intersect the plane in
one connected intersection polygon, and remembers which
flow volumes they belong to. This status does not change
continuously, but only in the so-called events.

The naive approach to the selection of events would be
to use each vertex of the mesh as event. In this setup
every change of horizontal intersections is detected imme-
diately, however at the price of considering a huge number
of intersections. It is rather obvious that not every vertex
needs to be considered, as a much smaller set of critical
points can be identified in which the only major changes
in the structure of horizontal intersections occur. These
critical points can be determined before starting the plane
sweep algorithm, and some local information about the
triangulated solid is collected for each of them, which is
valuable for the event handler. An update routine takes
care of the minor changes in horizontal intersections be-
tween successive events.

The sweep plane algorithm is specified as follows:

• Input: A list of events, sorted according to z-
coordinates.

• Output: The flow volumes, each containing sufficient
information for gathering its complete boundary.

• Status: A list of edges of the triangulated solid inter-
secting the sweep plane, one edge for each intersec-
tion component, which are called representative edges
(REs). The edges for intersection components con-
tained in a common flow volume form an edge group,
and each edge group contains a reference to the as-
sociated flow volume. The status is initialized by an
empty edge group.

• Events: The critical points of the triangulated solid,
equipped with additional local information.

• Event handler: adapts edge groups in the status and
generates part of the output in appropriate events.

• RE-update: The REs are updated by climbing along
the triangulated solid to the z-level of the next event.

It is summarized in the pseudocode shown in Algorithm
1.

Algorithm 1 computeVolumes(surface mesh M)

status ← empty List
eventList ← GenerateEvents(M) //see Algorithm 2
Sort eventList by increasing z-coordinates
for all events e in eventList do
Climb to the z-level of e
associateGroups(status,e) //see Algorithm 3
adaptStatus(status,e) //see Algorithm 4

end for

3



Using results from the following sections, the correctness
of the overall algorithm can be proved.

Theorem 3.1. The sweep plane algorithm computes the
correct flow volume decomposition.

The proof of will be presented in Section 6.

The remainder of this paper is structured as follows:
Section 4 introduces the critical points and describes ad-
ditional information which is collected for each of them to
form events. Section 5 thereafter explains how these events
are computed. In Section 6 the event handler is discussed
and Section 7 shows some examples. Runtime considera-
tions are presented in Section 8. We conclude with some
remarks on the implementation and further tasks in Sec-
tions 9 and 10.

4 Definitions and events

This section considers the critical points of the height
function on the surface of the triangulated solid, which
will turn out to be a good choice for the events of the
sweep plane algorithm. For ease of presentation, we ex-
clude meshes with horizontal edges. Later, we will address
this case in Section 9.

Definition 4.1. A vertex v of the mesh is a critical point
if

• v is a local extremum, i.e. a local minimum or maxi-
mum.

• v is a saddle point, i.e. the boundary polygon of the
vertex star of v intersects the horizontal plane through
v more than twice.

4.1 Subdivision of an intersection plane

A plane traversing the triangulated solid can be subdi-
vided into parts where it intersects the solid’s interior,
and parts where it intersects free volume:

Definition 4.2. Assume that all polygons forming the
intersection of the triangulated solid with a horizontal
plane p at height h are simple and without contact. These
polygons decompose p into connected areas called regions,
which form the subdivision S(h). A region is called filled
if p intersects the solid’s interior in this area, or empty if
p traverses free volume there.

When a horizontal plane sweeps the solid, its decompo-
sition changes mainly when passing critical points:

Lemma 4.3. Let p denote a horizontal plane at height hp.

• S(hp) is well defined if and only if p does not contain
a critical point.

• S(hp) changes only when p passes a critical point.

Proof. Horizontal intersection polygons meet exactly in
saddle points of the surface: If intersection polygons touch
in a point x, in total at least 4 polygon segments contain
x as endpoint. Each of them forms the boundary between

surface parts above and below p. Thus the boundary poly-
gon of the vertex star of x intersects p at least 4 times,
and x is a saddle point. The other implication follows
analogously.
On the other hand an intersection polygon collapses to a

point exactly if this point is a local extremum. This is true
if the triangulated solid fulfills some basic assumptions,
for example that points must not lie on more than one
surface. By splitting such points into several vertices of the
halfedge data structure, this condition can be eliminated.
This proves the first statement. Due to continuity of the

triangulated solid, the second statement follows directly
from the first one.

4.2 Marginal subdivisions

According to Lemma 4.3, the subdivision of a plane con-
taining a critical point is not defined, as intersection poly-
gons (and therefore also regions) may collide or collapse to
a point, and polygons need no longer be simple. Therefore
two slightly perturbed intersections are considered in this
case; see Figure 3.

Definition 4.4. For a height h the marginal subdivisions
are defined as follows:
S∗(h) := limǫ→0{S(h + ǫ)} is the set of upper regions at
h, and
S∗(h) := limǫ→0{S(h− ǫ)} is the set of lower regions at h.

S∗(h)

S∗(h)

Figure 3: Left: Vertical cut through a pipe with marked inter-
section height h. Right: Horizontal cut directly above and be-
low h; Empty regions are white, filled regions are shaded, black
lines show intersection polygons. The dotted lines mark points
on the polygons which collapse to the same physical point at
height h. Upper subdivision consists of one empty and one
filled region, lower subdivision contains two empty (inside and
outside pipe) and one filled region.

4.3 Local subdivisions

Consider the subdivision S of the horizontal plane through
a given vertex v. Only those intersection polygons in S

which contain v can be gathered conveniently by starting
polygons in v and tracing the triangulated solid. How-
ever, the sweep plane algorithm does not need more than
this information for a critical point v, as only the regions
touching v change while the sweep plane passes v. The
following operator describes the transition from the sub-
division of an intersection plane to a local subdivision,
which requires only this easily accessible information; see
Figure 4.

4



Definition 4.5. For a vertex v of the triangulated solid,
let Sv denote the set of all subdivisions of a horizontal
plane through v. The operator Lv : Sv → Sv maps a
subdivision to a local subdivision obtained by

• removing polygons which are not connected to v,

• deleting regions which neither contain v on the
boundary, nor on the inside, and

• extending the remaining regions such that a valid sub-
division is obtained again.

In order to distinguish it from its local version, the original
subdivision is referred to as global subdivision.

vv
S Lv(S)

Figure 4: Left: Global subdivision S of a horizontal plane
through a vertex v, three empty regions (two pipes and outside)
and two filled regions. Right: Local subdivision around v, One
empty and one filled region.

This function can be applied to the subdivisions defined
in Definitions 4.2 and 4.4:

Definition 4.6. Consider a vertex v at height hv. The
local (upper or lower) subdivisions around v are defined
as:

L(v) := Lv(S(hv))

L∗(v) := Lv(S∗(hv))

L∗(v) := Lv(S∗(hv))

4.4 Region Sets

In critical points, only marginal subdivisions are defined.
For efficiency reasons, only local versions of them are com-
puted, which serve as additional data for the sweep plane
algorithm.

Definition 4.7. The region sets of a critical point v are
the local marginal subdivisions L∗(v) and L∗(v).

For a maximum or minimum v, one region set consists
of one empty and one filled region, the other region set
contains only one filled or empty region. In the case of
saddle points, however, both region sets contain several
regions; see Figure 5.

4.5 Important critical points

Each empty region in an intersection plane corresponds to
a flow volume hit by this plane. Therefore critical points
with changes in the empty regions are distinguished from
critical points in which only filled regions change.

Definition 4.8. A critical point v is called important if
the number or connectivity of empty regions in the decom-
position of an intersection plane changes while it passes
the point. Otherwise v is called unimportant.

(a) S∗(hv)

S∗(hv)

L∗(v)

L∗(v)

(b) S∗(hv)

S∗(hv)

L∗(v)

L∗(v)

Figure 5: Region sets of critical points v at height vh on a bent
pipe. Vertical cut with marked intersection height, marginal
upper and lower subdivisions S∗(hv) and S∗(hv) and region
sets L∗(v), L∗(v). (a) A minimum below the solid’s interior:
one empty lower region, one empty upper region and a filled
upper region consisting of only one point. (b) A saddle point
where one empty region splits up while the intersection plane
passes the saddle point.

In Figure 5, the minimum presented in (a) is unimpor-
tant, while the saddle point in (b) is important. The region
sets of a critical point determine whether it is important
or not:

Lemma 4.9. A critical point v is unimportant if its region
sets contain exactly one upper and one lower empty region.
Otherwise v is important.

Proof. If a region set of a critical point v contains more
than one empty region, each of them is merged with an-
other empty region of the same region set. Otherwise the
surface parts bounding the associated free volumes would
touch only in the point v, which is excluded by similar
argumentations as in the proof of Lemma 4.3. Thus only
region sets of important critical points may contain several
empty regions. If, on the other hand, one region set of v
contains no empty regions, then v is an important mini-
mum or maximum. So each region set of an unimportant
critical point contains exactly one empty region.
The other implication follows directly from the defini-

tion of important critical points, as the number or con-
nectivity of empty regions in a horizontal plane cannot
change in a critical point with exactly one upper and lower
region.

The important critical points are helpful for construct-
ing the volume decomposition:

Lemma 4.10. A connected volume part fulfilling the first
two properties of Definition 2.1 is a flow volume if and
only if it contains important critical points exactly on its
top and bottom end.

Proof. Consider a volume part V that fulfills the assump-
tions of this lemma.

5



The third property (connected horizontal slices) of Def-
inition 2.1 is equivalent to the absence of important criti-
cal points inside V : The region sets of an important sad-
dle point inside V contain several upper or several lower
empty regions. Between its upper and lower end, V is only
bounded by the triangulated solid. So all these empty re-
gions would have to be contained in a slightly shifted slice
of V , which thus would not be connected. For an impor-
tant extremum, one region set contains exactly one region,
which is filled. As V is assumed to be connected, a slice of
V at this height has to contain another empty region, or V
would not extend beyond this height. So again there is a
slice of V slightly above or below the important extremum
which is not connected. Thus a flow volume cannot con-
tain an important critical point. For the other implication,
assume V has a slice which consists of several empty re-
gions. As V is spatially connected, there has to be an
important saddle point in V where these empty regions
are merged.

The fourth property (maximality) of Definition 2.1 cor-
responds to the presence of important critical points on the
volume part’s ends: If horizontal slices of V are connected,
V corresponds to one empty region r in an intersection
plane. Maximality of V is equivalent to V starting and
ending at heights where r disappears, splits or is merged
with other empty regions. Due to Lemma 4.3, this hap-
pens in critical points, and those critical points in which
empty regions change are per definition important.

Remark. The important critical points defined here corre-
spond to component-critical points (as used in [13, 7]) of
the object’s exterior, seen as 3-manifold with boundary.
We distinguish important and unimportant critical points
with respect to the height function using only the surface
of the object (see Section 5). In the case of a general
Morse function, volumetric representations (e.g. tetrahe-
dral meshes) are required in the definition and identifica-
tion of component-critical points.

4.6 Events

Every important or unimportant critical point induces an
event:

Definition 4.11. An event for the sweep plane algorithm
is a critical point v with its region sets L∗(v) and L∗(v).

The list of events is sorted according to z coordinates.
Critical points at the same z coordinate form a single event
if they are connected by intersection polygons, otherwise
they can be dealt with in an arbitrary order.

5 Computation of events

The critical points of the triangulated solid can easily be
identified by considering their incident halfedges. Now the
aim is to compute the region sets for these critical points.

5.1 Oriented intersection polygons

The polygons inducing the local decomposition of a plane
through a critical vertex v are computed by tracing the
intersections along the surface, starting in v. For deter-
mining whether a region is filled or empty, the intersection
polygons are computed with a certain orientation.

Definition 5.1. An intersection polygon is oriented such
that in the intersection plane an empty region touches the
polygon on the left, and a filled region on the right-hand
side (if viewed from above).

Polygons are oriented using the orientation of the solid’s
triangles: starting in a given vertex v, an oriented inter-
section polygon is started through each incident triangle
in which the predecessor of v lies below the successor of v;
see Figure 6.

+

+
+
+

−−

− −a b

c

Figure 6: Oriented intersection polygons in a horizontal plane
through the saddle point in Figure 5.b. In the critical point
in the middle, incident edges above the intersection plane are
marked by +, those below by −. The arrows indicate the
orientation of the incident triangles, so here the face normal
points away from the viewer. The pictured triangles are those
in which oriented intersection polygons are started.

In order to determine the regions of the subdivision,
the oriented polygons are sorted such that each polygon
knows its surrounding and surrounded polygons. Then
empty regions are located inside each counter-clockwise
oriented polygon, and outside the outermost polygon if it
is clockwise oriented.

5.2 Marginal intersection polygons

The region sets of a critical vertex contain marginal re-
gions, so a similar concept is needed for intersection poly-
gons:

Definition 5.2. Intersection polygons forming bound-
aries of marginal regions are called marginal polygons. As
for regions we distinguish between upper and lower poly-
gons.

In a saddle point like in Figure 5.b, the sets of upper
and lower polygons contain the same points. However, all
points are united in one lower polygon (which is no longer
simple), while the set of upper polygons consists of two
polygons forming the boundaries of the two upper empty
regions.

Marginal intersection polygons are computed without
applying limiting processes: When a polygon q meets a

6



saddle point, it has several possibilities where to con-
tinue. Due to the orientation of q, the surface goes up
on the right-hand side, and down on the left-hand side of
q (viewed from the direction of face normals). So a lower
polygon chooses the leftmost valid possibility in order to
remain on the same lower region, whereas an upper poly-
gon chooses the rightmost valid possibility.
In Figure 6, for example, when a lower intersection poly-

gon meets its start point (the critical vertex) coming from
a, it continues toward b along the large lower empty region.
On the other hand an upper polygon will try to continue
along the upper empty region in direction c where it was
started, and thus terminate there. In the figure the rising
incident edges appear on the right-hand side of the poly-
gons as the intersection plane is viewed from above, while
the face normal vectors point down.

5.3 Summary and algorithm

Summing up, we distinguish important and unimportant
critical points v using their region sets, i.e. by analyzing
the horizontal intersection polygons which contain v; see
Algorithm 2.

Algorithm 2 collectEvents(surface mesh M)

eventList ← empty list
for all vertices v ∈M do

if v is critical then
e← new event induced by v

trace horizontal polygons starting in v

determine region sets and store them in e

push e to eventList
end if

end for

6 The event handler

For a given event, i.e. a critical point v with its region
sets, the event handler first marks those edge groups in the
sweep plane’s status whose associated flow volumes con-
tain v, and associates them with empty regions in L∗(v).
If v is unimportant, the unique (according to Lemma 4.9)
marked edge group is adapted. Otherwise, the flow vol-
umes corresponding to the marked edge groups are closed
and reported as output, and a new flow volume is created
for each empty region in L∗(v). Additionally the marked
edge groups are replaced by new groups corresponding to
the new flow volumes. In the following two sections we
will consider these operations in more detail.

6.1 Associating lower regions with edge

groups

Each lower empty region r is associated with the edge
group which represents the corresponding global lower re-
gion in the status.
The region sets of a minimum v contain exactly one

lower region r. If r is empty, the corresponding RE-group

has to be identified. An empty region is constructed for
each RE-group by computing oriented intersection poly-
gons starting in the edges of the group. If such a region
contains the minimum v, the edge group is associated with
the lower region of v.

A saddle point or maximum v has to be hit by an in-
tersection component represented by an edge in the sweep
plane’s status. So here an edge group is associated with a
lower empty region r of v if at least one edge of the group
intersects a polygon bounding r. A slightly more elabo-
rate procedure, which exploits the intersection polygons’
orientation, has to be applied if an edge of the status di-
rectly hits the critical vertex itself, as otherwise all lower
regions of v might be identified in this case.

For an event e the algorithm is summarized in Algo-
rithm 3.

Algorithm 3 associateGroups(status,e)

if e is no minimum then

for all lower empty regions r ∈ L∗(e) do
for all edge groups g ∈ status do
if r is hit by an edge in g then

associate r with g

continue with next region
end if

end for

end for

else if e is an unimportant minimum then

r ← the unique lower empty region of e
for all edge groups g ∈ status do
rg ← empty region computed from g

if rg contains e then

associate r with g

do not check further edge groups
end if

end for

end if

Its functionality is described in the following Lemma.

Lemma 6.1. Algorithm 3 correctly associates edge groups
with lower regions of an event.

Proof. The global lower subdivision S∗(h) forms a decom-
position of the intersection plane. A minimum v at height
h is not reached by lower intersection components, so v has
to be contained on the inside of exactly one global lower
region rg. If rg is empty, v is an unimportant minimum
(Fig. 7.b). By constructing global empty regions from
the edge groups in the status, the event handler correctly
identifies rg. Otherwise, i.e. if rg is filled, no associations
have to be established. This is the case if also the unique
lower region of v is filled, i.e. if v is an important minimum
(Fig. 7.a)

The boundary of the lower empty regions of a saddle
point (Fig. 7.c) consists of lower polygons through v. The
status contains an edge through every lower intersection
polygon, so each lower region is hit by an edge of the sta-
tus. On the other hand, since each edge group represents

7



one flow volume, i.e. one empty region in a lower intersec-
tion, every lower region is hit by exactly one edge group.
Thus the event handler marks exactly one edge group for
each lower region.

(a) (b) (c)

Figure 7: Different critical points (black dots), the lower
marginal polygons and possible representative edges of the sta-
tus at the respective height (black arrows). Saddle point (c)
is hit by a lower polygon, important (a) and unimportant (b)
minima are not.

6.2 Update of the sweep plane’s status

When adapting the sweep plane’s status, important and
unimportant critical points are handled differently.
In an important critical point v, flow volumes are started

or closed, according to Lemma 4.10. Since the generated
flow volumes are required to know the global empty re-
gions forming their upper and lower end, it is necessary
to add the bounding polygons of the global regions that
do not touch v to the localized subdivision: Some edges of
the associated edge group of a lower empty region r might
not hit bounding polygons of r. Starting from those edges,
oriented intersection polygons are computed and added to
r. Then each polygon added to a lower empty region of
v is also added to the upper region containing it. Finally,
edge groups associated with lower regions of v are removed
from the status and their corresponding flow volumes are
closed. For each upper empty region r of v, an edge group
g is added to the status. The group g contains an edge
passing through each bounding polygon of r and it is as-
sociated with a new flow volume f .
In an unimportant critical point v, no re-grouping of

edges in the status is necessary, merely the edge group
g associated with the unique lower empty region of v is
adapted: Edges hitting lower polygons through v are re-
moved from g and replaced by one edge for each polygon
bounding the unique upper empty region of v.
The algorithm for the status update in an event e is

summarized in Algorithm 4.
The following Lemma summarizes the functionality of

the event handler.

Theorem 6.2. The event handler updates the status cor-
rectly and generates the desired output.

Proof. According to Lemma 6.1, the event handler cor-
rectly associates lower regions with edge groups. Edge
groups whose corresponding flow volumes do not touch
the critical vertex are not associated with any lower re-
gions, and therefore left unchanged. In the other edge
groups, those edges intersecting lower polygons through v

Algorithm 4 adaptStatus(status,e)

if e is unimportant then
r1 ← the lower empty region of e
g ← the associated edge group of r1
r2 ← the upper empty region of e
adapt edge group g as described in Section 6.2

else

for all lower empty regions r ∈ L∗(e) do
g ← the associated edge group of r
add polygons to r starting from edges in g

//see Section 6.2
f ← the associated flow volume of g
set upper end of f to r

report f
remove g from status

end for

for all upper empty regions r ∈ L∗(e) do
add polygons from lower regions to r

//see Section 6.2
f ← new flow volume starting in r

g ← new edge group with edges through r

associate g with volume f

insert g in status
end for

end if

are replaced by edges through upper polygons through v,
which accounts for the changes in the intersection compo-
nents. The remaining edges are left unchanged in the case
of unimportant critical points, or they are moved to the
correct new edge groups when treating important critical
points, so no intersection components are lost.
The correctness of the output follows from Lemma 4.10:

The idea of tracing empty regions while moving the sweep
plane makes sure that the computed volume parts ful-
fill the first two properties in Definition 2.1. Since the
computed volume parts additionally start and end in
important critical points, they are flow volumes due to
Lemma 4.10.

We are now ready to prove the main result of our work.

Proof of Theorem 3.1. The lowest vertex of the triangu-
lated solid is always a minimum, representing the lowest
event. So the sweep plane’s status is properly initialized
by an empty edge group, representing the free volume be-
low the object.
According to Lemma 4.3, intersection components

change only in critical points. Thus it is always possi-
ble to climb along intersection components to the height
of the next event, as no component disappears between
successive events. Furthermore an edge is found on every
intersection component slightly below the next event, as
intersection components do not appear or split between
successive events. So the update routine does not destroy
the validity of the sweep plane’s status.
Finally, according to Theorem 6.2, the event handler

correctly adapts the status and generates the desired out-
put.

8



7 Results

The presented algorithm has been implemented in C++
using the computational geometry algorithms library
(CGAL) [1] and tested on a PC with 2.66GHz and 8GB
memory.

We decomposed a watertight surface mesh of the Stan-
ford bunny in Figure 8(a), consisting of 71 000 triangles.
Since our algorithm decomposes the exterior of an ori-
ented surface mesh, it was applied to a mold of the bunny
as shown in Figure 8(b). The computed decomposition
consists of 307 flow volumes. Especially on the base of the
bunny many small flow volumes arise due to oscillations
of the surface mesh resulting from closing the holes there.
The significant flow volumes are displayed in Figure 8(c).
The computation took less than one second.

As second example, the algorithm was applied to the
watertight Rolling Stage model with a resolution of 40 000
triangles. The object’s exterior, which would be relevant
for dip-coating simulation, was decomposed into 19 flow
volumes in less than half a second; see Figure 9.

(a) (b)

(c)

*

Figure 8: (a) Stanford bunny. (b) Mold of the bunny. (c)
Computed flow volumes when applying our algorithm to the
mold. The flat volume marked by an asterisk (*) is due to
the fact that the upper part of the bunny splits into three
parts: the second ear splits from the head slightly above the
first, thereby creating one very flat flow volume in between. A
similar phenomenon causes the small volume at the tail.

The shape presented in Figure 2 consisting of 28 000
triangles was processed in 0.06 seconds. The object in
Figure 10 consists of 18 copies of a variation of this shape,
arranged horizontally with intersections. This new ob-
ject was triangulated in different resolutions ranging from
30 000 to 3 000 000 triangles. The resulting meshes were
decomposed into 310 flow volumes within 0.5 to 5 seconds;
see also Section 8.2. Thus, our algorithm compares favor-
ably with existing algorithms for the computation of Reeb
graphs of 3-manifolds with boundary, although the algo-
rithms are not directly comparable since they use differ-
ent input (surface/volumetric mesh) and produce different
output (Reeb graph of interior/exterior of the solid): We
process the mesh of 3 million triangles within 5 seconds,
while the state-of-the-art algorithm presented in [35] pro-
cesses an object of similar complexity, given as mesh of
3.5 million tetrahedra, in 7.8 seconds.

Finally, our algorithm has been tested successfully on
several real geometries, including two complete car bodies
(see Section 8.3).

Figure 10: Test object, 455 critical points and 310 flow volumes
are found.

A

G

R

L

E

J

M

Q

S

O

I

C
F

H

N

K

P

D
B

A

D E
F

G

J

O
R

Q

S

M

I

L

C

K

P
N

H

B

(a) (b) (c)z

Figure 9: (a) Rolling Stage model taken from the AIM@SHAPE Shape Repository, displayed with a representative horizontal
cut. (b) Schematic view of the volume decomposition, with letters denoting the flow volumes. Two flow volumes are created
at the lower end of each hole, one inside the hole (shaded) and one on the unbounded exterior of the object. This is the case
e.g. at the saddle point on the right-hand component of the displayed horizontal cut in (a), where flow volumes K and L are
created. At the upper end of each hole, one unbounded volume is created, like at the saddle point near the left-hand component
of the displayed cut, where volume J starts. (c) Volume graph visualizing the connectivity between flow volumes.

9



8 Computation times

The analysis uses the following characteristics of input
data:
n . . . Number of triangles in the triangulated solid
m . . . Size of longest horizontal intersection polygon
p . . . Maximal length of a path
e . . . Number of events
k . . . Maximal number of polygons in an intersection
l . . . Maximal number of horizontal polygons passing

a critical point
All these quantities depend on the geometry of the solid,
but only n, m and p depend on the triangulation.

8.1 Theoretical results

The presented algorithm extensively uses planar polygons.
The computational complexity of the construction of poly-
gons, as well as some basic computations (like testing the
position of a point relative to a polygon), is proportional
to the size of the polygon.

Computation of events

Critical points can be identified in O(n) time, as a small,
constant amount of work arises for each vertex, and the
number of vertices is proportional to the number of tri-
angles in the mesh. For computing region sets of a
critical vertex, at most l intersection polygons are com-
puted, taking O(lm) time. Sorting those takes O(l log l)
comparisons of complexity m. Finally the events are
sorted according to z-coordinates in O(e log e) time. So
the total time needed for the computation of events is
O(n + elm+ elm log l + e log e).

Event handler: Associate lower regions with edge groups

The lower polygons of a saddle point may contain l poly-
gons, which are tested for intersections with at most k

REs in O(klm) time. When handling an unimportant
minimum, at most k intersection polygons are computed
from REs, and the position of the critical point relative to
these polygons is determined in O(km) time. An impor-
tant minimum on the other hand causes no effort in this
step. So in total, for all events, the computational com-
plexity of the first step of the event hander is O(eklm).

Event handler: Adapt status

In an unimportant event, merely at most l REs are re-
moved from or added to the status. In an important event,
at most k polygons are built for globalizing the critical
point’s lower regions. Each of them is tested against the
at most l upper polygons to determine which upper region
it belongs to. So this step of the event handler in total also
takes O(eklm) time.

RE-update

After each event, at most k REs are updated, which takes
O(p) time each. So the RE-update is in total propor-
tional to ekp. Adding up, the sweep plane algorithm takes
O(eklm+ ekp) time.

Heuristic estimates

For simplifying practical analysis, the previous estimates
can be slightly simplified by heuristic considerations. In
the complexity estimate for the computation of events,
the term log e is typically much smaller than the maxi-
mal polygon size m, simplifying the estimate to O(n +
elm log l). In the estimate for the sweep plane algorithm,
the maximal path length p typically will not outweigh
the maximal polygon size m, reducing the estimate to
O(eklm). For the total computation time, log l can obvi-
ously be estimated by k, leading to an overall complexity
of O(n + eklm). Section 8.3 indicates that neglecting the
O(n)-term still leads to reasonable estimates in general
cases.

8.2 Dependence of computation time on

triangulation

Only three of the quantities considered in the last section
depend on the triangulation. One of them, the maximal
path length, does not appear in the heuristic complexity
estimate. The influence of the remaining two quantities,
namely n and m, on the computation time, can be visual-
ized by considering the same object in different triangula-
tions. This has been done for the object shown in Figure
10 with triangulations using between 30 000 and 3 000 000
triangles.

Obviously the total number of triangles n and the max-
imal polygon length m are correlated. Since m is the com-
plexity of a (one-dimensional) line on a (two-dimensional)
surface of complexity n, a dependence similar to m∼√n
can be expected. Figure 11 confirms this estimate for the
test case.

1 000 000 2 000 000 3 000 000

2000

4000

6000

8000

m(n)

n

Figure 11: Dependence of polygon length m on triangulation
size n in test example. The plotted best approximate function
is given by m(n) = 4.8

√

m.

Now consider the influence of n and m on the computa-
tion time for determining events, te, and for the sweep
plane algorithm, ts. According to theoretical analysis,
te(n,m) = c1n + c2m and ts(m) = c3m with constants
c1, c2, c3. Since m can be expressed by n with satisfy-
ing accuracy in this example, the best approximate func-
tions for te and ts can be expressed as functions of n

for simplifying visualization, i.e. te(n) := te(n,m(n)) and
ts(n) := ts(m(n)), using the previously fitted function
m(n). According to Figure 12 the data obtained for te
and ts complies with the theoretic predicates.

10



èèè
è
è

è

è

è

è

´́́
´
´
´

´

´

´

1 000 000 2 000 000 3 000 000

0.5

1.0

1.5

2.0

2.5
te(n,m(n))
ts(m(n))

seconds

n

Figure 12: Computation times depending on triangulation size
n. For small n, the O(m) = O(

√

n)-term in te and ts dominates
the computation costs, for larger n it is outweighed by the
linear O(n) term in te.

8.3 Dependence of computation time on

geometry

The algorithm has been tested on 12 real geometries of dif-
ferent size and complexity, including various parts of car
bodies and two complete car bodies, see Table 1. In order
to protect the commercial interests of ECS’ customers, pic-
tures of the car bodies and body-parts cannot be included
here.
When considering varying geometries, all input quanti-

ties have to be taken into account. To validate the (heuris-
tic) theoretical results, an at most linear dependence of the
computation times te and ts on the variables

ye := e lm log l

ys := e k l m

has to be shown. As hinted in Section 8.1 the O(n) term is
omitted, as it turns out not to exhibit significant influence.
Figure 13 shows doubly logarithmic plots for these cases.

9 Implementation remarks

We conclude with some comments on the implementation
of the algorithm.

Shortened intersection polygons

To avoid computing and storing all intersection points
twice, for upper and for lower polygons, one could termi-
nate polygons when they meet their start point for the first
time. These shorter polygons can then be lower and upper
polygons at the same time. However, the full marginal
polygons are needed for the construction of region sets,
such that connections between the short polygons have
to be determined. Especially in cases where intersection
polygons contain several critical points, this leads to some
inconvenient cases. Anyhow these shorter polygons are
used in the implementation.

Horizontal areas in the triangulated solid

In the definition of events, all vertices have been con-
sidered separately. However, the triangulated solid may
contain horizontal surface patches, which may be critical
without containing any critical vertices. These horizontal
areas require special treatment at different stages of the
algorithm, like in the definition and computation of events

and horizontal intersection polygons, or when climbing
along the surface during the RE-update. It would be pos-
sible to eliminate horizontal edges and areas by applying a
small rotation to the object. In the context of dip-coating
simulations, however, it is highly desirable to obtain pre-
cise information about them in order to correctly identify
the connections between flow volumes. Therefore we fully
implemented handling the horizontal areas. The details,
which are omitted here, can be found in [33].

10 Further tasks and future work

Besides the construction of the actual flow volume decom-
position, some additional information is required for the
simulation of dip coating processes.

Capacity of flow volumes

For the simulation of dip coating processes the capacity of
each flow volume is required. Using Gauss’ theorem the
capacity of a flow volume can be computed by evaluating
a simple formula for each surface triangle bounding the
volume. The computation of volume capacities is there-
fore linear in the number of triangles of the mesh. For
determining the bounding triangles, each flow volume re-
members all edges which have, at some time, belonged to
the associated edge group in the sweep plane’s status. As
there are representative edges on every intersection com-
ponent inside a flow volume, all triangles on the flow vol-
ume’s boundary can be identified by considering adjacent
triangles of those REs within the volume’s z-bounds.

Construction of a volume graph

The sweep plane algorithm constructs the flow volumes
forming the decomposition of free volume. These flow vol-
umes need to be connected to a geometry graph, which
links each flow volume v to the volumes directly above
and below, which are only separated from v by a horizon-
tal plane. To this end every important critical point stores
the volumes reaching it from below and from above. Usu-
ally each lower volume is connected to each upper volume
of a critical point. If a critical point has several lower and
several upper volumes, it is however possible that some
lower volumes are only connected to certain upper vol-
umes and vice versa.

Flow paths

So far, a volume graph was constructed, where each vol-
ume knows its direct neighbors on top and bottom. How-
ever, another important question arises in the simulation
of a dip-coating process: If a certain flow volume is filled
up, which other flow volumes will be filled next? Here of-
ten the liquid will flow or drop through several other flow
volumes until it reaches a local minimum. Which flow
volumes exactly are influenced if one flow volume starts
overflowing cannot be determined from the volume graph;
see Figure 14.
Thus, in order to find these flow paths, liquid leaking

from an overflowing volume has to be followed along the
triangulated solid in gradient direction. If a saddle point
is met which allows several further flow paths, all of them

11



model n m k l e v ye ys te ts

part 1 15 416 501 10 10 25 34 2.88 105 1.25 106 0.07s 0.01s

part 2 15 894 522 8 6 68 11 3.82 105 1.70 106 0.15s 0.01s

part 3 26 282 761 37 23 14 54 7.68 105 9.07 106 0.10s 0.03s

part 4 29 906 761 7 7 35 24 3.63 105 1.31 106 0.10s 0.01s

part 5 47 514 699 13 10 120 65 1.93 106 1.09 107 0.20s 0.07s

part 6 47 582 2009 32 28 37 37 6.94 106 6.67 107 0.49s 0.06s

part 7 89 396 535 3 4 38 1 1.13 105 2.44 105 0.08s 0.01s

part 8 125 050 630 6 4 58 7 2.03 105 8.77 105 0.11s 0.01s

part 9 145 210 872 16 12 243 75 6.32 106 4.07 107 0.50s 0.15s

part 10 177 140 1983 54 6 1614 784 3.44 107 1.04 109 2.75s 5.14s

car 1 1 080 814 6369 116 9 11 247 6 455 1.42 109 7.49 1010 39.19s 114.13s

car 2 1 300 202 4501 148 17 14 361 8 064 3.11 109 3.62 1011 43.84s 175.64s

Table 1: Computation time results for different real examples, with v denoting the number of computed flow volumes, and the
other variables defined as before. The last two examples are complete car bodies. In part 7, l appears to be greater than k,
which is caused by different ways of storing and counting the polygons; see Section 9. Only in the large examples there is a
significant difference between l and k.

106 107 108 109

0.01

0.1

1

10

100

106 107 108 109 1010 1011

0.01

0.1

1

10

100

te (in seconds) ts (in seconds)

ye ys

Figure 13: Doubly logarithmic plots of computation time for determining events and for the sweep plane algorithm, depending
on compound input variables ye and ys. In both cases the points (y, t) lie near a line with slope 1, which confirms linear
dependence of the computation times on the estimated variables. Since the estimates y are rather pessimistic, the slopes of the
computation times are actually smaller than 1.

need to be considered. If a point is reached where the liq-
uid detaches from the surface and starts falling through
free volume, the surface triangles of the respective flow
volumes have to be searched to find the point where the
liquid hits the surface again. These procedures are not
complicated in principle, but require careful implementa-
tion.

A
A

B
B

C CD DE E

F FG G

Figure 14: Visualization of flow paths: the volume graph
(right) is symmetric, it does not reveal where liquid goes after
overflowing volumes D or E.

Rotating mesh

This paper considers the volume decomposition and dip-
coating simulation for a stationary triangulated solid. The
simulation, however, is supposed to be able to rotate the
object while moving it through the different baths. This
rotation is approximated by discrete angular steps. Each
of them can be handled like the stationary case, i.e. one
can compute a volume graph and afterward balance liquid
surfaces by the simulation kernel consecutively for each
angular step. For more advanced versions of the simula-
tion, it would, however, be preferable not to compute the
complete volume graph for each angular step separately,
but to find a way of reusing information of one volume
graph for the construction of the next graph, at least in
areas of the surface where no major changes occur in the
structure of the graph.

In any case the filling levels derived for one angular step
have to be carried over to the flow volumes of the next an-
gular step. One approach to this is to freeze the liquid
during the rotation, i.e. to mark positions of the surface
where it is touched by liquid before rotation, and rotate

12



these positions with the mesh. After the rotation these
blocks of frozen liquid are distributed to the new flow vol-
umes containing the respective surface triangles. When
they are defrosted, liquids should not simply be flowed
to the bottoms of their new containing flow volumes, but
rather something like flow paths has to be used in order
to allow liquids to move appropriately through the new
volume graph.

Conclusion

Motivated by an application to the simulation of the dip-
coating process of automotive parts, we described an al-
gorithm for automatically decomposing triangulated solids
into flow volumes. These volumes correspond to the edges
of the Reeb graph of the volume’s exterior (considered
as manifold with boundary) with respect to the height
function. Since no inner extrema and saddle points are
present, it is possible to generate this segmentation solely
by analyzing the boundary of the triangulated solid. We
designed a sweep plane algorithm which uses local infor-
mation about horizontal intersections near critical points
of the height function to construct the volume decompo-
sition. As demonstrated by the examples, this algorithm
is suitable for realistic data in automotive applications.

Acknowledgements This work has been supported
by MAGNA POWERTRAIN Engineering Center Steyr
GmbH & Co.KG. The authors would like to thank the re-
viewers for their comments which have helped to improve
this paper.

References

[1] Cgal, Computational Geometry Algorithms Library,
http://www.cgal.org.

[2] M. Attene, S. Biasotti, and M. Spagnuolo. Shape
understanding by contour-driven retiling. The Visual
Computer, 19:127–138, 2003.

[3] C. Bajaj and T. Dey. Convex decomposition of poly-
hedra and robustness. SIAM J. Comput., 21(2):339–
364, 1992.

[4] T. F. Banchoff. Critical points and curvature for em-
bedded polyhedral surfaces. Amer. Math. Monthly,
77(5):pp. 475–485, 1970.

[5] M. Berg, O. Cheong, M. Kreveld, and M. Overmars.
Computational Geometry: Algorithms and Applica-
tions. Springer, 2008.

[6] S. Berretti, A. Del Bimbo, and P. Pala. Partitioning
of 3D meshes using Reeb graphs. In Proc. Conf. on
Pattern Recognition, pages 19–22. IEEE Computer
Society, 2006.

[7] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falci-
dieno. Reeb graphs for shape analysis and applica-
tions. Theoretical Computer Science, 392(1-3):5–22,
2008.

[8] S. Biasotti, S. Marini, M. Spagnuolo, and B. Fal-
cidieno. Sub-part correspondence by structural de-
scriptors of 3D shapes. Computer-Aided Design,
38(9):1002–1019, 2006.

[9] H. Carr, J. Snoeyink, and U. Axen. Computing con-
tour trees in all dimensions. In Proc. Sympos. on
Discrete Algorithms, pages 918–926. Society for In-
dustrial and Applied Mathematics, 2000.

[10] B. Chazelle, D. Dobkin, N. Shouraboura, and A. Tal.
Strategies for polyhedral surface decomposition: An
experimental study. Computational Geometry, 7(5-
6):327–342, 1997.

[11] B. Chazelle and L. Palios. Decomposing the boundary
of a nonconvex polyhedron. Algorithmica, 17(3):245–
265, 1997.

[12] S.-W. Cheng, T. K. Dey, E. A. Ramos, and T. Ray.
Quality meshing for polyhedra with small angles. In
Proc. Sympos. on Comput. Geom., pages 290–299.
ACM, 2004.

[13] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple
and optimal output-sensitive construction of contour
trees using monotone paths. Computational Geome-
try, 30(2):165–195, 2005.

[14] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer,
V. Natarajan, and V. Pascucci. Loops in Reeb graphs
of 2-manifolds. In Proc. Sympos. on Comput. Geom.,
pages 344–350. ACM, 2003.

[15] H. Doraiswamy and V. Natarajan. Efficient output-
sensitive construction of Reeb graphs. In Proc. Sym-
pos. on Algorithms and Computation, pages 556–567.
Springer-Verlag, 2008.

[16] H. Doraiswamy and V. Natarajan. Efficient algo-
rithms for computing Reeb graphs. Computational
Geometry, 42(6-7):606–616, 2009.

[17] S. Ehmann and M. Lin. Accurate and fast proximity
queries between polyhedra using convex surface de-
composition. Computer Graphics Forum, 20(3):500–
511, 2001.

[18] Electrocoat Association. Electrocoating: A Guidebook
for Finishers. Hanser Gardner Pubns, 2002.

[19] P. J. Frey and P.-L. George. Mesh Generation. Appli-
cation to Finite Elements (Second Edition). Hermes
Science Europe, 2000.

[20] J. Ha, K. Yoo, and J. Hahn. Characterization of
polyhedron monotonicity. Computer-Aided Design,
38(1):48–54, 2006.

13



[21] P. Hachenberger. Exact Minkowski sums of polyhe-
dra and exact and efficient decomposition of polyhe-
dra into convex pieces. Algorithmica, 55(2):329–345,
2009.

[22] F. Lazarus and A. Verroust. Level set diagrams of
polyhedral objects. In Proc. Sympos. on Solid Mod-
eling and Appl., pages 130–140. ACM, 1999.

[23] J.-M. Lien and N. M. Amato. Approximate con-
vex decomposition of polyhedra and its applications.
Comput. Aided Geom. Des., 25:503–522, 2008.

[24] Y. Matsumoto. An introduction to Morse theory.
American Mathematical Society, 2002.

[25] J. Milnor. Morse theory. Princeton University Press,
1963.

[26] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mas-
carenhas. Robust on-line computation of Reeb
graphs: simplicity and speed. ACM Trans. Graph.,
26:58.1–58.9, 2007.

[27] G. Patané, M. Spagnuolo, and B. Falcidieno. A min-
imal contouring approach to the computation of the
Reeb graph. IEEE Transactions on Visualization and
Computer Graphics, 15, 2009.

[28] D. Rypl. Sweeping of unstructured meshes over gener-
alized extruded volumes. Finite Elements in Analysis
and Design, 46(1-2):203–215, 2010.

[29] J. Schöberl. NETGEN an advancing front 2D/3D-
mesh generator based on abstract rules. Computing
and Visualization in Science, 1:41–52, 1997.

[30] D. Shattuck and R. Leahy. Automated graph-based
analysis and correction of cortical volume topology.
IEEE Transactions on Medical Imaging, 20(11):1167–
1177, 2001.

[31] J. R. Shewchuk. Tetrahedral mesh generation by De-
launay refinement. In Proc. Sympos. on Comput.
Geom., pages 86–95. ACM, 1998.

[32] Y. Shinagawa and T. Kunii. Constructing a Reeb
graph automatically from cross sections. IEEE Com-
puter Graphics and Appl., 11(6):44–51, 1991.

[33] B. Strodthoff. Erstellen eines Geometriebaums zur
Simulation von Tauchlackierprozessen. Master’s the-
sis, Johannes Kepler Universität, 2010.

[34] K. Sugihara. Sliver-free perturbation for the De-
launay tetrahedrization. Computer-Aided Design,
39(2):87–94, 2007.

[35] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci.
Loop surgery for volumetric meshes: Reeb graphs re-
duced to contour trees. IEEE Transactions on Visu-
alization and Computer Graphics, 15(6):1177–1184,
2009.

[36] T. Tung and F. Schmitt. Augmented Reeb graphs for
content-based retrieval of 3D mesh models. In Proc.
of the Shape Modeling International, pages 157–166.
IEEE Computer Society, 2004.

[37] H. Versteeg and W. Malalasekra. An Introduction to
Computational Fluid Dynamics: The Finite Volume
Method (Second Edition). Prentice Hall, 2007.

[38] E. Wang and Y. S. Kim. Form feature recognition
using convex decomposition: results presented at the
1997 ASME CIE feature panel session. Computer-
Aided Design, 30(13):983–989, 1998.

[39] E. Wang and Y. S. Kim. Feature-based assembly
mating reasoning. Journal of Manufacturing Systems,
18(3):187–202, 1999.

[40] H. Zhang, G. Zhao, and X. Ma. Adaptive generation
of hexahedral element mesh using an improved grid-
based method. Computer-Aided Design, 39(10):914–
928, 2007.

[41] E. Zuckerberger, A. Tal, and S. Shlafman. Polyhedral
surface decomposition with applications. Computers
& Graphics, 26(5):733–743, 2002.

14


	Introduction
	Problem description
	Overview of the algorithm
	Definitions and events
	Subdivision of an intersection plane
	Marginal subdivisions
	Local subdivisions
	Region Sets
	Important critical points
	Events

	Computation of events
	Oriented intersection polygons
	Marginal intersection polygons
	Summary and algorithm

	The event handler
	Associating lower regions with edge groups
	Update of the sweep plane's status

	Results
	Computation times
	Theoretical results
	Dependence of computation time on triangulation
	Dependence of computation time on geometry

	Implementation remarks
	Further tasks and future work

