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Institute of Applied Geometry, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria

Abstract

We prove that the dimension of bivariate tensor–product spline spaces of bi–
degree (d, d) with maximum order of smoothness on a multi–cell domain (more
precisely, on a set of cells from a tensor–product grid) is equal to the number
of tensor–product B–spline basis functions, defined by only single knots in both
directions, acting on the considered domain. A certain reasonable assumption on
the configuration of the cells is required.

This result is then generalized to the case of piecewise polynomial spaces, with
the same smoothness properties mentioned above, defined on a multi–grid multi–
cell domain (more precisely, on a set of cells from a hierarchy of tensor–product
grids). Again, a certain reasonable assumption regarding the configuration of cells
is needed.

Finally, it is observed that this construction corresponds to the classical defini-
tion of hierarchical B–spline bases. This allows to conclude that this basis spans
the full space of spline functions on multi-grid multi-cell domains under reasonable
assumptions.

Keywords: hierarchical B–splines, tensor–product basis, dimension, local refinement.

1 Introduction

1.1 Motivation and related works

Adaptive refinement of spline basis functions allows to localize changes in the control net
so that the modification of a single control point will affect a limited region of the un-
derlying geometric representation. Mesh refinement strategies constitute a fundamental
component for the development of an effective approximation algorithm commonly used
by standard surface reconstruction techniques. In the context of the numerical solution
of partial differential equations, particular attention is currently devoted to this issue in
connection with the emerging field of isogeometric analysis [3].

For this reason, refinement techniques which were originally introduced for standard
geometric design applications, became the topic of recent studies, taking into account
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the dual requirements of geometry and analysis. The resulting novel perspective moti-
vated new research for the identification of geometric representations suitable for anal-
ysis which simultaneously satisfy the demand imposed by their use in the simulation
framework and the accuracy of the geometrical model.

The extension of the isogeometric paradigm, originally introduced considering the
NURBS model [11], with spline representations which allow local control of the refine-
ment procedure has mainly focused on suitable applications [1, 6, 20] of the T–splines
construction [22, 23]. Subsequently, alternative solutions based on the so–called poly-
nomial splines over T–meshes [4, 5, 14] and on hierarchical B–splines [7, 12] have also
been considered [18, 24].

In this setting, the analytical point of view, which joins the geometric perspective,
outlined the desire of characterizing the space spanned by the set of basis functions used
to approximate the solution. This motivated investigations on the linear independence
of T–splines blending functions [2, 16], discussion about the dimension of related spline
spaces [17] and the corresponding nested nature of these T–spline spaces [15].

The hierarchical approach seems to be a valid solution to circumvent the weak points
of T–splines identified by these studies (locality of the refinement [6], linear dependence
associated with particular T–meshes [2], complexity of the enhanced refinement algo-
rithm needed to ensure the linear independence of the blending functions [21]), and
also the reduced regularity which is required for most results concerning splines over
T–meshes. This includes the dimension results for spline spaces over T–meshes in the
case that the degree is at least 2s + 1 for splines with order of smoothness given by s
that were derived in [4].

The hierarchical model allows complete control of the refinement by using a spline
hierarchy whose levels identifies subsequent levels of refinement. We consider an increas-
ingly nested sequence of tensor–product spline spaces V 0 ⊂ V 1 ⊂ . . . ⊂ V N−1, together
with a decreasingly nested sequence of domains Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN−1. The cells of
V ℓ in Ωℓ \Ωℓ+1 will be said to form a multi–cell domain. The union of these multi–cell
domains will then be called a multi–grid multi–cell domain.

The simple idea of the hierarchical spline model is based on a suitable correlation
between these two nested structures: at each level ℓ, for ℓ = 0, 1, . . . , N−1, we iteratively
select the basis functions from the underlying spline space V ℓ which act only on the
current domain Ωℓ, i.e., whose support is contained in Ωℓ. At the same time we discard
from the hierarchical basis the basis functions selected in the earlier steps which act only
on Ωℓ. The local action of the refinement procedure is then immediately guaranteed by
construction. Moreover, the local linear independence is inherited from the underlying
B–spline bases.

The selection mechanism for the definition of a hierarchical B–splines basis intro-
duced by Kraft [12] by means of subsequent dyadic refinements ensures that

• hierarchical basis functions allows proper local refinement and are linearly inde-
pendent [12, Theorem 1],

• the hierarchical B–spline basis is weakly stable, i.e. the stability constants have at
most a polynomial growth in the number of hierarchical levels [12, Theorem 3].
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Hierarchical B–splines have already been applied in several applications related to ge-
ometric modeling — see for example [8, 9, 10]. In addition, a hierarchical quasi–
interpolant together with approximation algorithms and scattered data approximation
and interpolation problems were also discussed in [12]. A more detailed analysis of the
above mentioned topics can be found in [13]. The case of partly overlapping bound-
aries of the sub–domains which are selected for further refinement and the application
of hierarchical B-splines in isogeometric analysis have recently been considered in [24].

1.2 Contributions and outline

The goal of the present paper is to investigate dimensions and bases of hierarchical
tensor–product B–spline spaces. The starting point of our study is a generalization of
the dimension results for bivariate tensor–product polynomial spline spaces to multi–
cell domains. When considering tensor–product spline functions with maximum order of
smoothness, it turns out that the dimension formula on domains whose boundaries are
piecewise linear curves (which satisfy a specific reasonable assumption) can be derived
from the standard one related to rectangular grids (see, e.g., [19]) by including certain
correction factors.

Under certain mild assumptions on the multi–cell domain considered at each level,
the dimension of the above mentioned space is equal to the number of B–splines defined
on the corresponding grid and which effectively act on it. This computation is then used
to construct a basis for the space of bivariate tensor–product splines on multi–grid multi–
cell domains, i.e., on hierarchies of multi–cell domains. This allows us to conclude that
the classical hierarchical B–spline basis is indeed a basis for the considered spline space.
Consequently, the span of the hierarchical B–spline basis contains all spline functions of
given bi–degree (d, d) and maximal smoothness that exist on the underlying hierarchical
grid.

The structure of the paper is as follows.
Section 2 reviews the notion of hierarchical B–splines and introduces tensor–product

splines on multi–cell domains and on multi–grid multi–cell domains. It also provides a
detailed overview of the subsequent analysis.

The next two sections study tensor–product splines on multi–cell domains. Section 3
derives the dimension result for the space of tensor–product splines of bi–degree (d, d)
with maximum order of smoothness defined on a multi–cell domain. Subsequently,
Section 4 identifies the assumptions concerning the cell configuration that are needed to
guarantee that the set of B–splines which act on this set of cells is a basis for the spline
space defined on it.

Section 5 uses these observations in order to obtain results on dimensions and bases
for tensor–product splines, with the same smoothness properties as before, defined on
multi–grid multi–cell domains. Finally, Section 6 concludes the paper.
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2 Preliminaries

We start by revisiting the construction of hierarchical B–splines. We also describe the
overall structure of the proposed analysis.

2.1 Hierarchical B–splines

Let {V ℓ}ℓ=0,...,N−1 be a sequence of N nested tensor–product spline spaces so that

V ℓ ⊂ V ℓ+1,

for ℓ = 0, . . . , N − 2. We assume the bi–degree and smoothness at each level ℓ equal to
(d, d) and (d− 1, d− 1), respectively.

Each spline space V ℓ is spanned by a tensor–product B–spline basis T ℓ defined on the
two knot sequences Xℓ = {xℓi}i=0,...,p(ℓ) and Y ℓ = {yℓj}j=0,...,q(ℓ) containing the horizontal
and vertical knots, respectively. These knot sequences, defined by only single knots at
all levels, are also nested. Consequently, each space V ℓ has an associated grid

Gℓ = {(xℓi−1, x
ℓ
i)× (yℓj−1, y

ℓ
j) : i = 1, . . . , p(ℓ), j = 1, . . . , q(ℓ)}

consisting of cells (axis-aligned boxes) such that the restriction of f ∈ V ℓ to any of these
cells is a tensor–product polynomial of bi–degree (d, d).

We may observe that, in our case of only single knots at all levels, the support of
any B–spline always consists of (d+1)× (d+1) elementary cells of the parametric grid.
If d is even, we can then identify each basis function with the central elementary cell
of its support. When d is odd, instead, we may identify each basis function with the
center of its support. These naive anchors are called odd and even depending on the
bi–degree. They are shown in Figure 1 for the first four low bi–degree cases.

Figure 1: Basis functions representation in terms of odd (d = 1, 3, . . .) and even
(d = 2, 4, . . .) anchors. From left to right: d = 1, 2, 3, 4.

In addition, we consider a finite sequence ofN nested bounded open sets {Ωℓ}ℓ=0,...,N−1

so that
Ωℓ ⊇ Ωℓ+1, (1)

for ℓ = 0, . . . , N − 1, with ΩN = ∅. At each level the boundary ∂Ωℓ is aligned with the
knot lines of V ℓ−1, ℓ = 1, . . . , N − 1, while ∂Ω0 is aligned with the knot lines of V 0.
Moreover, we assume that

Ω0 ⊆ [x0d, x
0
p(0)−d]× [y0d, y

0
q(0)−d].
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(a) Hierarchical mesh (b) R
0 = Ω0 \ Ω1 (c) R

1 = Ω0 \ Ω2 (d) R
2 = Ω0 \ Ω3

(e) Ω0 \ Ω1 (f) Ω1 \ Ω2 (g) Ω2 \ Ω3

Figure 2: The hierarchical mesh defined by restricting the grid of V ℓ to Ωℓ for
ℓ = 0, . . . , 3, where Ω3 = ∅ (a), the rings Rℓ (b-d) and the differences Ωℓ \Ωℓ+1

(e-g).

and we consider the support of any function f when restricted to the domain Ω0 by
defining

supp f = {(x, y) : f(x, y) 6= 0 ∧ (x, y) ∈ Ω0}.

This modified support enables suitable refinements also along the boundaries of Ω0.
The domain Rℓ = Ω0 \ Ωℓ+1 will be called a ring — even if it may not be ring–

shaped — because, conceptually, it represents Ω0 with an hole given by Ωℓ+1. In order to
describe this set, we first represent Ω0 with respect to the grid of V ℓ and then delete the
cells that belong to Ωℓ+1. Consequently, Rℓ consists of cells with respect to the tensor–
product grid of level ℓ. We shall refer to such a set – along with the corresponding grid
structure – as a multi–cell domain, see Figure 2.

When considering the difference Ωℓ \ Ωℓ+1 of the adjacent domains in the domain
hierarchy, we find another sequence of multi–cell domains, consisting of mutually disjoint
sets. Their union – along with the corresponding grid structures – will be called a multi–
grid multi–cell domain, see again Figure 2.

The following definition generalizes the hierarchical B–spline basis originally intro-
duced by Kraft in [12], where, for any hierarchical level, only sub–domains with disjoint
boundaries defined as union of B–splines supports of the previous level were considered.

Definition 1. The hierarchical basis K is defined as

K =

N−1
⋃

ℓ=0

Kℓ
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(a) Hierarchical mesh. (b) B–splines in K0. (c) B–splines in K1.

Figure 3: Left: an example of a hierarchical mesh which represents a multi–grid
multi–cell domain consisting of two multi–cell domains. Center and right the
corresponding hierarchical bi–quadratic B–spline basis K which contains basis
functions (represented by their anchors) from T 0 and T 1 .

with
Kℓ = {τ ∈ T ℓ : supp τ ∩Rℓ−1 = ∅ ∧ supp τ ∩Rℓ 6= ∅} (2)

where T ℓ is the tensor–product B-spline basis of the space V ℓ as described in the beginning
of this section. We define R−1 = ∅ to include the case ℓ = 0.

An example is shown in Figure 3.
At each level ℓ, except for functions in Kk with k < ℓ which belong to coarser levels,

only the basis functions in Kℓ are non–zero on Ωℓ \ Ωℓ+1. In view of the local linear
independence of B–splines, one can use this observation to prove the linear independence
of the basis K [12, 24].

2.2 Overview

We consider the spaces of bivariate tensor–product splines on the multi–cell domains
Rℓ,

Sℓ =
{

f ∈ Cd−1,d−1(Rℓ) : f
∣

∣

∣

C
∈ Πd,d(C) ∀C ∈ Gℓ, C ⊆ Rℓ

}

, (3)

where we denote by Πd,d(P ) the space of polynomial functions of bi–degree (d, d) over
P ⊂ R

2. The space Sℓ consists of all piecewise polynomial functions of bi–degree (d, d)
on the subdivision of the plane which is obtained by restricting the grid of V ℓ to Rℓ for
a fixed value of ℓ.

The analysis of dimensions and bases of these spaces will prepare us for analyzing
the space of bivariate tensor–product splines on a multi–grid multi–cell domain,

W =
{

f ∈ Cd−1,d−1(Ω0) : f
∣

∣

∣

Rℓ
∈ Sℓ ∀ℓ = 0, . . . , N − 1

}

. (4)
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The space W consists of all piecewise polynomial functions of bi–degree (d, d) on the
subdivision of the plane which is obtained by restricting the grid of V ℓ to Ωℓ for ℓ =
0, . . . , N − 1.

We identify some restrictions on the hierarchical grid defined by the nested sequence
of domains Ωℓ along with the associated spaces V ℓ which imply that the set of hierar-
chical B–splines constructed according to Definition 1 forms a basis of W . The strategy
of our analysis can be summarized as follows.

• Section 3 studies the space Sℓ of tensor–product splines on a multi–cell domain
and proposes a construction based on integrations which generates any function in
Sℓ from a suitable set of characteristic data, consisting of residual and boundary
values. Conversely, from any function in Sℓ one can easily derive the corresponding
set of characteristic data. By carefully analyzing the dependencies between the
boundary values we compute the dimension Dℓ of the space Sℓ.

• Then, by introducing the definition of the offset to a domain and of its length,
we can formulate an assumption which the ring Rℓ has to satisfy so that the
number of B–spline functions of level ℓ acting on Rℓ is equal to Dℓ (Section 4).
The assumption is needed to guarantee that B–splines whose support intersect
opposite sides along the boundaries of the domain do not overlap each other.

• Finally, by iteratively using the earlier results, Section 5 shows that hierarchical
B–splines form a basis of the space W of tensor–product splines on multi–grid
multi–cell domains, see (4), provided that the assumptions regarding the cell con-
figurations are satisfied at each level.

3 Dimension of splines on multi–cell domains

In this section we study the dimension of the space of bivariate tensor–product splines
Sℓ introduced in (3) on the ring Rℓ for a fixed value of ℓ.

We describe a sequence of 2d differentiations, first in the vertical and then in the
horizontal direction, which allow to associate a set of boundary data to each function
f ∈ Sℓ, simply by restricting the obtained derivatives to some of the domain boundaries.
Moreover, we define residual data by evaluating the partial derivative of order (d, d)
(which is a piecewise constant function) at the cells that form the domain.

Conversely, any such function f can be recovered from these data via integrations.
The residual data defines the initial function, and the boundary data serve as boundary
values for the 2d integrations.

We perform a detailed analysis to enumerate the degrees of freedom related to the
bottom boundary, which is subdivided in maximum horizontal components. These com-
ponents are then suitably connected together to construct feasible characteristic data for
the differentiation and integration processes. The analysis leads to a dimension result
for the space Sℓ.
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(x, y)

(x, ŷ)

(x̂, y)

Figure 4: The ring Rℓ = Ω0 \ Ωℓ+1, its grid, and the point sets L and B
composed of all the left and bottom edges (magenta and cyan lines, respectively,
on the left). The identification of x̂ = x̂(x, y) and ŷ = ŷ(x, y) introduced in the
proof of Proposition 4 is also shown (right).

3.1 Residual and boundary data

Given a fixed level ℓ, we consider the space Sℓ as defined by (3). By introducing the
notions of characteristic and feasible data, we identify the isomorphism between the
spline space Sℓ and the space of feasible characteristic data related to Rℓ.

Assuming to sweep the domain with a horizontal line starting from the up–most
horizontal boundary line, the bottom segments are the horizontal segments along the
boundary which mark the domain from below, i.e., the inner part of the domain is above
these segments. Analogously, assuming to sweep the domain with a vertical line starting
from the rightmost vertical boundary line, the left edges are the vertical segments along
the boundary which mark the domain from the left, i.e., the inner part of the domain
is on the right of these segments. We denote by B and L the point sets composed of all
the bottom and left edges which belong to Rℓ (see Figure 4).

Let B1, . . . , Bh and L1, . . . , Lv be the horizontal and vertical elementary segments in
which the bottom and left boundaries of the domain are subdivided. The bottom and
left edges B and L can then be expressed as

B =
h
⋃

i=1

Bi, L =
v
⋃

j=1

Lj.

Definition 2. Denoting by Πd,d(P ) the space of polynomial functions of bi–degree (d, d)
over P ⊂ R

2, we say that

F = (b1, . . . , bd, l1, . . . , ld, r)

where
bk : B → R, lk : L→ R, r : Rℓ → R,
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with k = 1, . . . , d, so that, for all i = 1, . . . , h, j = 1, . . . , v and for each cell C of the
grid of Rℓ,

bk

∣

∣

∣

Bi

∈ Πd,0(Bi), lk

∣

∣

∣

Lj

∈ Π0,0(Lj), and r
∣

∣

∣

C
∈ Π0,0(C),

is a vector of characteristic data.

Note that the boundary data bk(x, y) are piecewise polynomials in x evaluated on
the bottom horizontal edge segments. As it will be detailed later, a smoothness of order
d− 1 has to be required also across jumps along the bottom boundary.

The boundary data lk(x, y) are piecewise constant functions associated to the left
vertical edge segments. Finally, the residual data r(x, y) specifies a constant real value
for each cell that belongs to the grid of Rℓ.

A vector F of characteristic data is obtained from a function f ∈ Sℓ by means of
the characteristic operatorM as

F =M(f) = (b1, . . . , bd, l1, . . . , ld, r)

where

b1(x, y) = f(x, y)
∣

∣

∣

B
, l1(x, y) =

∂d

∂yd
f
∣

∣

∣

L

b2(x, y) =
∂

∂y
f(x, y)

∣

∣

∣

B
, l2(x, y) =

∂

∂x

∂d

∂yd
f
∣

∣

∣

L
,

...
...

bd(x, y) =
∂d−1

∂yd−1
f(x, y)

∣

∣

∣

B
, ld(x, y) =

∂d−1

∂xd−1

∂d

∂yd
f
∣

∣

∣

L
,

and

r(x, y) =
∂d

∂xd
∂d

∂yd
f(x, y)

∣

∣

∣

C
for each cell C of the grid of Rℓ.

Definition 3. A vector F of characteristic data is said to be feasible if there exists
f ∈ Sℓ such that F =M(f).

Clearly, the set of feasible characteristic data forms a linear space. We can then
relate this space to the spline space Sℓ by means of the following proposition.

Proposition 4. The mapping M : Sℓ → F between the spline space and the space of
feasible characteristic data is an isomorphism of linear spaces.

Proof. For any point (x, y) ∈ Rℓ, consider the rays with directions (−1, 0) and (0,−1)
and let x̂ = x̂(x, y), ŷ = ŷ(x, y) be the horizontal and vertical coordinate of the inter-
section of these rays with the first vertical/horizontal boundary edge reached by them
(see Figure 4). We can relate a function f in Sℓ and a vector F of characteristic data
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in terms of the following differentiation/integration process. First, we execute d vertical
differentiations

f(x, y) = b1(x, ŷ) +

∫ y

ŷ

∂

∂y
f(x, η)dη,

∂

∂y
f(x, y) = b2(x, ŷ) +

∫ y

ŷ

∂2

∂y2
f(x, η)dη,

...

∂d−1

∂yd−1
f(x, y) = bd(x, ŷ) +

∫ y

ŷ

∂d

∂yd
f(x, η)dη, (5)

where ŷ depends on (x, y), i.e., ŷ = ŷ(x, y). Then, we continue with d horizontal
differentiations

∂d

∂yd
f(x, y) = l1(x̂, y) +

∫ x

x̂

∂

∂x

∂d

∂yd
f(ξ, y)dξ,

∂

∂x

∂d

∂yd
f(x, y) = l2(x̂, y) +

∫ x

x̂

∂2

∂x2
∂d

∂yd
f(ξ, y)dξ,

...

∂d−1

∂xd−1

∂d

∂yd
f(x, y) = ld(x̂, y) +

∫ x

x̂

r(ξ, y)dξ, (6)

where x̂ depends on (x, y), i.e., x̂ = x̂(x, y). Hence, starting from a function f ∈
Sℓ, we may identify the associated feasible characteristic data F simply by means of
Definition 3. On the other hand, starting with the set of constant values r(x, y), which
represent the derivative of order d in both directions, and with the following partial
derivatives defined by the functions b1, . . . , bd and l1, . . . , ld, we can reconstruct f by
executing the above mentioned sequence of integrations in reverse order.

Remark 5. The asymmetry of Definition 2 is related to the order of execution of the se-
quence of differentiations introduced in the proof of Proposition 3. Alternative sequences
of differentiations may be considered also, which will lead to similar results, but requiring
different assumptions about the cell configuration (cf. Assumption 1 on page 14).

3.2 Maximum horizontal components

We now need to specify the continuity conditions that a subset of characteristic data
has to satisfy in order to be properly associated with a function f in Sℓ by the mapping
M as described in the previous Lemma. We may observe that the functions b1, . . . , bd
are inter–dependent connected to each other, while the constants l1, . . . , ld are not. This
difference is due to the non-symmetric order of the differentiations.

In order to properly identify the required connections between the boundary data
bk, we need to detail the analysis by further decomposing the bottom boundary:
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Definition 6. A connected horizontal component (HC) is a component of the bottom
boundary composed of adjacent horizontal segments connected by only vertical edges. It
is said to be a maximum HC (MHC) if it is not contained in any other HC.

Each horizontal pair of adjacent elementary segments which belong to any MHC of
the considered domain can be joined together according to one of the three cases shown
in Figure 5 and indicated as flat join, step up join, and step down join.

y0 ≡ y1

Bi

Bi

Bi Bi+1

Bi+1

Bi+1
y0y0

y1 y1

Figure 5: Joins between adjacent elementary segments: flat join (left), step up
join (center), and step down join (right).

For any function b1, . . . , bd, we may require the needed continuity in all the inner
connection points of each MHC as a Cd−1 join between

bk

∣

∣

∣

Bi

+ vik and bk

∣

∣

∣

Bi+1

+ ui+1
k at π(Bi) ∩ π(Bi+1),

for i = 1, . . . , h− 1, where

vik = 0, uik = 0, in case of a flat join, (7)

vik =

∫ y1

y0

∂k−1

∂yk−1
f(x, η)dη, uik = 0, in case of a step up join, (8)

vik = 0, uik =

∫ y1

y0

∂k−1

∂yk−1
f(x, η)dη, in case of a step down join. (9)

All polynomials are independent of y and are considered as functions of x only. The
symbol π denotes the projection onto the x-axis, i.e., π(x, y) = x.

The contribution – in terms of degrees of freedom – of all the MHCs which composed
the bottom boundary of the given domain is then specified in the following Lemma.

Lemma 7. The number of degrees of freedom associated with an MHC composed of e
elementary horizontal segments is d(e+ d).

Proof. For any function bk, k = 1, . . . , d,

bk

∣

∣

∣

B1

+ v1k has to have a Cd−1 joint with bk

∣

∣

∣

B2

+ u2k at π(B1) ∩ π(B2),

bk

∣

∣

∣

B2

+ v2k has to have a Cd−1 joint with bk

∣

∣

∣

B3

+ u3k at π(B2) ∩ π(B3),

and so on until

bk

∣

∣

∣

Be−1

+ ve−1
k and bk

∣

∣

∣

Be

+ uek at π(Be−1) ∩ π(Be),
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where uik, v
i
k are defined by (7)–(9) for i = 1, . . . , e. Since these relations only involve

polynomial functions over the elementary segments B1, . . . , Be, by using polynomial
extrapolations we can equivalently expressed the above smoothness conditions as

ci−1
k has to have a Cd−1 joint to cik at π(Bi−1) ∩ π(Bi)

for i = 1, . . . , e, where

cik = bk

∣

∣

∣

Bi

+
i−1
∑

s=1

(us+1
k − vsk).

Hence,
(

cik
)

i=1,...,e
form a Cd−1 polynomial spline which is well-known to possess e + d

degrees of freedom.

3.3 Construction of feasible characteristic data

In order to extend the count of the number of degrees of freedom associated to a single
MHC to the entire bottom boundary of Rℓ, we now investigate how different maximum
horizontal components influence each other. The following three types of MHCs (see
also Figure 6) exist:

(a) MHC not subject to boundary conditions;

(b) MHC with one boundary condition (on its left–hand or right–hand side);

(c) MHC with two boundary conditions.

Figure 6: Classification of horizontal components: MHC not subject to bound-
ary conditions (blue lines on the left), MHC with one boundary condition (cyan
lines on the left), MHC with two boundary conditions (pink lines on the left).
Also shown is the distinction between upper and lower MHCs (in magenta and
green, respectively, on the right) introduced in Lemma 11.

We may observe that we can always split the bottom boundary of the domain in a
unique sequence of MHCs. Moreover, as outlined by the following Lemma, at least one
of the MHCs in this sequence is not subject to boundary conditions when considered
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in the vertical integration process described in the proof of Lemma 4. We will indicate
an MHC of this type as independent. An independent MHC is obviously left free (no
boundary conditions on left side) and right free (no boundary conditions on right side).

Lemma 8. There always exists at least one independent MHC in the bottom boundary
of the domain.

Proof. Assume that no MHC is both left and right free. The leftmost corner of the
bottom boundary of the domain is necessarily left free. Since the corresponding leftmost
MHC cannot be also right free, the second leftmost MHC along the bottom boundary
of the domain is also left free. Again, this second MHC cannot be also right free. We
may then continue until we arrive at the rightmost MHC along the bottom boundary.
However, this last MHC is necessarily also right free. This contradicts our assumption
hence the proof is complete.

An independent MHC imposes boundary conditions on other MHCs and its shadow
(see Figure 7) decreases the domain. We are then able to describe a recursive algorithm
to define feasible characteristic data for the integration process described in the proof
of Lemma 4. We start from any of the independent MHCs which are present in the the
considered domain. In view of the previous Lemma, at least one of them always exists.

Algorithm 9.

Input: a domain Ω, a constant value r for each cell of Ω, the functions lk, k = 1, . . . , d,
on the vertical edges of the left boundary of Ω.

1. Evaluate, via equations (6),

∂d−1

∂xd−1

∂d

∂yd
f(x, y), . . . ,

∂

∂x

∂d

∂yd
f(x, y),

∂d

∂yd
f(x, y);

2. let Ω be the initial sub–domain not subject to boundary conditions;

3. select an independent MHC with respect to the current sub–domain;

4. for k = d, . . . , 1

(a) choose bk on the selected MHC by taking into account possible boundary
conditions of adjacent sub–domains (see below),

(b) evaluate, via equations (5),

∂k−1

∂yk−1
f(x, y),

in its shadow and determine boundary conditions on adjacent MHCs which
will be considered by neighboring sub–domains – see Figure 7;

5. reduce/split the current sub–domain by deleting the shadow of the selected MHC.
This gives a set of sub–domains;
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Figure 7: Boundary conditions computation with Algorithm 9. At each step
the shadow of the selected independent MHC decreases and possibly also splits
the domain.

6. if the set of sub–domains is not empty then apply recursively step 3–5 to each
sub–domain identified in step 51.

Output: a set of feasible characteristic data and a corresponding spline function f on Ω.

We may observe that, for any MHC composed of e horizontal elementary segments,
we have e+d degrees of freedom (see the proof of Lemma 11 for the details). To impose
the smoothness conditions as required by the integration process described above, when
we consider an MHC with 2 boundary conditions, we have e + d degrees of freedom
minus a term of 2d given by the left and right boundary conditions. This leads to e− d
degrees of freedom, and then the length e of the MHC has to be greater or equal to d.
We are then led to formulate the following assumption.

Assumption 1. The length (number of elementary horizontal segments) of any lower
maximum horizontal component with two boundary conditions is at least d.

We summarize the results of this section:

Lemma 10. If Assumption 1 is satisfied, Algorithm 9 gives feasible characteristic data
(boundary conditions) for the integration process described in the proof of Lemma 4.

This can be proved easily by analyzing Algorithm 9.

1The values obtained in step 4 are used as boundary conditions on the remaining sub–domains.

14



3.4 Dimension formula

By using the previous analysis on the compatibility conditions between maximum hor-
izontal components, we can derive the dimension of the spline space Sℓ in terms of
the number of cells of Rℓ, the number of cells along its perimeter, the number of its
connected components, and the number of holes. After analyzing the case of multi–cell
domains without holes, we generalize the result to domains possessing one or more holes.

By firstly assuming the absence of holes, in view of the previous analysis, the bottom
boundary is composed of:

1. one MHC of type (a), i.e., no boundary conditions – this is the one that, according
to Lemma 8, always exists,

2. an arbitrary number of type (b) MHCs, i.e., one boundary condition,

3. a remaining arbitrary equal number of type (a) and (c) MHCs, i.e., zero and two
boundary conditions, respectively.

Hence, the invariant property of the bottom boundary is that for each (c) there is always
an (a). Let hi be the number of elementary horizontal segments that compose one MHC.
In the case of an MHC of type (a), the considered horizontal component contributes hi+d
degrees of freedom, while in case (b) we have to consider the d conditions to obtain a
Cd−1 join on its left or right boundary, leading to hi + d− d = hi. In case (c), instead,
we have to take into account the d conditions to obtain a Cd−1 join both on the left
and right boundary of the MHC, leading to hi + d− 2d = hi − d. The total number of
degrees of freedom associated with the bottom boundary of the domain is then always
∑

hi + d, as confirmed by the following Lemma.

Lemma 11. Let M be the number of connected components of Rℓ. If the considered
domain does not exhibit holes, each one of the d vertical integrations contributes

# of horizontal segments+Md

degrees of freedom.

Proof. We consider upper MHC and lower MHC (UMHC and LMHC) as shown on the
right of Figure 6, and assume that the boundary is oriented counterclockwise. UMHC
and LMHC alternate along the boundary. Between neighboring MHC, the boundary
makes either a left turn or a right turn, both by 180 degrees. The total number of
left turns is equal to the total number of right turns plus 2M , because the boundary
of any connected components of Rℓ is a simple closed curve and the rotation index is
therefore 1. We may observe that, if a LMHC follows

• a left turn, then there is no boundary condition on the left-hand side;

• a right turn, then there is one.

On the other hand, if a LMHC is followed by
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• a left turn, then there is no boundary condition on its right-hand side;

• a right turn, then there is one.

For a LMHC with hi edges, we have (d + 1)hi − d(hi − 1) = hi + d degrees of freedom.
If we have t LMHC, then will have 2t left turns or right turns, hence we have t+M left
turns and t−M right turns. Each right turn imposes one boundary condition, hence it
reduces the number of degrees of freedom by d. Summing up, we get

t
∑

i=1

(hi + d)− (t−M)d =
t
∑

i=1

hi + td− td+Md =
t
∑

i=1

hi +Md

degrees of freedom.

To relax the restriction related to the absence of holes and analyze how this influences
the number of available degrees of freedom, we assume the boundaries of the holes are
oriented counterclockwise as we already did for the boundary of the domain. Since the
outer boundary of the hole is obviously inside the parametric domain, the distinction
between lower and upper maximum connected horizontal component is now reversed –
see again Figure 6. This implies that, in this case, a left turn before or after an MHC
is the one which imposes a boundary condition on the left–hand side or right–hand side
of the considered horizontal component.

For an LMHC with hi edges, we have (d+1)hi−d(hi−1) = hi+d degrees of freedom
as before. Again if we have t LMHC, then will have 2t left turns or right turns, hence
we have t + 1 left turns and t − 1 right turns. Each left turn imposes one boundary
condition, hence it reduces the number of degrees of freedom by d. Summing up we get

t
∑

i=1

(hi + d)− (t+ 1)d =
t
∑

i=1

hi + td− td− d =
t
∑

i=1

hi − d

degrees of freedom.

Remark 12. If the considered domain is characterized by one or more holes, for each
of the d vertical integrations, any hole reduces the total degrees of freedom by d.

Theorem 13. If Assumption 1 is satisfied, the dimension of the space Sℓ is given by

Dℓ = c+
p

2
d+Md2 −Hd2, (10)

where c is the number of cells of the domain, p the number of cells along its perimeter,
M the number of connected components of the domain, and H the number of holes.

Proof. The first contribution simply arises from the c constant values for r(x, y) that
we associate to each cell of the considered domain. For each left edge considered in
the d horizontal integrations, the involved partial derivatives l1, . . . , ld are constant with
respect to the variable y. This leads to d times one degree of freedom for each vertical
segment on the left boundary. The contribution to the available degrees of freedom
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which arises from the d vertical integrations is slightly more involved. However, we
know from the previous analysis that is equal to d(h+Md−Hd) for a domain with M
connected components and H holes. We may then conclude that the dimension of the
space generated by the set of feasible characteristic data is

c+ d (v + h+Md−Hd) = c+ d
p

2
+Md2 −Hd2,

which directly leads to (10).

Remark 14. 1. When M = 1 and H = 0, the value of Dℓ in (10) reduces to the
dimension of bivariate tensor–product splines, defined by only single knots, on a
rectangular grid, namely Dℓ = (h+ d)(v + d) = hv + (h+ v)d+ d2 = c+ p

2d+ d2.

2. The techniques developed in [17], which discusses dimensions of spline spaces on T-
subdivisions of a rectangular domain without holes, should give the same dimension
formula (10) provided that each edge segment contains at least d+ 1 nodes.

3. By using a slightly different algorithm for constructing the boundary conditions
it is possible to formulate a weaker assumption which still implies the dimension
formula of Theorem 13. It suffices to assume that the horizontal width of each
hole is at least d segments. However, this would not improve the final result in
Theorem 20.

4 Tensor–product spline bases on multi–cell domains

In this section we prove that the number of tensor product B–splines of bi–degree (d, d)
defined by only single knots in both directions, whose support overlaps a given domain,
is equal to the dimension Dℓ in (10). We focus again on the multi–cell domain Rℓ =
Ω0 \ Ωℓ+1 for a fixed level ℓ.

To formulate the condition that the considered domain has to satisfy so that B–
splines whose support intersect opposite sides along its boundaries do not overlap each
other, we begin by introducing the notion of the offset to a domain. Subsequently, the
assumptions on the domain configuration and the enumeration of B–splines acting on
Rℓ are discussed.

4.1 Offset to a domain

Considering the cells which belong to the grid Gℓ associated with the space V ℓ, let Rℓ
k

be the offset region at distance k to Rℓ. More precisely, Rℓ
0 consists of all cells which

are contained in Rℓ,

Rℓ
0 = {C ∈ Gℓ : C ⊆ Rℓ},

and the remaining offset regions Rℓ
k+1 are obtained by collecting the cells along the outer

boundary of Rℓ
k,

Rℓ
k+1 = {C ∈ Gℓ : C ∩ ∂Rℓ

k 6= ∅ ∧ (∀kj=0 : C ∩Rℓ
j = ∅)}.
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We introduce the definitions of the offset curve to the ring Rℓ at a certain distance and
of its length.

Definition 15. The offset curve to the ring Rℓ is the piecewise linear curve defined
as follows.

(I) C0, the offset curve at distance 0, is the boundary of Rℓ.

(II) Given the offset regions Rℓ
k and Rℓ

k+1 for k ∈ Z
+,

(a) Rℓ admits offset at distance k+ 1
2 if any cell in Rℓ

k+1 is related to Rℓ
k through

one of the three connections shown in Figure 8; if this is the case, the off-
set curve at distance k + 1

2 , indicated as Ck+ 1

2

, is the piecewise linear curve

obtained by collecting together the contributions of any cell as shown in Fig-
ure 8;

(b) Rℓ admits offset at distance k+1 if the relationship between any cell in Rℓ
k+1

and Rℓ
k falls into one of the three cases shown in Figure 9; if this is the case,

the offset curve at distance k + 1, indicated as Ck+1, is the piecewise linear
curve defined by the exterior boundary of Rℓ

k+1.

Rℓ
k

Rℓ
k

Rℓ
k

C
k+ 1

2

C
k+ 1

2

C
k+ 1

2

Figure 8: Admissible connections between a cell of Rℓ
k+1 and the offset region

Rℓ
k for defining the offset at distance k + 1

2 : one point (left), one side (center),
and two adjacent sides (right). The piecewise linear contributions to the offset
curve with respect to any of the three cases are also shown (magenta line).

Rℓ
k

Rℓ
k

Rℓ
k Ck+1

Ck+1

Ck+1

Figure 9: Admissible connections between a cell of Rℓ
k+1 and the offset region

Rℓ
k for defining the offset at distance k + 1: two free sides (left), one free side

(center), and one free point (right), where free means that the edge or the
vertex belongs to the boundary of

⋃k+1
j=0 R

ℓ
j. The piecewise linear contributions

to the offset curve with respect to the three admissible cases are also shown
(magenta line).
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Figure 10: Offset region Rℓ
1 (hatched cells on the left) to the ring Rℓ considered

in Figure 6, and the corresponding offset curve C 1

2

(magenta line on the right).

According to Definition 15, Rℓ does not admit an offset at distance greater
than 1

2 .

If one of the conditions (a) or (b) in the above Definition is not satisfied, then the ring
Rℓ does not admit an offset at distance greater or equal to k + 1

2 or k + 1, respectively.
These conditions allow to guarantee that the piecewise linear curve which defines the
offset at a certain distance is self–intersection free. This property is needed to ensure
that the basis counting we are going to introduce is always feasible. Figure 10 shows a
simple example of offset region and offset curve to the ring considered in Figure 6.

Definition 16. The length of an offset curve is the number of odd or even anchors
that hit the offset itself.

Let C∗
k be the offset at distance k to a connected component of the ring or to one of

its holes. We define the extremal corners of C∗
k to be the following four corners:

• the highest p and the lowest x of the leftmost corners of C∗
k ,

• the highest q and the lowest y of the rightmost corners of C∗
k ,

The remaining part of C∗
k is characterized by a certain number of left corners (Lc) and

right corners (Rc). At left/right corners, the length of Ck+1 or Ck+ 1

2

increases/decreases

by 2 or 1, respectively. Using similar arguments as in the proof of Lemma 11, we may
observe that the invariant property of a domain composed of M connected components,
H holes, l left turns and r right turns, is that

l − r = 4M − 4H. (11)

When C∗
k is the offset to a connected component of the boundary, assuming C∗

k to
be counterclockwise oriented, the number of left corners always exceeds the number
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Ck

Ck

Ck
Ck

Ck+1

Ck+1

C
k+ 1

2

C
k+ 1

2

→

→

←

←

↓

↓

↓ ↓

Lc : Lk → Lk+1 ⇒ +2 Lc : Lk → L
k+ 1

2

⇒ +1Rc : Lk → Lk+1 ⇒ −2 Rc : Lk → L
k+ 1

2

⇒ −1

Figure 11: Classification of the corners along the offset curve and influence on
the computation of the length according to Definition 16.

Rc

Rc

RcRc
Rc

Rc

Rc

Rc

Rc

Rc

Rc
Rc

Rc

Rc

Rc

Rc

LcLc

Lc

Lc

Lc

Lc

Lc

Lc

Lc

Lc

Lc
LcLc

Lc

LcLc

→

→

→

→→→

←

←

←

←

↓

↓

↓

↓↓

↑
↑

↑

↑

↑

Figure 12: Corner classification for the ring shown in Figure 6: distinction
between left (Lc) and right (Rc) corners. In this case: M = H = 1, Lc = Rc =
16, and L0 = L 1

2

= 138.

of right corners by 4 (see Figure 12). When C∗
k is the offset to a hole, in order to

keep the classification of the corners shown in Figure 11 valid, we assume C∗
k to be

clockwise oriented. In this case, the number of right corners always exceeds the number
of left corners by 4 (see again Figure 12). In both cases the number 4 is given by the
extremal corners of the piecewise linear curve. This explains the terms +4M and −4H
in equations (11).

Lemma 17. The length of the offset curve to the ring can be recursively computed as
follows.

(I) Base case: the length of C0 is equal to the perimeter of the ring, i.e., L0 = p.

(II) Recursive case: given the length of the offset curve at distance k ∈ Z
+, indicated

20



as Lk,

Lk+ 1

2

= Lk + 4M − 4H, Lk+1 = Lk + 8M − 8H. (12)

Proof. In virtue of Figure 11, we have

Lk+1 = Lk + 2(l − r), Lk+ 1

2

= Lk + l − r.

By substituting (11) into the above relations, we obtain the two recursive equations in
(12).

We may observe that

Lk = p+ 8k(M −H), Lk+ 1

2

= p+ 4(2k + 1)(M −H).

From the above relations we can compute the two sums

n
∑

k=0

Lk = (n+ 1)p + 4n(n+ 1)(M −H), (13)

n
∑

k=0

Lk+ 1

2

= (n+ 1)p + 4(n + 1)2(M −H), (14)

which will be used in the proof of Theorem 19.

4.2 Enumerating the basis functions

According to the previous analysis, the second assumption on the domain configuration
is as follows.

Assumption 2. The ring Rℓ admits offsets at distance less or equal to (d − 1)/2 with
respect to the grid Gℓ.

This means that even bi–degrees (d, d) = (2n, 2n) require offsets at distance n − 1
2 ,

while odd bi–degrees (d, d) = (2n+ 1, 2n + 1) require offsets at distance n.
Let an offset–segment be the segment between two consecutive odd or even anchors

along the offset curve at distance k or k + 1
2 , respectively, for any k = 0, 1, . . .. We may

observe that the offsetting procedure preserves the number of MHCs. This means that
for any MHC along the ring Rℓ there exists a corresponding MHC along each offset curve
that Rℓ admits. Moreover, for any lower MHC along Rℓ with two boundary conditions
and composed of n elementary horizontal segments, the corresponding MHC along the
offset curve at distance (d− 1)/2 consists of m = n− (d− 1) offset–segments.

Remark 18. If the ring Rℓ satisfies Assumption 2, then it also satisfies Assumption 1.

Proof. If the domain admits offsets at distance less or equal to (d− 1)/2, the number m
of offset–segments along any MHC along the offset curve at distance (d − 1)/2, which
corresponds to a lower MHC with two boundary conditions along the boundary of Rℓ,
is at least 1. The number n = m+ d− 1 of elementary horizontal segments which form
this lower MHC along Rℓ is then greater or equal to d.
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We can formalize the counting of basis functions whose support has some non–empty
intersections with Rℓ as follows.

Theorem 19. The number of basis functions in the set

{τ : τ ∈ T ℓ ∧ supp τ ∩Rℓ 6= ∅} (15)

is equal to Dℓ (see Theorem 13) provided that Assumption 2 holds. In this case, the set
(15) when restricted to Rℓ forms a basis of Sℓ, hence

Sℓ = V ℓ
∣

∣

∣

Rℓ
, (16)

where V ℓ
∣

∣

∣

Rℓ
denotes the space obtained by restricting the functions in the tensor–product

spline space V ℓ (see beginning of Section 2.1) to the ring Rℓ.

Proof. As shown in Figure 1 for the low bi–degree cases, if d is even, i.e., d = 2n, we
identify each basis function with the central elementary cell of its support. The total
number of basis functions in T ℓ whose support intersects with Ω0 \ Ωℓ+1 is given by

c+

n−1
∑

k=0

Lk+ 1

2

(17)

The first term counts all the basis function centered in a cell inside the domain. The
second term instead counts each cell centered along offset curves at distances

1

2
, 1 +

1

2
, . . . , n−

1

2
.

The support of B–splines centered on the cells along these offset curves overlaps with
the domain (see also Figure 13). By substituting (14) into (17), we obtain

c+ np+ 4n2(M −H) = c+
d

2
p+ 4

(

d

2

)2

(M −H) = Dℓ.

As already mentioned, when d is odd, i.e., d = 2n + 1, we identify each basis function
with the center of its support. The total number of basis functions in T ℓ which intersect
with Ω0 \ Ωℓ+1 is given by

(

c−
p

2
+M −H

)

+

n
∑

k=0

Lk (18)

The first term counts all the basis function centered in a grid point inside the domain.
The second term counts each cell centered along offset curves at distances

0, 1, . . . , n,
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(a) First term in (17). (b) Second term in (17) for d = 2. (c) Second term in (17) for d = 4.

Figure 13: Number of tensor–product B–splines of bi–degree (2, 2) and (4, 4)
whose supports intersect the domain.

i.e. that overlaps with the domain (see also Figure 14). By substituting (13) into (18),
we obtain

c+

(

n+
1

2

)

p+ [4n(n + 1) + 1](M −H) = c+
d

2
p+ 4

(

d

2

)2

(M −H) = Dℓ.

Obviously, the functions in (15) are linearly independent, hence they form a basis of the
space Sℓ.

(a) First term in (18). (b) Second term in (18) for d = 3.

Figure 14: Number of tensor–product B–splines of bi–degree (3, 3) whose sup-
ports intersect the domain.

Figure 15 shows some admissible and non–admissible domain configurations.

5 Hierarchical bases on multi–grid multi–cell domains

The results obtained so far are valid only for the individual rings Rℓ, where all cells
belong to the grid of the same spline space V ℓ. Now we turn our attention to the full
multi–grid case. More precisely, we consider the space W of all spline functions of bi–
degree (d, d) and maximal order of smoothness which exist on the multi–grid multi–cell
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Figure 15: Examples of admissible (top) and non–admissible (bottom) domain
configurations for d = 2.

domain obtained by restricting the grid of V ℓ to Ωℓ, see (4). We formulate the main
result of this paper:

Theorem 20. If Assumption 2 on the domain configuration holds for all rings Rℓ

(ℓ = 0, . . . , N − 1) then the hierarchical B-spline basis K introduced in Definition 1
spans the entire space W defined in Eq. (4).

Proof. Given a function f ∈ W , we show that f ∈ spanK
∣

∣

∣

Ω0
. We proceed in three

steps.

• Step 1: There exist N functions

f ℓ ∈ span{τ ∈ T ℓ : supp τ ∩Rℓ 6= ∅} ⊆ V ℓ, ℓ = 0, . . . , N − 1 (19)

such that

f ℓ
∣

∣

∣

Rℓ
=

(

f −
ℓ−1
∑

i=0

f i

)

∣

∣

∣

Rℓ
. (20)

This can be seen by induction over ℓ. The existence of f0 is guaranteed by Theorem 19,

as Assumption 2 holds for R0 and f
∣

∣

∣

R0
∈ S0 = V 0

∣

∣

∣

R0
. Now, assuming that the existence

of f0, . . . , f ℓ−1 was already shown, the same theorem also guarantees the existence of

f ℓ. Indeed, Assumption 2 holds for Rℓ, f
∣

∣

∣

Rℓ
∈W

∣

∣

∣

Rℓ
⊆ Sℓ, and

f i
∣

∣

∣

Rℓ
∈ V i

∣

∣

∣

Rℓ
⊆ V ℓ

∣

∣

∣

Rℓ
= Sℓ, i = 0, . . . , ℓ− 1. (21)

• Step 2: These functions satisfy

f ℓ
∣

∣

∣

Rℓ−1
= 0, ℓ = 0, . . . , N − 1, (22)

24



where we set R−1 = ∅ to include the case ℓ = 0. Indeed, (20) can be rewritten as

f
∣

∣

∣

Rℓ
=

ℓ
∑

i=0

f i
∣

∣

∣

Rℓ
, (23)

and Rℓ−1 ⊆ Rℓ then implies

f
∣

∣

∣

Rℓ−1
=

ℓ
∑

i=0

f i
∣

∣

∣

Rℓ−1
. (24)

Moreover, rewriting (20) for f ℓ−1 yields

f
∣

∣

∣

Rℓ−1
=

ℓ−1
∑

i=0

f i
∣

∣

∣

Rℓ−1
. (25)

The claimed result (22) follows immediately when comparing equations (24) and (25).

• Step 3: These functions satisfy

f ℓ ∈ spanKℓ = span{τ ∈ T ℓ : supp τ ∩Rℓ−1 = ∅ ∧ supp τ ∩Rℓ 6= ∅}, (26)

see (2). In order to prove this fact we consider a representation of f ℓ with respect to
the basis considered in (19), namely

f ℓ =
∑

τ∈T ℓ, supp τ∩Rℓ 6=∅

cττ. (27)

For any basis function τ that has a non-empty intersection with Rℓ−1, the previous
observation (22) implies that the corresponding coefficient cτ in (19) is necessarily zero,
since the basis functions in T ℓ are locally linearly independent. This proves (26).

The proof of the theorem is complete, since K =
⋃N−1

ℓ=0 K
ℓ and rewriting (20) for ℓ =

N − 1 gives

f
∣

∣

∣

RN−1
=

N−1
∑

i=0

f i
∣

∣

∣

RN−1
, (28)

where RN−1 = Ω0 and f i ∈ spanKi.

Remark 21. 1. Note that the assumptions regarding the offsets are independent and
refer to different grids. More precisely, the condition that Rℓ = Ω0 \ Ωℓ+1 needs
to admit certain offsets with respect to the grid Gℓ constrains only the selection of
Ωℓ+1 but does not impose conditions on any other subdomain Ωk, k 6= ℓ+ 1.

2. The hierarchical grids satisfying Assumption 2 make local refinement possible. To
derive a simple construction, we assume that, for any level ℓ, the number of cells
in each direction is a multiple of d. We denote by d–grid of level ℓ the aligned
disjoint boxes composed of d × d cells with respect to the grid of V ℓ. If Ωℓ+1, for
ℓ = 0, . . . , N − 2, can be decomposed into a d–grid of level ℓ, then Assumption 2 is
satisfied. As shown in Figure 16 for d = 2, the class of hierarchical meshes with
this property admits the possibility of a local refinement.
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(a) Area selected to be refined: Φ. (b) Enlarged hierarchy of domains.

Figure 16: Left: a nested hierarchy of domains (N = 3) where each sub–
domain Ωℓ+1 can be decomposed into a 2-grid of level ℓ, and a region marked
for refinement (hatched). Right: the enlarged nested hierarchy of domains
(N = 4).

6 Closure

The dimension of smooth bivariate hierarchical tensor–product B–spline spaces defined
on multi–grid multi–cell domains given by sets of cells of tensor–product grids at different
refinement levels has been studied. Theorem 20 states that bivariate hierarchical B–
splines span the space of piecewise polynomials with the maximum order of smoothness
defined on certain hierarchical grids.

A detailed analysis of the admissible domain configurations covered by the proposed
analysis has been presented, leading to the formulation of Assumption 2. A simple
approach to satisfy this assumption has been proposed, see Remark 21. The development
of a more sophisticated algorithm based on weaker assumptions on the cell configuration
may be the subject of further studies.

The hierarchical basis can be suitably modified in order to define a piecewise polyno-
mial basis which is non–negative and consists of locally supported basis functions which
also form a partition of unity. The possibility of modifying the basis functions to define
a normalized weighted basis is discussed in [24].
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