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Abstract

The construction of classical hierarchical B–splines can be suit-
ably modified in order to define locally supported basis func-
tions that form a partition of unity. We will show that this
property can be obtained by reducing the support of basis func-
tions defined on coarse grids, according to finer levels in the
hierarchy of splines. This truncation not only decreases the
overlapping of supports related to basis functions arising from
different hierarchical levels, but it also improves the numerical
properties of the corresponding hierarchical basis — which is
denoted as truncated hierarchical B–spline (THB–spline) basis.
Several computed examples will illustrate the adaptive approxi-
mation behavior obtained by using a refinement algorithm based
on THB–splines.

1 Introduction

The key requirement of an effective mesh refinement algo-
rithm is to provide a local and adaptive procedure which
enables to refine the underlying geometric representations
so that only specific local regions of the domain are affected
(see, e.g., Figure 1, top left). Standard tensor–product
representations, as classical B–splines and NURBS mod-
els, preclude a strictly localized editing of the mesh. This
kind of refinement is naturally supported by the hierarchi-
cal spline model [4], where different levels of details are
identified by means of a hierarchy of tensor–product B–
splines.

The hierarchical model controls the locality of the re-
finement through an adaptive procedure that is exclusively
based on local basis refinement. In order to construct
a basis of the hierarchical spline space, a specific selec-
tion mechanism was proposed in [11] and extended in [20].
More precisely, the so-called hierarchical B–splines (HB–
splines)

• are locally supported, linearly independent, and non-
negative;

• allow an effective local control of the refinement.

Surface reconstruction schemes for solving interpola-
tion and approximation problems by using multilevel B–
splines were originally discussed by Forsey and Bartels [5],
and shortly after, additionaly investigated by Greiner and
Hormann [8]. Kraft developed a quasi–interpolation al-
gorithm based on hierarchical B–splines in [11]. There is
an increasing interest in hierarchical splines coming from
recent studies related to isogeometric analysis [20].

To address the problem of local mesh refinement, also
other extensions of tensor–product representations were
developed. T–splines [17, 18] and PHT–splines [2] are
defined over T–meshes, where T–junctions between axis
aligned segments are allowed. The T–spline framework
has already shown its potential as a powerful modeling tool
for advanced computer aided geometric design problems.
Complex CAD geometries can be efficiently represented as
a watertight T–spline model. Related plug–ins are already
included in commercial modeling software for designers.
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Figure 1: An example of a locally refined hierarchical mesh
and the corresponding hierarchical spline representation (top).
The structure of the least–squares matrices associated with the
HB–spline basis (middle left) and the THB–spline basis (middle
right) are also shown, together with their reordered version ac-
cording to the reverse Cuthill–McKee algorithm (bottom). The
THB/HB ratio with respect to sparsity is 57.59%.

Nevertheless, the corresponding refinement procedure
may cause a propagation of the refinement beyond the re-
gions marked by the error estimator [3]. In particular, the
linear independence of the T–spline blending functions can
be guaranteed only by considering a restricted subset of T–
splines [1, 13, 16]. In order to allow this, a more involved
algorithm — which reduces, but still does not eliminate,
the unwanted propagation of the refinement — has to be
considered and has been studied in [16].

In the context of PHT–splines, i.e. cubic splines over
hierarchical T–meshes with reduced C1 regularity, no re-
finement propagation is observed — see for example the
original papers [2, 12] or their recent application for the
numerical solution of partial differential equations [9, 14].
Despite a proper local refinement behavior in this case, the
reduced regularity leads to a higher number of degrees of
freedom to achieve a certain given accuracy.

The goal of the present paper is the definition and anal-
ysis of a normalized basis for hierarchically refined spline

1



spaces. The construction of hierarchical B-splines can be
modified by suitably truncating basis functions according
to finer levels in the hierarchy. After representing each
coarse hierarchical basis function in terms of basis func-
tions defined on a finer grid, we eliminate from this rep-
resentation the contribution corresponding to the subset
of finer basis functions that are effectively included in the
hierarchical basis. The truncation mechanism preserves all
the nice properties of hierarchical B–splines, such as linear
independence and non–negativity. In addition, truncated
hierarchical B–splines (THB–splines)

• have smaller support;

• form a partition of unity.

The potential of the THB–spline model with respect to
the locality of the refinement and also to the sparsity of
corresponding matrices is illustrated in Figure 1. A similar
truncation approach has been proposed in [19] to define a
normalized basis for hierarchical spline spaces defined on
Powell–Sabin triangulations.

The paper is organized as follows. Section 2 introduces
the definition of HB– and THB–splines, while Section 3
outlines the key properties of the THB–spline basis in the
general multivariate setting. As an application we con-
sider an adaptive approximation algorithm based on the
hierarchical model in Section 4. We use this framework to
demonstrate the good numerical properties of the THB–
spline basis. Finally, Section 5 makes some concluding
remarks and summarizes the key results of this paper.

2 From HB–splines to the THB–spline basis

In order to define the background machinery for the con-
struction of spline hierarchies, let

V 0 ⊂ V 1 ⊂ . . . ⊂ V N−1

be a nested sequence of n–variate B–spline function spaces
defined on the domain Ω0. Each spline space V ℓ, ℓ =
0, . . . , N − 1, is spanned by a given normalized B–spline
basis Bℓ.

For each level ℓ, with ℓ = 0, . . . , N − 1, let d be the
degree in any of the n dimensions of the spline space V ℓ ⊂
Cd−1(Ω0) spanned by the tensor–product B–spline basis
Bℓ defined on corresponding knot sequences. To guarantee
the nested nature of the spline spaces, these knot sequences
are also assumed to be nested.

In addition, let

Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN−1 (1)

be a sequence of nested domains. Each Ωℓ ∈ R
n represents

the region selected to be refined at level ℓ and its bound-
ary ∂Ωℓ is aligned with the knot lines of V ℓ. The proposed
setup allows us to consider any kind of refinement. How-
ever, in our examples we will only focus on dyadic cell re-
finement. Figure 2(a) shows a nested sequence of domains,
together with the corresponding knot line segments on Ω0.
Their union — shown in Figure 2(b) — will be referred to
as hierarchical mesh.

By modifying the classical support definition so that

supp f = {(x, y) : f(x, y) 6= 0 ∧ (x, y) ∈ Ω0}, (2)

hierarchical B–splines can be obtained as described below.

Definition 1. The hierarchical B–spline basis H is recur-
sively constructed as follows.

(I) Initialization: H0 =
{

β ∈ B0 : supp β 6= ∅
}

.

Ω0

Ω1

Ω2

Ω3

(a) nested domains

(b) hierarchical mesh

Figure 2: A nested sequence of domains for the construction of
the spline hierarchy according to relation (1), i.e., Ωℓ ⊇ Ωℓ+1

for ℓ = 0, . . . , 2, for the two–dimensional case.

(II) Recursive case: Hℓ+1 = Hℓ+1
A ∪ Hℓ+1

B , for ℓ =
0, . . . , N − 2, where

Hℓ+1
A =

{

β ∈ Hℓ : suppβ 6⊆ Ωℓ+1
}

,

and

Hℓ+1
B =

{

β ∈ Bℓ+1 : suppβ ⊆ Ωℓ+1
}

.

(III) H = HN−1.

The original definition, proposed by Kraft in [11] for
the bivariate setting, imposed the following restrictions

Ωℓ+1 =
⋃

β∈Sℓ,Sℓ⊆Bℓ

suppβ, ∂Ωℓ ∩ ∂Ωℓ+1 = ∅,

on the hierarchical sub–domains, i.e., Ωℓ+1 was defined as
the union of supports of B–splines of level ℓ and charac-
terized by disjoint boundaries with respect to Ωℓ. These
restrictions are not required anymore by Definition 1. In
particular, the modified support definition (2) — firstly
considered in [20] — allows for refinement close to ∂Ω0,
which was not covered by the original construction pre-
sented in [11].

Hierarchical B–splines, however, do not satisfy the par-
tition of unity property. In addition, the number of over-
lapping basis functions associated to different hierarchical
levels easily increases. This motivates the construction of
another basis for the hierarchical spline space. The key
idea behind the proposed approach relies on the following
definition.

Definition 2. Let τ ∈ V ℓ and let

τ =
∑

β∈Bℓ+1

cℓ+1
β (τ )β, cℓ+1

β ∈ R, (3)
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be its representation with respect to the finer basis of V ℓ+1.
The truncation of τ with respect to Bℓ+1 and Ωℓ+1 is de-
fined as

truncℓ+1 τ =
∑

β∈Bℓ+1, suppβ 6⊆Ωℓ+1

cℓ+1
β (τ )β. (4)

By applying the truncation mechanism to hierarchi-
cal B–splines of coarse levels, we can introduce the THB–
spline basis.

Definition 3. The truncated hierarchical B–spline basis T
is recursively constructed as follows.

(I) Initialization: T 0 = H0.

(II) Recursive case: T ℓ+1 = T ℓ+1
A ∪ T ℓ+1

B , for ℓ =
0, . . . , N − 2, where

T ℓ+1
A =

{

truncℓ+1τ : τ ∈ T ℓ ∧ supp τ 6⊆ Ωℓ+1
}

,

and T ℓ+1
B = Hℓ+1

B .

(III) T = T N−1.

In the classical hierarchical construction, coarse basis
functions of a certain level ℓ whose support is completely
covered by finer B–splines of level ℓ + 1 (which will be
added to the hierarchical basis) are replaced. For THB–
splines, the replacement works as in the hierarchical case.
In addition, coarse basis functions whose support has a
non–empty overlap with Ωℓ+1 are truncated.

Example 4. The iterative constructions introduced in Def-
initions 1 and 3 are illustrated in Figure 3 for the one–
dimensional quadratic case.

Example 5. Figure 4 shows bi–quadratic THB–splines de-
fined over the hierarchical mesh introduced in Figure 2 for
levels 1, 2, and 3. In particular, Figure 4(a) shows the 9
truncated basis functions whose support is completely con-
tained in Ω1 but not in Ω2. From the 12 B–splines of level
2 whose support is completely contained in Ω2, one will be
replaced (i.e., eliminated) and the other 11 will be trun-
cated as shown in Figure 4(b). Finally, the 20 B–splines
which cover Ω3 will be added to the truncated B–spline
basis. Assuming that the domain is not further refined,
there is no truncation in this case. Figure 4(c) shows three
of these basis functions on the finest level.

3 Properties of the THB–spline basis

In virtue of the non–negativity property of the B–spline
basis, hierarchical B–spline basis functions are also non–
negative. In addition, the property of local linear inde-
pendence and the nested nature of the spline spaces are
inherited from the background normalized tensor–product
B–splines — see Lemmas 2 and 3 in [20]. The partition
of unity property, instead, is lost during the hierarchical
construction. From Definition 3 we may observe that

• for each truncated basis function τ introduced at level
ℓ, there exists one B–spline β ∈ Bℓ which satisfies

τ = truncN−1
(

truncN−2 . . .
(

truncℓ+1(β)
)

. . .
)

(5)

and
τ
∣

∣

Ωℓ\Ωℓ+1 = β
∣

∣

Ωℓ\Ωℓ+1 ; (6)

• the property of non–negativity remains true.

The B-spline β related to the truncated basis function τ
as in (5) will be called the mother B-spline of τ and will
be indicated by mot(τ ). Moreover,

• spanH = span T ;

(a) bi–quadratic THB–splines of level 1

(b) bi–quadratic THB–splines of level 2

(c) some bi–quadratic THB–splines of level 3

Figure 4: Bi–quadratic THB–splines for Example 5.
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Ω0

Ω1

Ω2

(a) nested intervals of level 0,1,2, and the hierarchical mesh (b) HB–splines of level 1 and 2 (c) THB–splines of level 1 and 2

Figure 3: Univariate quadratic HB– and THB–splines defined on the hierarchical mesh shown in (a). For cases (b) and (c), top:
basis functions of level 1 (B–splines of level 1 that are replaced or modified are depicted in grey lines); middle: finer basis functions
of level 2; bottom: combination of basis functions from these two hierarchical levels.

• the truncated basis functions are linearly independent
and form a partition of unity.

The linear independence and partition of unity will be
discussed in Theorems 6 and 10, respectively. The equiv-
alence of the two hierarchical spline spaces will be shown
in Theorem 9.

Theorem 6. The functions in T are linearly independent.

Proof. We have to prove that

∑

τ∈T

cττ = 0 ⇒ cτ = 0. (7)

We may decompose the sum on the left in (7) according
to the mother B-splines introduced at a certain level ℓ,
namely

∑

τ∈T ,mot(τ)∈B0

cττ +
∑

τ∈T ,mot(τ)∈B1

cττ + . . .

. . . +
∑

τ∈T ∩BN−1

cττ = 0. (8)

The basis functions collected by the first sum in (8) are
the only non–zero functions acting on the region given by
Ω0 \ Ω1. In virtue of (5)–(6) and of the local linear inde-
pendence of the B–spline basis, these functions are locally
linearly independent on Ω0 \Ω1, and thus the correspond-
ing coefficients cτ must be zero.

Excluding the functions already considered in this first
sum, the basis functions collected by the second sum are
the only non–zero functions which act on Ω1 \ Ω2. As
before, also the corresponding coefficients cτ must be zero.
We can repeat the same argument for the sums related to
the basis functions whose mother B-splines belong to Bl,
l = 2, . . . , N − 2.

On the other hand, the basis functions τ ∈ T ∩ BN−1

represent just the subset of B–splines in BN−1 whose sup-
port is completely contained in ΩN−1. Hence, they are
locally linearly independent on this last subdomain, and
also the coefficients cτ in the last sum must be zero.

Lemma 7. Let H and T be the two bases introduced in
Definition 1 and 3, respectively. We have

#H = #T .

Proof. It is easy to see that #T ℓ
A = #Hℓ

A and #T ℓ
B =

#Hℓ
B , for all ℓ = 0, . . . , N − 1.

Lemma 8. Let T be the basis introduced in Definition 3.
We have

span T ℓ ⊂ span T ℓ+1, ℓ = 0, . . . , N − 2.

Proof. Any f ∈ span T ℓ can be expressed as

f =
∑

τ∈T ℓ

dτ (f)τ

=
∑

τ∈T ℓ, supp τ 6⊆Ωℓ+1

dτ (f)τ +
∑

τ∈T ℓ, supp τ⊆Ωℓ+1

dτ (f)τ

=
∑

τ∈T ℓ, supp τ 6⊆Ωℓ+1

dτ (f)





∑

β∈Bℓ+1, suppβ 6⊆Ωℓ+1

cℓ+1
β (τ )β

+
∑

β∈Bℓ+1, suppβ⊆Ωℓ+1

cℓ+1
β (τ )β





+
∑

τ∈T ℓ, supp τ⊆Ωℓ+1

dτ (f)





∑

β∈Bℓ+1, suppβ⊆Ωℓ+1

cℓ+1
β (τ )β





=
∑

τ∈T ℓ, supp τ 6⊆Ωℓ+1

dτ (f) trunc
ℓ+1τ

+
∑

β∈Bℓ+1, suppβ⊆Ωℓ+1





∑

τ∈T ℓ

dτ (f)c
ℓ+1
β (τ )



β

=
∑

τ∈T ℓ+1

A

dτ (f) trunc
ℓ+1τ +

∑

β∈T ℓ+1

B

dβ(f)β,

where cℓ+1
β (τ ) has been introduced in (3)–(4). The first

sum in the last line belongs to the span of T ℓ+1
A , while the

second sum to the one of T ℓ+1
B . Hence, f ∈ span T ℓ+1.

Theorem 9. Let H and T be the bases introduced in Defi-
nitions 1 and 3, respectively. We have

spanH = span T .

Proof. By induction on ℓ, we prove that

spanHℓ = span T ℓ ⇒ spanHℓ+1 = span T ℓ+1.

For ℓ = 0 it follows directly from Definition 3. By consid-
ering Definition 1, the inductive hypothesis, and Lemma 8,
we may observe that

spanHℓ+1
A ⊆ spanHℓ = span T ℓ ⊂ span T ℓ+1,
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while, by Definition 3 again,

spanHℓ+1
B = span T ℓ+1

B ⊆ span T ℓ+1.

Then
spanHℓ+1

A ∪ spanHℓ+1
B ⊆ span T ℓ+1,

i.e.,
spanHℓ+1 ⊆ span T ℓ+1.

In view of the linear independence of the two bases and
of Lemma 7, we may then conclude that spanHℓ+1 =
span T ℓ+1.

Theorem 10. The truncated hierarchical B–spline basis T
forms a partition of unity:

∑

τ∈T ℓ

τ = 1 on Ω0, ℓ = 0, 1, . . . , N − 1.

Proof. We recall that
∑

β∈Bℓ

β = 1 on Ω0, ℓ = 0, 1, . . . , N − 1. (9)

The partition of unity can be shown by induction on the
hierarchical level ℓ. The base case simply follows from (9)
with ℓ = 0. The inductive step

∑

τ∈T ℓ

τ = 1 on Ω0 ⇒
∑

τ∈T ℓ+1

τ = 1 on Ω0

can be proved by using (3) and re–arranging the sums as
follows.

1 =
∑

τ∈T ℓ

τ =
∑

τ∈T ℓ

∑

β∈Bℓ+1

cℓ+1
β (τ )β

=
∑

τ∈T ℓ





∑

β∈Bℓ+1, suppβ 6⊆Ωℓ+1

cℓ+1
β (τ )β

+
∑

β∈Bℓ+1, suppβ⊆Ωℓ+1

cℓ+1
β (τ )β





=
∑

τ∈T ℓ





∑

β∈Bℓ+1, suppβ 6⊆Ωℓ+1

cℓ+1
β (τ )β





+
∑

β∈Bℓ+1, suppβ⊆Ωℓ+1





∑

τ∈T ℓ

cℓ+1
β (τ )



 β. (10)

The term in brackets in the first sum of the last equation
is just truncℓ+1(τ ). Moreover, by (9) and by swapping the
order of sums in the first line of (10), we have

∑

β∈Bℓ+1

β = 1 as well as 1 =
∑

β∈Bℓ+1





∑

τ∈T ℓ

cℓ+1
β (τ )



 β

on Ω0. By comparing coefficients and by the linear inde-
pendence of the B-splines we can conclude that

∑

τ∈T ℓ

cℓ+1
β (τ ) = 1,

for all β ∈ Bℓ+1 and in particular for each β such that
supp β ⊆ Ωℓ+1. From (10), in view of Definition 3, we
then obtain

1 =
∑

τ∈T ℓ

truncℓ+1(τ ) +
∑

β∈Bℓ+1, suppβ⊆Ωℓ+1

β

=
∑

τ∈T
ℓ+1

A

τ +
∑

τ∈T
ℓ+1

B

τ =
∑

τ∈T ℓ+1

τ.

In view of the non–negativity of truncated basis func-
tions and of the previous theorem, the functions in T form
a convex partition of unity. Moreover, Theorem 9 allows
us to apply the characterization of bivariate hierarchical
B–spline spaces recently provided in [7] to the bivariate
THB–spline model. By considering certain mild assump-
tions on the configuration of the hierarchical mesh, single
knots, dyadic refinement, and ∂Ωℓ aligned with the knot
lines of V ℓ−1, the bivariate truncated hierarchical B–spline
basis of bi–degree (d, d) covers the space of piecewise poly-
nomials of the same degree which are Cd−1 smooth on the
considered domain — see [7] for the details.

4 Surface approximation with THB–splines

In this section we compare the local and adaptive behav-
ior of hierarchical and truncated hierarchical B–splines for
the solution of a classical approximation problem. A least–
squares fitting is iteratively computed after the execution
of a refinement procedure until the approximation error is
satisfactory with respect to a given tolerance. Once the de-
gree d in each direction of the background tensor–product
B–spline basis has been chosen, the approximation proce-
dure can be summarized as follows.

Hierarchical spline approximation

Input : an initial domain Ω0, together with a data set
(pi, fi), i = 0, . . . ,m, which associates real values fi
to a set of points pi ∈ Ω0, a certain tolerance ǫ, and
a maximum value for the number of iteration steps
smax.

Algorithm:

(a) define an initial tensor–product space V 0 on Ω0,
and initialize s = 0;

(b) compute the least–squares approximation f =
∑

β∈H cββ =
∑

τ∈T cττ , which minimizes

m
∑

i=0

(fi − f(pi))
2

according to the current hierarchical spline
space;

(c) if max |fi − f(pi)| > ǫ and s < smax, then set
s = s+1, and apply the hierarchical refinement
according to the considered cell selection strat-
egy, and repeat step (b).

Output : the least–squares approximation f expressed
in terms of HB–splines and THB–splines so that
max |fi − f(pi)| ≤ ǫ or s = smax.

Step (c) of the above algorithm can be described by
the following black–box procedure — possible subdomain
enlargement strategies will be discussed later on.

Hierarchical refinement

Input : the current hierarchical sequence of nested do-
mains (1), together with the regions marked for fur-
ther refinement.

Output : a (possibly enlarged) nested sequence of do-

mains Ω̂0 ⊇ Ω̂1 ⊇ . . . ⊇ Ω̂N so that

Ω̂0 ≡ Ω0, Ω̂ℓ ⊇ Ωℓ, ℓ = 0, . . . , N − 1,

and the corresponding hierarchical sequence of bases
Ĥℓ and T̂ ℓ, ℓ = 0, . . . , N , constructed according to
Definitions 1 and 3.
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As already observed in [20], the nested nature of the
spline space is preserved by the nested (enlargement of)
domains constructed by the refinement procedure, namely
spanHℓ ⊆ span Ĥℓ, for any level ℓ = 0, . . . , N −1. In com-
bination with a suitable refinement strategy, this a priori
knowledge automatically ensures that approximations de-
fined on refined grids of a given function converge to that
function with an increased level of details.

The good approximation properties of the truncated
hierarchical basis with respect to classical hierarchical B–
splines are illustrated in the two following bivariate exam-
ples. We only consider single knots and quadratic degree
in both directions.

Example 11. We computed the least–squares approxima-
tions of the function

f =
2

3 exp(
√

(10x− 3)2 + (10y − 3)2)

+
2

3 exp(
√

(10x+ 3)2 + (10y + 3)2)

+
2

3 exp(
√

(10x)2 + (10y)2)
,

shown on the left of Figure 5, by sampling the data
points on a 150 × 150 uniform grid defined on the do-
main [−1, 1] × [−1, 1]. Figure 6 collects several locally
refined hierarchical meshes together with the correspond-
ing bi–quadratic THB–spline approximations. Tables 1
and 2 show the comparison between the HB– and THB–
spline approximations with respect to sparsity and condi-
tion number, respectively, of the matrices used to compute
the least–squares approximations.

0
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Figure 5: Functions considered in Examples 11–12 (left) and 13
(right).

step HB THB THB/HB
0 576 576 100.00%
1 1,496 1,312 87.70%
2 3,380 2,696 79.76%
3 8,288 5,506 66.43%
4 24,058 13,492 56.08%
5 35,938 18,412 51.23%

Table 1: Number of non–zero matrix elements for the two ma-
trices associated with the HB– and THB–spline least–squares
approximations (d = 2) in Example 12.

Example 12. In order to have a closer look at the struc-
ture of the linear systems which characterize the consid-
ered approximation problem, we applied two reordering
algorithms to the matrices obtained at the last refinement
step in Example 11. The first one is the symmetric re-
verse Cuthill–McKee algorithm which permutes the rows
and columns of a given matrix so that the non–zero ele-
ments are closer to the diagonal. The second one is the

step HB THB THB/HB
0 1.938e+03 1.938e+03 100.00%
1 5.989e+03 4.037e+03 67.41%
2 4.879e+03 2.720e+03 55.75%
3 4.973e+03 2.772e+03 55.74%
4 9.599e+03 4.214e+03 43.90%
5 3.893e+04 1.747e+04 44.88%

Table 2: Condition number of the two matrices associated with
the HB– and THB–spline least–squares approximations (d = 2)
in Example 12.

symmetric approximate minimum degree permutation al-
gorithm which, instead, computes a suitable permutation
of rows and columns of a given matrix so that the non–
zero elements of the Cholesky factor are reduced. The
original matrices together with the two reordered versions
are shown in Figure 7. We may observe that the Cuthill–
McKee reordering performs particularly better when ap-
plied to the matrix associated with the THB–splines ba-
sis rather than to the one associated with hierarchical B–
splines — see the two central plots of Figure 7. Figure 8
illustrates the corresponding Cholesky factorizations, and
the related comparison with respect to sparsity is summa-
rized in Table 3.

matrix HB THB THB/HB
org 176,999 90,861 51.33%
rcm 95,136 75,240 79.09%
amd 38,252 28,925 75.62%

Table 3: Number of non–zero elements of the Cholesky factors
considered in Example 12. The data related to the original fac-
tors (org) are shown together with the data of the Cholesky
factors computed after the reordering according to the reverse
Cuthill–McKee (rcm) algorithm, and to the approximate mini-
mum degree (amd) algorithm.

By focusing again on the bivariate case with sin-
gle knots, we now investigate the following three par-
ticular strategies for the construction of the sequence
{Ω̂ℓ}ℓ=0,...,N . Let Φ0 = ∅, and let Φℓ be the region spanned
by the cells of level ℓ−1 selected to be refined by the error
estimator, for ℓ = 1, . . . , N .

(S1) Each Ω̂ℓ is the union of Ωℓ and Φℓ.

(S2) Each Ω̂ℓ is given by the domain constructed in (S1)
plus an offset ring around Φℓ of ⌈ d−1

4
⌉ cells with re-

spect to the knot mesh of V ℓ in the horizontal, verti-
cal, and diagonal directions.

(S3) Each Ω̂ℓ is the union of disjoint boxes composed by
d × d cells with respect to the knot mesh of V ℓ−1

containing the domain constructed in (S1).1

Obviously the first strategy may be too naive. It can create
refined (isolated) regions that will not enrich the hierarchi-
cal spline space, because no additional finer basis functions
act on these regions. The aim of strategies (S2) and (S3)
is to identify refined regions which are large enough to en-
sure an improved hierarchical spline space. The width of
the offset ring considered in strategy (S2) comes from the
dyadic refinement we are considering. For example, an off-
set ring of one cell in each direction around any (isolated)
cell marked by the error estimator guarantees to add at
least one finer basis function of degree d = 2, . . . , 5. The
trade–off between the locality of the refinement and the

1This refinement strategy was proposed in [7].
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(a) step 0: dimension = 36, max error = 4.493e-01
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(b) step 1: dimension = 64, max error = 3.877e-01
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(c) step 2: dimension = 112, max error = 2.223e-01
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(d) step 3: dimension = 190, max error = 1.153e-01
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(e) step 4: dimension = 456, max error = 3.047e-02

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

(f) step 5: dimension = 600, max error = 2.987e-03

Figure 6: Locally refined hierarchical meshes and corresponding
THB–spline least–squares approximations (d = 2) to the func-
tion shown on the left of Figure 5 and considered in Example 11.

Figure 7: Structure of the matrices associated with the HB–
spline basis (top) and the THB–spline basis (bottom) in Exam-
ple 12. Left: original matrices; center: Cuthill–McKee reorder-
ing; right: approximate minimum degree permutation.

Figure 8: Cholesky factorizations of the matrices associated
with the HB–spline basis (top) and the THB–spline basis (bot-
tom) in Example 12. Left: original matrices; center: after
Cuthill–McKee reordering; right: after approximate minimum
degree permutation.

enlargement of Ω̂ℓ may influence the quality of the final
approximation.

In the last example we compare these three refinement
strategies for a given test function.

Example 13. We sampled the data points on a 150 × 150
uniform grid from the function2

f(x, y) =



















1, y − x > 1/2,

2(y − x), 0 ≤ y − x ≤ 1/2,

1/2 cos(4π
√

q(x, y)) + 1/2, q(x, y) ≤ 1/16,

0, otherwise,

where q(x, y) = (x − 3/2)2 + (y − 1/2)2, defined on the
domain [0, 2]× [0, 1] — see Figure 5 on the right. Figure 9
presents the results obtained considering the refinement
strategies mentioned above with ǫ = 5e−3, smax = 4, and
d = 2. For each strategy, the hierarchical meshes obtained
after s = 4 are shown together with a visualization of the
error on the domain. We may observe that only with strat-
egy (S2) the approximation error is less than the given tol-
erance ǫ. In each case the truncated basis performs better
than the HB–spline basis.

2This test function is taken from [10, 15].
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(a) strategy (S1) — max error: 8.762e-03, THB/HB ratio with respect to sparsity: 86.23%, and to condition number: 84.67%

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.25

0.5

0.75

1

0

0.5

1

1.5

2

0

0.25

0.5

0.75

1
0

0.005

0.01

(b) strategy (S2) — max error: 4.062e-03, THB/HB ratio with respect to sparsity: 76.37%, and to condition number: 83.53%
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(c) strategy (S3) — max error: 9.415e-03, THB/HB ratio with respect to sparsity: 81.17%, and to condition number: 90.29%

Figure 9: Locally refined hierarchical meshes (left) and approximation errors (right) obtained with the refinement strategies (S1),
(S2), and (S3) for the function shown on the right of Figure 5 and considered in Example 13. The comparisons THB/HB with
respect to sparsity and condition number of the corresponding matrices are also indicated.

5 Conclusion

A new normalized basis for multivariate hierarchical spline
spaces has been proposed, and its performance for the com-
putation of bivariate adaptive approximations has been
tested through a selection of computed examples. The the-
oretical framework that modifies the hierarchical B–spline
basis functions in order to define the THB–spline basis was
introduced. Furthermore, the equivalence with hierarchi-
cal B–spline spaces, and the properties of linear indepen-
dence and partition of unity were proved. The advantages
of exploiting the truncation mechanism with respect to the
original HB–spline model are illustrated in the context of
data fitting.

The hierarchical approximation scheme can be en-
hanced to facilitate the modeling of detailed features by
using some kind of fairness functionals as suggested in
[6, 8]. Alternative error estimators and refinement strate-
gies can also be considered to further improve the conver-
gence rate, as well as the shape qualities of the resulting
surface. Moreover, additional studies, such as a theoretical
analysis of stability and related issues will be interesting
subjects of future research. Finally, the n–variate THB–
spline framework is well suited for related applications in

isogeometric analysis.
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