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Abstract

Isogeometric analysis is a novel approach to numerical simula-
tion that has the potential to bridge the gap between geometric
design and numerical analysis. It uses the same exact geometry
representation in all stages of the product development. In this
paper we present recent results which demonstrate the com-
petitiveness of the new concept in an industrial environment,
more precisely, in the challenging field of aircraft engines. We
study the deformation of turbine blades under the assumption
of linear elasticity by considering all major loads and boundary
conditions of a standard mechanical simulation process for tur-
bine blades. We use the numerical approximations obtained by
the classical finite element method as a benchmark for the ca-
pabilities of the new concept. It is shown that it is able to reach
comparable results using only a small fraction of the number
of degrees of freedom required by the classical method. Thus,
isogeometric analysis allows using much coarser geometric rep-
resentations for numerical simulation.

1 Introduction

The commercial activities of the MTU Aero Engines fo-
cus on developing, manufacturing and repairing turbine
engines for aircrafts. A challenging task in this field is
the efficient interaction between the geometric design and
the numerical simulation of the individual components. In
general, a designer generates a CAD (computer aided de-
sign) model which has to be prepared and transformed into
a mesh for the finite element analysis (FEA). This process
is still a bottleneck in the overall engineering process.

An impressive and promising concept to bridge this gap
is referred to as isogeometric analysis (IGA) which was in-
troduced in [19]. It uses the geometric representation of the
object, parameterized by B-splines or NURBS as the CAD
standard, to define the finite-dimensional spaces needed for
the Galerkin projection within the numerical analysis. As
a major advantage, only one representation of the object
is required and consequently the geometrical errors intro-
duced by the approximation of the physical domain by a
computational mesh in the finite element method (FEM)
are eliminated. Furthermore a significant reduction of the
number of unknowns and an efficient optimization process
becomes possible.

Since its introduction in 2005, IGA has attracted enor-
mous interest from the academic community, resulting in
a substantial number of related publications. These pub-
lications can be organized in four groups.

First, IGA has been successfully applied to various
specific simulation problems, including linear elasticity,
simulation in electromagnetics, and flow simulations, e.g.
[8, 14, 26]. These publications clearly demonstrate the ap-
plicability for large classes of problems and often the supe-
riority of the new concept compared to the standard finite
element approaches.

Second, several authors have studied several theoretical
aspects of IGA, such as error estimates, convergence rates,

stability issues, and numerical quadrature rules, e.g. in
[3, 5, 22, 28]. It was shown that many of the theoretical
results obtained for the classical finite element analysis can
be generalized to the isogeometric case.

The third group of publications deals with the non-
trivial problem of domain parameterization for IGA. Suit-
able parameterizations can be obtained either by directly
designing them for specific applications or by deriving
them from an existing CAD model or from a triangular
mesh representation [1, 9, 16, 24]. Volumetric representa-
tions such as polycube splines [31] may be useful in the
future.

Fourth, the use of tensor-product spline spaces in IGA
triggered new research on generalizations of these spaces
providing local adaptivity. Several concepts are currently
being developed in parallel, including T-splines, hierar-
chical splines, and polynomial splines over hierarchical
T-meshes [4, 6, 10, 11, 13, 23, 25, 30].

Based on these and other very promising results from
the academic community, we demonstrate the capabilities
of the new concept of IGA in a real-world industrial envi-
ronment. More precisely, we will use it for the numerical
simulation of turbine blades as one of the crucial steps in
the design of highly efficient turbine engines. Based on
a given volumetric B-spline parameterization of turbine
blades we study their deformation under centrifugal forces
and mechanical and thermal loads given by the aerody-
namical and thermodynamical analysis. For the sake of
brevity we shall denote both turbine blades and compres-
sor blades as turbine blades or blades only.

After a brief introduction to the volumetric turbine
blade model and the governing equations and variables
of linear elasticity we use the isogeometric concept to de-
rive a system of linear equations determining the displace-
ment field. With the focus on the industrial applicability,
we present simulation examples incorporating the required
boundary conditions and compare them with the finite el-
ement calculations.

2 Turbine blade model

We introduced a framework to model a single trivariate
B-spline volume of a turbine blade with the focus on the
industrial applicability in [16]. Starting from a triangular
mesh of a blade, generated by an optical measurement sys-
tem or by sampling a standard (surface) CAD description,
a single-patch volumetric parameterization

F(ξ1, ξ2, ξ3) =
∑

j1=1,...,n1
j2=1,...,n2
j3=1,...,n3

Nj1(ξ1)Nj2(ξ2)Nj3(ξ3) dj1,j2,j3 (1)

with the domain Ω0 = [0, 1]3 was constructed by a semi-
automatic process. The univariate B-spline basis functions
Nj1(ξ1), Nj2(ξ2) and Nj3(ξ3) of a certain degree d are de-
fined with respect to three given knot vectors Ξ1,Ξ2 and
Ξ3 with degree-fold boundary knots. The vector-valued
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Figure 1: The figure shows several parametric curves and sur-
faces of a trivariate B-spline model of a turbine blade. The air-
foil and the block part are two C0 connected B-spline volumes.
The singular curves of the parameterization coincide with the
transition between the edges and the sides of the airfoil, called
wedge curves (shown in red).

coefficients dj1,j2,j3 ∈ R3 are called control points. See
[17] for more information on B-spline techniques.

The resulting volumetric model is visualized in Figure
1. It supports all standard blade features such as

• faithful representation of wedge curves,

• representation of leading and trailing edge,

• reproduction of the fillet curve, and

• the natural flow of the blade at the fillet,

see [16] for more information.
An additional block represents a part of the disk and

is connected by the d-fold knot ξ3 = ξ̄3. The choice of
B-splines (or the more general NURBS) ensures the com-
patibility to the standard CAD and CAE systems.

Now, the so-called geometry function F (i.e., the vol-
umetric parameterization) enables us to explore the new
numerical simulation approach of isogeometric analysis. In
addition, a fully automatic structured mesh generation for
the standard finite element method becomes available: A
discretization of ξ1, ξ2 and ξ3 in the parameter space Ω0

generates nodes and hexahedral elements of a structured
mesh in the physical space Ω. We use quadratic hexahedral
elements for the finite element simulations in the presented
work, which were performed to compare the results with
isogeometric analysis. The singular hexahedral elements
along the wedge curves are replaced by pairs of quadratic
wedge elements.

3 Linear elasticity

We consider a three-dimensional solid Ω ⊂ R3 consist-
ing of a polycrystalline material for which an isotropic
and linear elastic behavior is assumed. The solid Ω is
deformed under some prescribed mechanical and thermal
loads which are constant over time: The volume forces
b̂ = (b̂1, b̂2, b̂3)T , the boundary tractions t̂ = (t̂1, t̂2, t̂3)T ,
the boundary displacements û = (û1, û2, û3)T and the ther-
mal expansion caused by the inhomogeneous temperature
distribution within Ω. These loads cause a change of the
shape of the solid denoted by the (unknown) displacement
field u = (u1, u2, u3)T .

We use the index notation for the following vector and
tensor operations. The subscripts are 1, 2, 3 and refer to
the three-dimensional vectors and vector fields unless it is
stated otherwise. The one-dimensional components Ω and
Γ of the three-dimensional domains Ω and Γ are denoted
without subscripts for the sake of readability.

The mechanical situation at a material point of the
solid under the prescribed loads and boundary conditions
is described by the following strong form of the bound-
ary value problem: Find the displacements ui : Ω → R
(i = 1, 2, 3) such that

∂σij

∂xj
+ b̂i = 0 in Ω, (2)

1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
= εij in Ω, (3)

cijkl (εkl − α∆Tδkl) = σij in Ω, (4)
ui = ûi on ΓD, (5)

σijnj = t̂i on ΓN , (6)

with ΓD ∪ ΓN = Γ = ∂Ω for the given Dirichlet bound-
ary conditions (5) and the Neumann boundary conditions
(6) with the unit outward normal n = (n1, n2, n3)T . The
vector x = (x1, x2, x3)T denotes the spatial components of
the Cartesian coordinate system in the physical space.

The equilibrium equation (2) relates the (symmetric)
stress tensor σij to the given volume forces b̂i. The strain
tensor εij is defined to be the symmetric part of the dis-
placement gradient under the assumption of small displace-
ments (3). The constitutive equation (4) relates the stress
tensor to the strain tensor by the elastic coefficients cijkl,

cijkl = λ δijδkl + µ (δikδjl + δilδjk) , (7)

where δij denotes the Kronecker delta. The Lamé param-
eters λ and µ are often expressed by the Young’s modulus
E and Poisson’s ratio ν,

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (8)

The thermal expansion coefficient α of a material quantifies
the change in volume with a change in temperature.

It is extremely important to model the influence of the
temperature on the material properties in the blade de-
sign, since the turbine blades reach their final shape only
under the influence of temperature, centrifugal forces and
pressure fields.

See [7, 18] for more information on linear elasticity.

4 Isogeometric analysis

Now, we outline the main features of the isogeometric con-
cept and apply them to the derived boundary value prob-
lem of linear elasticity for three-dimensional solids. For
more information on isogeometric analysis, see [19, 20],
and especially for the simulation of solids, see [1, 29].

4.1 Weak form

The classical finite element concept and the new isogeo-
metric concept are both based on the weak form as a vari-
ational formulation of the strong form (2)–(6). The weak
form requires two function spaces.

First, the space V,

V =
{

v = (v1, v2, v3)T | vi ∈ H1(Ω), vi|ΓD= 0
}
, (9)
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consists of all test functions v that vanish on the Dirichlet
boundary of Ω. Second, the solution space S,

S =
{

u = (u1, u2, u3)T | ui ∈ H1(Ω), ui|ΓD= g
}
, (10)

contains all potential solution functions u which are re-
quired to satisfy the Dirichlet boundary conditions (5).
The Sobolev space H1(Ω) consists of all functions on Ω
with weak and square-integrable first derivatives.

We obtain the variational formulation of the strong
form by multiplying the equilibrium equation (2) and
the Neumann boundary conditions (6) with arbitrary test
functions (9) and by integrating over Ω. The resulting
weak form of the problem is stated as follows: For given
volume forces b̂i, surface tractions t̂i and boundary dis-
placements ûi, find u ∈ S such that for all v ∈ V,∫

Ω

σij
∂vi
∂xj

dx =

∫
Ω

b̂ivi dx +

∫
ΓN

t̂ivi dx. (11)

Replacing the partial differential equations of equilibrium
in the strong form by an integral in the weak form leads
to a formulation which is more suitable for finite element
analysis and isogeometric analysis.

The choice of the test functions in the weak form is
arbitrary and we look upon vi as the virtual displacements
vi = δui. Inserting equations (3) and (4) into the weak
form results in the principle of virtual work∫

Ω

cijkl
∂δui

∂xj

(
∂uk

∂xl
− α∆Tδkl

)
dx

=

∫
Ω

b̂iδui dx +

∫
ΓN

t̂iδui dx.

(12)

Equation (12) is still a continuous formulation of the prob-
lem and we have to transform it to a discrete formulation
to solve it numerically.

4.2 Galerkin projection

The Galerkin projection is the most famous approach to
project the continuous problem stated by the weak form
(11) into a discrete one by replacing the function spaces
S, V with finite dimensional subspaces Sh ⊂ S, Vh ⊂ V,
where h indicates the discretization of the domain Ω. The
function uh ∈ Sh is constructed as a linear combination

uh = φ0 +

n∑
j=1

φjqj (13)

with coefficients qj and basis functions φj : Ω0 → R for
j = 1, . . . , n. The function φ0 fulfills the Dirichlet bound-
ary conditions. The key point is to observe that Sh and
Vh are composed of identical collections of functions. In
the classical finite element approach, the subspace Vh con-
sists of piecewise C0 connected polynomials. As a result,
the given geometry F is approximated by the linear combi-
nation of the basis functions φj and the three-dimensional
nodes of the generated finite element mesh. In most prac-
tical applications, low order polynomials are used as basis
functions. We choose a triquadratic polynomial basis for
the finite element simulations in the present work.

4.3 Isogeometric approach

The isogeometric approach takes the exact geometry func-
tion F into account and uses the spanned function space
to define the solution and weighting space Sh, Vh. In the
present work, the turbine blades are modeled by a single
trivariate B-spline volume (1). We rewrite the geometry
function F : Ω0 → R3 as

F(ξ1, ξ2, ξ3) = N̄j(ξ1, ξ2, ξ3) dj , (14)

Figure 2: In the isogeometric concept, the finite-dimensional
space for the Galerkin projection is obtained by composing the
B-spline (resp. NURBS) basis functions ū with the inverse of
the geometry parameterization F.

where we use the Einstein summation convention with re-
spect to the index j. More precisely, we assume a lexico-
graphical order of the control points dj = (d1j , d2j , d3j)

T ∈
R3 with j = 1, . . . , n̄ for n̄ = n1n2n3.

The basis functions N̄j are products of three univariate
B-splines with the three parameters ξ1, ξ2, ξ3.

Following the isogeometric idea, the basis functions
φ1, . . . , φn which are used for the Galerkin projection are
defined by the same (B-spline) basis functions as for the
geometry functions F = (F1, F2, F3) in (14). The knot
insertion property of B-splines provides a simple and fast
refinement operator for the analysis part that leaves the
geometry and the mapping between Ω0 and Ω invariant.
Unfortunately, knot insertion has a global refinement effect
due to the tensor product structure of B-spline manifolds.
For recent work on local refinement strategies, see [27, 30].
For a theoretical study of the effect of global refinement
techniques, see [5].

To define the approximate displacement functions
uh
i : Ω→ R in the physical space (where the index i =

1, 2, 3 indicates the space coordinate), which represent the
numerically obtained approximate solution, the functions
ūh
i are “pushed forward” by the geometry function,

uh
i = ūh

i ◦ F−1 = N̄j

(
F−1(x1, x2, x3)

)
qij , (15)

see Figure 2. The boundary conditions are included into
(15) by pre-assigning suitable values to some of the control
variables qij .

Thus, the finite dimensional subspace Vh is a subspace
of the pushed-forward basis functions,

Vh ⊂ span
{
N̄j ◦ F−1}

j=1,...,n̄
(16)

Inserting the isogeometric projection (15) into the principle
of virtual work (12) leads to the linear system,

Aq = b, (17)

with the stiffness matrix A ∈ R3n̄×3n̄ and the load vector
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b ∈ R3n̄,

Aim,kn =

∫
Ω0

(
∂N̄m

∂ξh

∂ξh
∂xj

)(
∂N̄n

∂ξh

∂ξh
∂xl

)
cijklJ dξ (18)

bim =

∫
Ω0

(
b̂iN̄m +

∂N̄m

∂ξh

∂ξh
∂xj

cijkl α∆Tδkl

)
J dξ

+

∫
ΓN0

t̂iN̄m n dξ, (19)

for n,m = 1, . . . , n̄ and i, k = 1, 2, 3, where the symbols
cijkl, b̂i and t̂i represent the elastic coefficients, the volume
forces and the boundary tractions, respectively.

Note that the integrals are defined over the paramet-
ric domain Ω0 and therefore the substitution rule was ap-
plied, involving the Jacobian matrix JF and its determi-
nant J = |det JF|. Moreover, n = |n| for the surface nor-
mal n of the parameterized boundary surface.

Due to the properties of B-splines and the partial dif-
ferential equation stated in the weak form (11), the matrix
A is symmetric, positive definite and sparse and the un-
known control variables qij are well-defined. The integrals
are approximately evaluated by Gaussian quadrature (with
four points for each knot span), see [2, 21] for a discussion
of integration methods for the isogeometric approach.

We conclude this section with some remarks on the
isogeometric concept:

• Instead of using two different models, the geometry
and the analysis model, the isogeometric approach is
based on only one model with an exact representa-
tion of the geometry. Therefore, the non-trivial task
of generating a finite element mesh is no longer re-
quired. The exact geometry is employed at all levels
of discretization, even in the analysis part, by the
available refinement operations, particularly knot in-
sertion and degree elevation. However, the geometry
parameterization has to be “analysis suitable”, cf. [9].

• Using B-splines (respectively NURBS) as basis func-
tions instead of piecewise C0 connected polynomials
leads to a higher and controllable continuity and to
a larger support of the basis functions. Therefore,
the basis does not interpolate the control points and
variables. As a consequence one can interpret these
quantities only in combination with the related ba-
sis functions. In addition, the incorporation of the
boundary conditions is not as simple as in the finite
element concept. We will choose a least-squares fit
of the given Dirichlet boundary conditions to define
the related control variables. See [20, 30] for more
information on this challenging topic.

• Due to the tensor-product structure of higher-
dimensional B-spline (respectively NURBS) func-
tions, the parameterization of non-quadrangular do-
mains leads to singularities. Especially for single-
patch parameterizations, such as the given turbine
blade model, the edges of the physical domain are of-
ten singular. This does not affect the calculation of
the displacements because we evaluate the integrals in
the linear system (17) only at the Gauss nodes which
does not use the ends of the parameter interval. The
calculation of the strain (3) in the postprocessing uses
the derivatives of the displacements with respect to
the coordinates xi which are collinear along the sin-
gular parameter directions. This problem occurs also
in the finite element method and we overcome it by
using slightly perturbed parameters to evaluate the
derivatives.

Figure 3: Left: The entire blisk is located in a Cartesian co-
ordinate system with the x1-axis as the axis of rotation and
the x3-axis as the radial direction of the blade to be considered
(blue). Right: Cylindrical periodic boundary conditions of the
displacements for the translational sides of the block.

5 Simulations
In this section we study the deformation of turbine blades
under the assumption of linear elasticity by considering
all major loads and boundary conditions arising from the
structural mechanic simulation process in an industrial en-
vironment. We start by defining the setting of the blade
simulation, especially the periodic boundary conditions,
and proceed by applying successively the required mechan-
ical and thermal loads.

5.1 Setting

We consider a blade Ω as a periodically symmetric seg-
ment of a blisk (blade integrated disk) with respect to the
x1-axis as the axis of rotation, see Figure 3. Therefore,
it is required that the blade is deformed as a rotationally
symmetric part of the blisk and the displacements on the
translational sides of the block, F(ξ1, 0, ξ3) and F(ξ1, 1, ξ3)
for 0 ≤ ξ3 ≤ ξ̄3, have to be periodic in the cylindrical
coordinate system (x1, r, ϕ),

x1 = x1

r =
√
x2

2 + x2
3

ϕ = arctan
x3

x2
.

This implies the periodic boundary conditions for the dis-
placements ui,

u1
1 = u2

1

x1
2

r1
u1

2 +
x1

3

r1
u1

3 =
x2

2

r2
u2

2 +
x2

3

r2
u2

3 (20)

x1
3

r1r1
u1

2 +
x1

2

r1r1
u1

3 =
x2

3

r2r2
u2

2 +
x2

2

r2r2
u2

3 ,

where the superscript indicates the side of the block, see
Figure 3. We relate the given constraints for the displace-
ments ui to the control variables qj by the Greville abscis-
sae of their basis functions.

We will compare the results of the isogeometric simu-
lations with the numerical approximations obtained by the
classical finite element method based on an automatically
generated mesh (with quadratic hexahedral elements) of
the blade described in Section 2 and the structural finite
element program CalculiX [12].

5.2 Centrifugal force

The primary mechanical load acting on our geometry are
the centrifugal forces caused by the rotation of the blisk.
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Figure 4: The figure shows the initial shape of the blade (trans-
parent) and the deformed blade (colored according to the dis-
placement component uϕ). The top view illustrates the twist
of the airfoil.

Figure 5: Deformation of a section of the blisk under the cen-
trifugal force. The deformed blades are colored according to the
displacement component uϕ.

For a given angular velocity ω, the centrifugal force b̂(x)
of a point x = (x1, x2, x3)T ∈ Ω is defined by

b̂(x) = ρω2r(x), (21)

for the density ρ and the vector r(x) in radial direction.
We ignore the surface pressure and thermal load in the fol-
lowing simulation examples and incorporate the discussed
periodic boundary conditions for the block of the blade.

The centrifugal force causes a radial expansion of the
blisk and a twist of the airfoils. Figure 4 visualizes the
displacement component uϕ and the blade deformation for
the angular velocity ω = 100. The simulation of several
blades of a blisk is shown in Figure 5.

In general, a blisk consists of identical blades and by
the incorporation of the periodic boundary conditions, the
simulation of one blade can be transferred to the entire
blisk. This reduces the computational effort for the simu-
lation of several blades respectively the entire blisk signif-
icantly.

We compare the results of the isogeometric analysis
and the finite element analysis in Figure 6 and 7. The high-
est stress occurs at the transition part between the airfoil
and the base of the blade as the so-called fillet. Conse-
quently, the design of the fillet is one of the crucial steps
in the design of turbine blades.

While the isogeometric method already produces ex-
cellent results for the initial parameterization defined by
around 4000 control points, the finite element method re-
quires at least 40000 nodes to obtain a competitive result.

Figure 6: Analysis of the blade deformation under centrifu-
gal forces with dofiga = 4004 for the isogeometric method and
doffea = 43228 for the finite element method.

Figure 7: Analysis of the resulting stress by the von Mises stress
σMises with dofiga = 4004 and doffea = 43228. The blade is
sliced for a more detailed view into its interior.

The convergence behavior of the two methods for increas-
ing numbers of degrees of freedom (i.e., increasingly find
discretizations) is shown in Figure 8.

5.3 Surface pressure

The blades move through the air which is compressed or
expanded according to the position of the blade within
the engine. The shape of the airfoil generates a pressure
gradient between the pressure side and the suction side
accompanied by the velocity difference. The component of
the resulting force perpendicular to the direction of motion
is called lift.

The department of aerodynamics of MTU simulates
the flow within the engine and provides a discretized pres-
sure distribution on the surface of the blades, see Figure 9.

The following steps are performed in order to integrate
the pressure distribution into our simulation process:

1. Four parametric boundary surfaces of the blade part
F(ξ1, ξ2, ξ3 ≥ ξ̄3) are identified by setting one of the
parameters ξ1, ξ2 to 0 or 1.

2. The pressure distribution on the surface of the blade
above the block (ξ3 ≥ ξ̄3), given by a point cloud
pi = (x1i, x2i, x3i, pi) ∈ R4 with the pressure pi and
(x1i, x2i, x3i)

T ∈ Γ, is parameterized with respect to
their location on one of the four boundary surfaces.

3. An additional fourth component dpj of the con-
trol points dj = (d1j , d2j , d3j , dpj) of the bound-
ary surfaces is calculated by approximating the one-
dimensional pressure data pj in a least-squares sense
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Figure 8: Displacement of the top corner at the leading edge of
the blade under the centrifugal force with ω = 100.

using the generated parameterization. For exam-
ple, the pressure component of the boundary surface
Sp(ξ1, ξ3) = N̄j(ξ1, ξ3)dpj for ξ2 = 0 is approximated
by ∑

i

‖Sp(ξ1i, ξ3i)− pi‖2 → min
dpj

. (22)

The B-spline basis is refined by inserting additional
knots if the fitting error exceeds a user-defined toler-
ance. This leaves the geometry and parameterization
of the blade unchanged.

Adding the pressure control variables to the related
control points of the geometry function F defines a contin-
uous pressure distribution on the blade surface. Further-
more we still have one representation of the simulation
model and the B-spline basis functions have to be evalu-
ated only once for the generation of the linear system (17).

For the following analysis of the blade deformation
caused by the pressure gradient we ignore the centrifugal
force. Figure 9 visualizes the fitted pressure distribution
and the resulting deformation of the blade. Figure 10 com-
pares the displacement for the isogeometric method and
the finite element method. The resulting stress for both
methods is shown in Figure 11. In this case, the numbers of
degrees of freedom for the finite element method required
to obtain the same accuracy as IGA is even higher, due
to the (piecewise quadratic) approximation of the pressure
distribution. For each element face of the blade surface the
pressure component of the geometry function is evaluated
at the face nodes and scaled by the face area.

5.4 Thermal expansion

The compression and expansion of the air in the turbine
leads to an inhomogeneous temperature distribution and
consequently a temperature gradient within the blades. In
this section we simulate the resulting thermal expansion of
the blade.

The department of thermodynamics of MTU simulates
the thermal conduction within the blades and provides a
three-dimensional point cloud of the discretized tempera-
ture distribution which we incorporate in a natural way:

1. The temperature distribution within the blade, given
by the point cloud pi = (x1i, x2i, x3i, ti) ∈ R4 with
the temperature ti and (x1i, x2i, x3i)

T ∈ Ω, is directly
parameterized by the geometry function F(ξ1, ξ2, ξ3).

2. An additional fifth component dtj of the con-
trol points dj = (d1j , d2j , d3j , dpj , dtj) is calcu-
lated by approximating the temperature component
Ft(ξ1, ξ2, ξ3) = N̄j(ξ1, ξ2, ξ3)dtj in a least-squares

sense, ∑
i

‖Ft(ξ1i, ξ2i, ξ3i)− ti‖2 → min
dtj

. (23)

We again use knot insertions of the given B-spline
basis to increase the fitting quality, if required.

The extended geometry function represents a con-
tinuous function of the temperature, the pressure and
the geometry which can be efficiently and stably evalu-
ated. As a consequence of the inhomogeneous tempera-

Figure 9: Left: The profile of the airfoil generates a pressure
gradient between the high pressure at the pressure side and the
lower pressure on the suction side. Right: The initial (transpar-
ent) and deformed shape of the blade (colored according to the
displacement component uϕ).

Figure 10: Analysis of the deformation caused by the surface
pressure with dofiga = 8504 and doffea = 96768.

Figure 11: Analysis of the resulting stress by the normal stress
σ33 with dofiga = 8504 and doffea = 96768. The blade is sliced
for a more detailed view into its interior.

ture, the Young’s modulus E(ξ1, ξ2, ξ3) and the thermal
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expansion coefficient α(ξ1, ξ2, ξ3) are no longer constant
within the blade. We represent them by piecewise linear
functions with respect to the temperature T (ξ1, ξ2, ξ3) for
(ξ1, ξ2, ξ3)T ∈ Ω0.

Figure 12 shows the temperature distribution and the
resulting thermal expansions. The lowest temperature is
located at the block and increases with the velocity of the
flow in the middle of the flow channel. The resulting de-
formation is rather small and therefore we leave the sur-
face pressure and centrifugal forces out of consideration
(as they would hide the influence of the temperature oth-
erwise). The number of nodes for an accurate finite ele-
ment analysis is again very high as a consequence of the
approximation of the temperature field. The resulting dis-
placement field is visualized in Figure 13, the von Mises
stress in Figure 14.

6 Conclusions

The numerical results reported in this paper demonstrate
the capabilities of isogeometric analysis in a real-world in-
dustrial environment with challenging numerical simula-
tion problems. More precisely, we studied the deformation
of blades of aircraft engines under the influence of centrifu-
gal forces, air pressure, and inhomogeneous temperature
distribution.

It was shown that results comparable with the existing
finite element technology can be obtained by using a much
coarser discretization – typically, only 10% of the number
of degrees of freedom are required. We feel these are im-
pressive results, which clearly demonstrate the outstand-
ing capability of the new method. Moreover, isogeometric
analysis provides the added advantage of using an exact
representation of the geometry simultaneously for numer-
ical simulation and for geometric design, thus eliminating
the need for conversion processes such as mesh generation.

The implementation of isogeometric solvers is still un-
der development. In particular, there are currently only a
few solvers available that can deal with three-dimensional
simulation problems. The experimental solver available to
us, which was developed in the frame of the EXCITING
project, is limited to single patch geometric representa-
tions. We enhanced the capabilities of this solver by pro-
viding additional possibilities for specifying boundary con-
ditions and material properties.

Clearly, the existing finite element solvers have under-
gone a long history of software development and efficiency
improvements, and it would be too much to expect that
isogeometric solvers can beat them from the start with re-
spect to all performance measures, including overall com-
putation timings (including the time needed to assemble
the matrices). Based on our experience we are convinced
that isogeometric solvers for multi-patch geometric repre-
sentations will be able to compete successfully with the
existing finite element technology not only with respect
to the number of required degrees of freedom needed to
achieve a certain accuracy, but also with respect to com-
puting times. Further experiments have been shown that
the computational complexity for the isogeometric and the
finite element method are nearly the same, for more details
see [15].

Besides software development, there are also several
theoretical aspects that deserve further investigations.
These include the use of adaptive refinement in isogeomet-
ric analysis and efficient techniques for evaluating the stiff-
ness matrices, as well as automatic techniques for multi-
patch domain parameterization. These are interesting and
challenging topics for further research.

Figure 12: Left: The given temperature distribution of the
blade. Right: The initial (transparent) and deformed shape
of the blade (colored according to the radial displacement com-
ponent ur).

Figure 13: Analysis of the thermal expansion for the isoge-
ometric and finite element method with dofiga = 4004 and
doffea = 64376.

Figure 14: Analysis of the resulting stress by the von Mises
stress σMises with dofiga = 4004 and doffea = 64376. The blade
is sliced for a more detailed view into its interior.
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