
IETI - Isogeometric Tearing and Interconnecting

Stefan K. Kleissa,∗, Clemens Pechsteinb, Bert Jüttlerc, Satyendra Tomara

aJohann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenberger
Straße 69, A-4040 Linz, Austria

bInstitute of Computational Mathematics, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria
cInstitute of Applied Geometry, Johannes Kepler University Linz, Altenberger Straße 69, A-4040 Linz, Austria

Abstract

Finite Element Tearing and Interconnecting (FETI) methods are a powerful approach to designing solvers
for large-scale problems in computational mechanics. The numerical simulation problem is subdivided into a
number of independent sub-problems, which are then coupled in appropriate ways. NURBS- (Non-Uniform
Rational B-spline) based isogeometric analysis (IGA) applied to complex geometries requires to represent the
computational domain as a collection of several NURBS geometries. Since there is a natural decomposition
of the computational domain into several subdomains, NURBS-based IGA is particularly well suited for
using FETI methods.

This paper proposes the new IsogEometric Tearing and Interconnecting (IETI) method, which combines
the advanced solver design of FETI with the exact geometry representation of IGA. We describe the IETI
framework for two classes of simple model problems (Poisson and linearized elasticity) and discuss the
coupling of the subdomains along interfaces (both for matching interfaces and for interfaces with T-joints,
i.e. hanging nodes). Special attention is paid to the construction of a suitable preconditioner for the iterative
linear solver used for the interface problem. We report several computational experiments to demonstrate
the performance of the proposed IETI method.

Keywords: Isogeometric analysis, NURBS, domain decomposition, FETI, IETI

1. Introduction

Isogeometric Analysis (IGA), introduced by Hughes et al. [22], is a promising concept that establishes
a close link between the technologies of CAD (computer aided design) and numerical simulation via finite
element analysis (FEA). In the IGA framework, the same function spaces, which are used for the geometric
representation of the computational domain, are used for the approximation (e.g. Galerkin) of the problem
unknowns. There are several computational geometry technologies that could serve as a basis for IGA.
However, Non-Uniform Rational B-Splines (NURBS) are the most widely used and well established compu-
tational technique in CAD, which we shall pursue here. The main advantage consists in the fact that an
exact representation of the computational domain is available at all times during the (possibly adaptive)
simulation process. The need for geometric approximation processes, known as mesh generation, is thus
eliminated.

Despite its short history, IGA has already attracted enormous interest which is documented by a sub-
stantial number of publications. IGA has been successfully applied to various simulation problems, including
linear elasticity, simulation in electromagnetics, and flow simulations, e.g., [4, 5, 8, 16, 41]. It was shown that
IGA not only eliminates the geometrical errors introduced by the approximation of the physical domain by
a computational mesh, but also significantly reduces the number of unknowns (when compared to standard
FEA) needed to achieve a certain accuracy in practice [10].

∗Corresponding author, Tel.: +43 732 2468 5229, Fax: +43 732 2468 5212

25. May 2012

On the theoretical side, various issues such as error estimates, convergence rates, stability issues, and
numerical quadrature rules have been analyzed thoroughly [2, 6, 23, 50]. Many of these topics are already
well understood and it was demonstrated that most of the theoretical background of FEA can be adapted
and extended to cover the IGA framework. A notable exception, which is the subject of several on-going
studies, is the search for generalizations of tensor-product spline spaces providing the possibility of local
refinement. This is needed for adaptive simulation methods. Several concepts are currently being explored,
including T-splines, hierarchical splines, THB-splines, and polynomial splines over hierarchical T-meshes
[3, 7, 14, 20, 30, 33, 40, 46, 54].

Another new problem, which is located right at the crossroads between numerical simulation and geo-
metric design, is the challenge of domain parameterization for IGA: Given a boundary representation of the
computational domain by a collection of NURBS patches, extend it to a volume parameterization that is
suitable for IGA. Several methods for designing such parameterizations and for creating them from bound-
ary data exist [1, 9, 21, 39, 55]. For the numerical simulation in real-world applications it will be essential
to create and to use multi-patch parameterizations [38], where the computational domain is represented by
several NURBS volumes. These structures, which combine a highly regular structure on subdomains with
topological flexibility to describe complex geometries, open new perspectives for the design of solvers in
numerical simulation, which will be explored in this paper.

To do so, we will extend the finite element tearing and interconnecting (FETI) method to the isogeo-
metric context. FETI methods are powerful solvers for large-scale finite element systems in computational
mechanics. They were introduced by Farhat and Roux [17] and belong to the class of iterative substructur-
ing methods (also called non-overlapping domain decomposition methods), see e.g. [52]. The computational
domain is subdivided into non-overlapping subdomains, and each subdomain gets its own set of equations
derived from the global equation. To ensure the equivalence to the global equation, continuity conditions
are introduced at the interfaces between subdomains using Lagrange multipliers.

In this paper, we combine the ideas of IGA and FETI and propose a new method called isogeometric
tearing and interconnecting. Following the nomenclature of FETI and BETI (boundary element tearing
and interconnecting) methods, we abbreviate the proposed method as IETI (to be pronounced ["jEtI], like
Yeti). The FETI method, however, is not only a coupling method but provides a powerful solver design.
By (carefully) eliminating the original variables from the resulting saddle point problem, one obtains a
system in the Lagrange multipliers (i.e., only on the interface). The solution of the original problem can
be easily computed from the solution of this interface problem. For generalizations to boundary element
discretizations see e.g. [31, 32]. For generalizations to spectral element discretizations see e.g. [25].

Since the number of Lagrange multipliers is typically large, the interface problem is usually solved
iteratively by FETI preconditioned conjugate gradients [45]. Suitable preconditioners have been proposed
in [17, 27, 28]. The analyses in [28, 36] show that under suitable conditions the condition number of the
preconditioned system is bounded by C(1 + log(H/h)γ), γ ≤ 3, where H is the subdomain diameter and
h is the mesh size. This results in quasi-optimal complexity of the overall method. We mention that the
classical FETI method involves the solution of a coarse system. An efficient alternative is the dual-primal
FETI (FETI-DP) method, see [18, 26, 29, 37], which is followed in this paper.

The remainder of this paper is organized as follows: In Section 2, we define the model problems considered
herein and recall the definition of NURBS geometry mappings. In Section 3, we describe multi-patch
NURBS mappings and multi-patch NURBS discretizations. In Section 4, we formulate the IETI method
and investigate the solver and preconditioner aspects. Local refinement options which are introduced by the
IETI method are described in Section 5. In Section 6, the performance of the IETI method is demonstrated
in numerical examples. Finally, a conclusion is drawn in Section 7.

2. Preliminaries

We first briefly define the model problems considered in this paper, and then recall the definitions of
B-spline basis functions and NURBS geometry mappings.

2

2.1. The model problems

Let Ω ⊂ R
2 be an open, bounded and connected Lipschitz domain with boundary ∂Ω. Let the boundary

∂Ω be composed of two disjoint sets, namely ΓD, where essential (Dirichlet or displacement) boundary con-
ditions are prescribed, and ΓN , where natural (Neumann or traction) boundary conditions are prescribed.
Let ~n denote the outer unit normal vector to ∂Ω, and let f , gD and gN be given functions. We shall consider
two model problems:

(I) The scalar diffusion problem:
Find the scalar function u : Ω → R such that

− div (α∇u) = f in Ω,
u = gD on ΓD,

α
∂u

∂~n
= gN on ΓN .

(II) The linearized elasticity problem:
Find the displacement field u : Ω → R

2 such that

− div (σ(u)) = f in Ω,
u = gD on ΓD,

σ(u)~n = gN on ΓN .

In problem (I), α denotes the diffusion coefficient. In problem (II), σ(u) = Cε(u), where C is the fourth-order
stiffness tensor and ε(u) = 1

2 (∇u+∇uT) is the linearized strain tensor.
The variational forms of these problems can be written as follows:
Find u ∈ Vg such that

a(u, v) = f(v) ∀v ∈ V0. (1)

The space V0 ⊂ (H1(Ω))β contains test functions which vanish on ΓD. In problem (I), we have β = 1, and
in problem (II), β = 2. The set Vg ⊂ (H1(Ω))β consists of functions which fulfill the essential boundary
conditions on ΓD.

We assume that the problem data is such that the bilinear form a(·, ·) is bounded, symmetric and positive
definite, and that f(·) is a bounded linear functional. Then, the problem (1) can be reformulated as the
following minimization problem:

Find u such that

u = argmin
v∈Vg

1
2a(v, v) − f(v). (2)

2.2. NURBS geometry mappings

To provide an overview, and to introduce notations, we briefly recall the definition of B-spline basis
functions and NURBS mappings. Let p be a non-negative degree and let s = (s1, . . . , sm) be a knot vector
with sk ≤ sk+1 for all k. We consider only open knot vectors, i.e. knot vectors s where the multiplicity
of a knot is at most p, except for the first and last knot which we require to have multiplicity p + 1. For
simplicity, we assume that s1 = 0 and sm = 1, which can be easily achieved by a suitable scaling. The
ns = m − p− 1 univariate B-spline basis functions Bs

k,p : (0, 1) → R, k = 1, . . . , ns, are defined recursively
as follows:

Bs
k,0(ξ) =

{
1 for sk ≤ ξ < sk+1

0 else

Bs
k,p(ξ) =

ξ − sk
sk+p − sk

Bs
k,p−1(ξ) +

sk+p+1 − ξ

sk+p+1 − sk+1
Bs

k+1,p−1(ξ).

3

Whenever a zero denominator appears in the definition above, the corresponding function Bs
k,p is zero,

and the whole term is considered to be zero. For open knot vectors, the first and last basis function are
interpolatory at the first and the last knot, respectively.

Let {Bs
k,p}

ns

k=1 and {Bt
ℓ,q}

nt

ℓ=1 be two families of B-spline basis functions defined by the degrees p and q,
and the open knot vectors

s = (s1, . . . , sns+p+1), t = (t1, . . . , tnt+q+1),

respectively. We denote the set of all double-indices (k, ℓ) of NURBS basis functions by

R = {(k, ℓ) : k ∈ {1, . . . , ns}, ℓ ∈ {1, . . . , nt}}.

Let w(k,ℓ), (k, ℓ) ∈ R, be positive weights. We define the bivariate NURBS basis functions as follows:

R(k,ℓ)(ξ1, ξ2) =
RN

(k,ℓ)(ξ1, ξ2)

RD(ξ1, ξ2)

where the numerator RN
(k,ℓ) and the denominator RD are given by

RN
(k,ℓ)(ξ1, ξ2) = Bs

k,p(ξ1) B
t
ℓ,q(ξ2) w(k,ℓ), and

RD(ξ1, ξ2) =
∑

(k,ℓ)∈R

Bs
k,p(ξ1) B

t
ℓ,q(ξ2) w(k,ℓ)

=
∑

(k,ℓ)∈R

RN
(k,ℓ)(ξ1, ξ2).

Given a control net of control points P(k,ℓ) ∈ R
2, where again (k, ℓ) ∈ R, the two-dimensional NURBS-

surface G : Q → Ω is defined by

G(ξ1, ξ2) =
∑

(k,ℓ)∈R

R(k,ℓ)(ξ1, ξ2) P(k,ℓ), (3)

where Q = (0, 1)2. We refer to Q as the parameter domain and to Ω = G(Q) as the physical domain.
For a detailed discussion of NURBS mappings and B-spline basis functions, and the properties of these

functions we refer e.g. to [3, 10, 11, 22] and the references therein. Note that NURBS basis functions of
degree p are, in general, globally Cp−1-continuous. However, in the presence of multiple knots, the continuity
reduces according to the multiplicity. If a knot appears i times, the continuity of a NURBS basis function
of degree p at that knot is Cp−i.

For our purposes, we assume that the geometry mapping is continuous and bijective (i.e. not self-
penetrating), which are natural assumptions for CAD-applications.

For better readability, we collapse the double index (k, ℓ) into one multi-index k in the following. Hence,
instead of (3), we write

G(ξ1, ξ2) =
∑

k∈R

Rk(ξ1, ξ2) Pk.

3. Multi-patch geometry mappings

3.1. Single-patch NURBS discretization

In isogeometric analysis, the NURBS basis functions of the geometry mapping are also used to represent
the discrete solution. The scalarH1-conforming finite element space in a single-patch setting is the following:

Vh = span{ R̂k }k∈R ⊂ H1(Ω), (4)

4

where

R̂k = Rk ◦G−1. (5)

For problems of type (II), we need to use the corresponding vector-valued space Vh ⊂ H1(Ω)2. For simplicity,
the following notation is only oriented on the scalar case.

We assume that the prescribed Dirichlet data gD is such that there exists ĝ ∈ Vh : gD = ĝ|ΓD
(otherwise,

we project the Dirichlet data gD to Vh). We define

V0h = {v ∈ Vh : v|ΓD
= 0} and

Vgh = ĝ + V0h = {v ∈ Vh : v|ΓD
= gD}.

A function uh ∈ Vh is represented as

uh(x) =
∑

k∈R

uk R̂k(x).

The real-valued coefficients uk are referred to as control variables or degrees of freedom (DOF).

3.2. Multi-patch NURBS discretization

Assume that the physical domain Ω ⊂ R
2 is represented by N single-patch NURBS geometry mappings

G(i), i = 1, . . . , N , each of which maps the parameter domain Q = (0, 1)2 to an open physical subdomain

Ω(i) = G(i)(Q) ⊂ Ω, i = 1, . . . , N,

such that

Ω =

N⋃

i=1

Ω
(i)

and Ω(i) ∩ Ω(j) = ∅ for i 6= j.

We use the superscript (i) to indicate that knot vectors, degrees, NURBS basis functions, index sets, DOF,
etc. are associated with a mapping G(i). For example, we denote the set of NURBS basis functions of the

geometry mapping G(i) by {R
(i)
k }k∈R(i) . For each subdomain Ω(i), the local function space (for β = 1) is

defined analogously to (4) and (5) as

V
(i)
h = span{ R̂

(i)
k }k∈R(i) ⊂ H1(Ω(i)),

where

R̂
(i)
k = R

(i)
k ◦G(i)−1

. (6)

We denote the space of functions that are locally in V
(i)
h by

ΠVh ={v ∈ L2(Ω)β : v|Ω(i) ∈ V
(i)
h , ∀ i = 1, . . . , N}

≡
N∏

i=1

V
(i)
h . (7)

As mentioned in Section 2.1, we have β = 1 for problem (I), and β = 2 for problem (II). Functions in ΠVh

are not necessarily continuous. We choose the following subsets of continuous functions in ΠVh:

Vh =ΠVh ∩ C(Ω)β , (8)

V0h ={v ∈ Vh : v|ΓD
= 0},

Vgh =ĝ + V0h.

5

A function uh ∈ Vh is represented subdomain-wise by:

uh

∣∣
Ω(i) =

∑

k∈R(i)

u
(i)
k R̂

(i)
k . (9)

We denote the interface of two subdomains Ω(i) and Ω(j) (see Fig. 1) by

Γ(i,j) = ∂Ω(i) ∩ ∂Ω(j).

We collect the index-tupels of all interfaces that are non-empty

CΓ = {(i, j) : Γ(i,j) 6= ∅}, (10)

with i, j ∈ {1, . . . , N}. For (i, j) ∈ CΓ, we call Γ(i,j) a subdomain vertex (or vertex for brevity) if it consists
of a single point, otherwise we call it an edge. For (i, j) ∈ CΓ, we collect the indices of those basis functions
in Ω(i) whose support intersects the interface Γ(i,j):

B(i, j) = {k ∈ R(i) : supp R̂
(i)
k ∩ Γ(i,j) 6= ∅}. (11)

If k ∈ B(i, j), we say that the DOF u
(i)
k is associated with the interface Γ(i,j). In case of a subdomain vertex,

we have #B(i, j) = #B(j, i) = 1, where # indicates the cardinality.
Let Γ(i,j) be an edge. We say that the subdomains Ω(i) and Ω(j) are fully matching, if the following two

conditions are fulfilled (see Fig. 1 for an illustration):

(i) The interface Γ(i,j) is the image of an entire edge of the respective parameter domains.
(ii) For each index k ∈ B(i, j), there must be a unique index ℓ ∈ B(j, i), such that

R̂
(i)
k |Γ(i,j) = R̂

(j)
ℓ |Γ(i,j) . (12)

This is the case, if the two knot vectors are affinely related and the corresponding weights and degrees
are equal.

For an illustration of two fully matching subdomains, see Fig. 1: The interface Γ(i,j) is the image of the
entire northern edge of Q(i) under the mapping G(i), and the image of the entire western edge of Q(j) under
G(j). Furthermore, p(i) = q(j) = 2. The knot vectors s(i) and t(j) are not equal, but due to the way they
are mapped to Γ(i,j), condition (ii) is fulfilled. Hence, Ω(i) and Ω(j) are fully matching.

The tensor-product structure of the NURBS basis functions is very convenient for collecting/identifying
the DOF associated with an interface, i.e. the index-set B(i, j). In particular, in combination with condition
(i) for the fully matching case, one only has to know which side (north, east, south or west) of the parameter
domain defines the interface to identify the associated DOF. For example, in Fig. 1, using the double-index
notation, we have

B(i, j) = {(k, ℓ)}k=1,...,5
ℓ=4

⊂ R(i),

B(j, i) = {(k, ℓ)}k=1
ℓ=1,...,5

⊂ R(j).

Assume that the linear form f(·) can be assembled from contributions f (i)(·) on Ω(i), and let a(i)(·, ·)
denote the restriction of a(·, ·) to Ω(i). Then, we can discretize the original minimization problem (2) as a
sum of local contributions:

Find uh such that

uh = argmin
vh∈Vgh

N∑

i=1

(
1
2a

(i)(vh, vh)− f (i)(vh)
)
. (13)

6

Q(i)

G(i)

Ω(i)

Q(j)

G(j)

Ω(j)

Γ(i,j)

Figure 1: Fully matching subdomains Ω(i) and Ω(j):
All weights equal to 1,
p(i) = 2, s(i) = {0, 0, 0, 0.5, 0.75, 1, 1, 1},
q(i) = 2, t(i) = {0, 0, 0, 0.5, 1, 1, 1},
p(j) = 1, s(j) = {0, 0, 1, 1},
q(j) = 2, t(j) = {0, 0, 0, 0.25, 0.5, 1, 1, 1}.

Condition (ii) for the fully matching setting implies that each DOF u
(i)
k , k ∈ B(i, j), can be identified with

a DOF u
(j)
ℓ , ℓ ∈ B(j, i), such that the corresponding basis functions match as in (12). If we identify the

DOF corresponding to these matching basis functions, then, together with the remaining DOF, we get a
representation of the space Vh in (8). Employing a suitable numbering for the identified DOF, we can rewrite
(13) in the form

Ku = f , (14)

where u is the coefficient vector corresponding to the DOF which are not on ΓD, K is the stiffness matrix
and f is the load vector. This system can be solved by standard sparse LU -factorization [12]. However, it is
well known that for large problem size, the memory requirement and the runtime complexity of direct solvers
are inefficient. Alternatively, one can use efficient iterative solvers such as conjugate gradient methods with
appropriate preconditioners [45]. In the case of standard FEM discretizations, such preconditioners have
been well studied in the literature, see e.g. [53] for geometric and algebraic multigrid methods, and see [52]
for domain decomposition methods.

It is important to note that by assembling the system matrix K from the subdomain contributions, the
structural (subdomain-wise) properties of the problem are lost, which are hard to regain from K alone.
To alleviate this difficulty, in the following section we present a solver (inspired by the FETI methods
[15, 17, 18, 19, 42, 52]) which inherently uses the local structure of (13). This approach is very suitable
for parallelization, and moreover, since it mainly uses solvers on the local subdomains, their tensor product
structure can be exploited (e.g. using wavelets or FFT).

7

4. Solver design

In the IETI method, we work in the space

ΠVh =

N∏

i=1

V
(i)
h

as defined in (7). Since these functions are, in general, discontinuous across subdomain interfaces, we need
to impose the continuity conditions separately. In the following, let v(i) denote the i-th component of a
function v ∈ ΠVh.

4.1. Continuity constraints

Note that, in the index set CΓ, every interface Γ(i,j) is represented twice. Therefore, we define the set

C = {(i, j) ∈ CΓ : i < j}, (15)

where each interface is represented only once. For each pair (i, j) ∈ C, we say that Ω(i) is the master
subdomain and Ω(j) the slave subdomain. For all (i, j) ∈ C and a fixed index k ∈ B(i, j), we can rewrite (12)
in the following form:

R̂
(i)
k

∣∣
Γ(i,j) =

∑

ℓ∈B(j,i)

a
(i,j)
k,ℓ R̂

(j)
ℓ

∣∣
Γ(i,j) , (16)

where, for a fixed k ∈ B(i, j), all coefficients a
(i,j)
k,ℓ are zero, except for one coefficient which is 1. Note that

the generalization of (12) given in (16) might seem superfluous in the fully matching setting, but it will
be needed in Section 5 in the context of cases which are not fully matching. There, we will also adapt the
definition of C.

Ω(1) Ω(2)

Ω(3) Ω(4)

(a) Fully redundant coupling
at a subdomain vertex.

Ω(1) Ω(2)

ΓD

(b) Incorporation of essential
boundary conditions by cou-
pling to virtual neighbour sub-
domains.

Figure 2: Illustration of fully redundant coupling and all floating setting. Arrows indicate coupling conditions and point from
master subdomain to slave subdomain.

We can collect the coefficients a
(i,j)
k,ℓ in the permutation matrix

A(i,j) = (a
(i,j)
k,ℓ)k∈B(i,j)

ℓ∈B(j,i)

. (17)

In the case of a subdomain vertex, where #B(i, j) = 1, the matrix A(i,j) has only one entry which is 1.
Fig. 2(a) illustrates the coupling conditions between subdomains and at a subdomain vertex.

To guarantee the continuity of uh across all interfaces, we impose the following condition on the DOF
associated with interfaces, i.e. for all (i, j) ∈ C:

u
(i)
k −

∑

ℓ∈B(j,i)

a
(i,j)
k,ℓ u

(j)
ℓ = 0 ∀k ∈ B(i, j). (18)

8

The incorporation of essential boundary conditions is done in a similar way, see the all-floating BETI
method [42] and the total FETI method [15]. We denote the interface between ∂Ω(i) and ΓD by

Γ(i,D) = ∂Ω(i) ∩ ΓD.

Similar to (11), we collect the DOF of u(i) that are associated with ΓD, i.e. with the interface Γ(i,D), in the
following index set:

D(i) = {k ∈ R(i) : supp R̂
(i)
k ∩ Γ(i,D) 6= ∅}.

Recall from Section 3.1 that we assume that there exists a function ĝ ∈ Vh with ĝ|ΓD
= gD|ΓD

. Hence, we
can write

gD
∣∣
Γ(i,D) =

∑

k∈D(i)

g
(i)
k R̂

(i)
k

∣∣
Γ(i,D)

with real-valued coefficients g
(i)
k . We incorporate essential boundary conditions by imposing the following

constraints on the DOF that are associated with ΓD, i.e. for all i such that Γ(i,D) 6= ∅:

u
(i)
k = g

(i)
k ∀k ∈ D(i). (19)

These constraints can be thought of as continuity between the physical subdomains and a virtual neighbour
subdomain (see Fig. 2(b) for an illustration).

Let J denote the total number of constraints of the form (18) and (19):

J =
∑

(i,j)∈C

#B(i, j) +
N∑

i=1

#D(i).

We assume a fixed numbering of these constraints and introduce the following notation. For a vector

y ∈ R
J , y

(i,j)
k denotes the component corresponding to the constraint (18), and y

(i,D)
k denotes the component

corresponding to the constraint (19). We define the jump operator B as follows:

B : ΠVh → R
J

(Bu)
(i,j)
k = u

(i)
k −

∑

ℓ∈B(j,i)

a
(i,j)
k,ℓ u

(j)
ℓ (20)

(Bu)
(i,D)
k = u

(i)
k . (21)

Hence, the conditions for C0-continuity (18) and the incorporation of essential boundary conditions (19)
read

Bu = b, (22)

where the entry of the vector b ∈ R
J is zero when corresponding to an interface condition (20), and it equals

g
(i)
k when corresponding to an essential boundary condition (21). For ĝ ∈ Vh with ĝ|ΓD

= gD|ΓD
, we have

b = Bĝ. Note that the linear operator B can be represented by a signed Boolean matrix. With (22), we
obtain the following restricted minimization problem which is equivalent to (13):

Find u such that

u = argmin
v∈ΠVh

Bv=b

N∑

i=1

(
1
2a

(i)(v(i), v(i))− f (i)(v(i))
)
. (23)

9

Remark 4.1. Throughout this paper, we assume that the computational domain is represented as a col-
lection of several patches which are joined with C0-smoothness along their interfaces. These patches simul-
taneously serve as the subdomains for the IETI method. The approach can be extended to unstructured
meshes, such as T-spline representations [3, 46, 47], which are also frequently used in isogeometric analysis.
Similar to the case of classical FETI, a computational domain represented by a T-spline mesh can be split
into subdomains. The coupling of the DOF across the interfaces needs to take all test functions into account
that do not vanish on the interface. Typically, these DOF form a strip whose width increases with the de-
gree of smoothness of the T-spline representation. This is different both from the classical FETI method for
piecewise linear finite elements and from the multi-patch NURBS discretization with C0-continuity, where
these DOF are arranged along lines. Consequently, when extending the framework to unstructured meshes
in IGA, a larger number of Lagrange multipliers will be needed as compared with the C0 case. Moreover,
for general T-spline meshes, it is no longer possible to benefit from the simple tensor-product structure of
the subdomains.

4.2. Saddle point formulation

Using the local basis of each subdomain space V
(i)
h , each function v(i) ∈ V

(i)
h is uniquely represented by

a vector v(i). Correspondingly, each function v ∈ ΠVh has a representation as a vector v of the form

v = (v(1), . . . ,v(N)) (24)

whose blocks are the local vectors v(i). Let K(i) denote the stiffness matrix corresponding to the local
bilinear form a(i)(·, ·) and define

K =




K(1) 0
. . .

0 K(N)


 .

Analogously, let f denote the load vector whose blocks f (i) correspond to the local subdomain load vectors,
and let B be the matrix representation of the jump operator B.

The minimization problem (23) is then equivalent to the following saddle point problem:
Find u ∈ ΠVh with the vector representation u as in (24) and Lagrange multipliers λ ∈ R

J , such that

(
K BT

B 0

)(
u

λ

)
=

(
f

b

)
. (25)

We note that even though λ is only unique up to an element from kerBT , the solution u is unique.
The common strategy of FETI-type methods is to reduce (25) to an equation that involves only λ. This

is not straightforward, since in the case of our model problems (see Section 2.1) the local matrices K(i) are
not invertible. More precisely, in the scalar elliptic case (I) the kernel is spanned by the constant functions,
and for the two-dimensional linearized elasticity problem (II), the kernel is spanned by three rigid body
modes.

In the classical FETI methods [17] and the total FETI method [15], additional unknowns are introduced
that span the kernel. In this paper, however, we will follow the dual-primal FETI (FETI-DP) method, see
[18] and [52, Sect. 6.4], thus obtaining IETI-DP.

4.3. Dual-primal formulation

Recall that we only consider NURBS geometry mappings with open knot vectors. Therefore, at every

vertex of the parameter domain Q, there is exactly one index k0 ∈ R(i), such that R
(i)
k0

at this vertex is 1,
while all other basis functions are zero. Hence, we can distinguish DOF that are associated with the vertices
of the parameter domain. Such DOF that are associated with the vertices of a parameter domain are called
primal DOF. All other DOF are referred to as non-primal or remaining DOF.

10

We define the following subset of ΠVh

W̃h = {v ∈ ΠVh : v is continuous at all vertices}.

To achieve the continuity above, we identify all the primal DOF that are associated with a common point
in the physical domain, and we fix a global numbering of these primal DOF. Then, a function v ∈ W̃h can
be uniquely represented by a vector ṽ of the form

ṽ = (ṽP , ṽR)
T = (ṽP , ṽ

(1)
R , . . . , ṽ

(N)
R)T , (26)

where the subscripts P and R refer to primal and remaining DOF, respectively. Note that v in (24) and ṽ

in (26) are different vector representations of the same function v ∈ W̃h ⊂ ΠVh.

Let B̃ denote the jump operator on W̃h defined by

B̃ũ = Bu,

where ũ is the representation of u in the form of (26). Analogously to (26), we can write

B̃ = (B̃P , B̃R) = (B̃P , B̃
(1)
R , . . . , B̃

(N)
R).

4.3.1. Setting up the global system

Since the solution u ∈ W̃h, we can replace the space ΠVh in (25) by W̃h. In the following, we will derive
an equivalent saddle point formulation.

By rearranging the local DOF u(i) in such a way that the primal DOF come first, the subdomain stiffness
matrix K(i) and the load vector f (i) take the form

K̃(i) =

(
K̃

(i)
PP K̃

(i)
PR

K̃
(i)
RP K̃

(i)
RR

)
, f̃ (i) =

(
f̃
(i)
P

f̃
(i)
R

)
. (27)

From these local contributions, we obtain the global stiffness matrix K̃ and the global load vector f̃

K̃ =

(
K̃PP K̃PR

K̃RP K̃RR

)
, f̃ =

(
f̃P

f̃R

)
. (28)

Note that, due to the identification of the primal DOF, the components carrying a subscript P in (28) are

assembled from local contributions. K̃RR and f̃R have the form

K̃RR =




K̃
(1)
RR 0

. . .

0 K̃
(N)
RR


 , f̃RR =




f̃
(1)
R
...

f̃
(N)
R


 .

Note that K̃PP is not block-diagonal.
The coupling conditions of the form (20) can be neglected at the primal DOF, but it has no effect on the

algorithm if they are included. Depending on the implementation of the jump operator, one might decide
to keep them or not.

With the same steps as before, we arrive at the following saddle point problem which is equivalent to
(25):

Find u ∈ W̃h, represented by ũ as in (26), and Lagrange multipliers λ ∈ R
J , such that

(
K̃ B̃T

B̃ 0

)(
ũ

λ

)
=

(
f̃

b

)
. (29)

Note that the matrix K̃ in (29) is singular, because the space W̃h has no restrictions on ΓD for our model
problems. In the next section, we will incorporate essential boundary conditions at those primal DOF that
are associated with ΓD. This incorporation will lead to a non-singular matrix.

11

4.3.2. Essential boundary conditions

We distinguish between essential primal DOF associated with ΓD, and floating primal DOF that are
in the interior of Ω or associated with ΓN . We indicate this with the subscripts d and f , respectively. We
assume for simplicity that in the vector ũ the essential primal DOF are listed first, i.e.

ũ = (ũd, ũf , ũR)
T = (ũd, ũf , ũ

(1)
R , . . . , ũ

(N)
R)T (30)

and

K̃ =




K̃dd K̃df K̃dR

K̃fd K̃ff K̃fR

K̃Rd K̃Rf K̃RR


 , f̃ =




f̃d

f̃f

f̃R


 ,

B̃ =
(

B̃d B̃f B̃R

)
.

Let g̃d be the vector whose entries are the values of gD at the essential primal DOF. Since ũd = g̃d, the
saddle point problem (29) is equivalent to the following problem:

Find u ∈ W̃h, represented by ũ as in (30), and Lagrange multipliers λ ∈ R
J , such that

(
K B

T

B 0

)(
ũ

λ

)
=

(
f

b

)
, (31)

where

K =




I 0 0

0 K̃ff K̃fR

0 K̃Rf K̃RR


 , (32)

f =




g̃d

f̃f − K̃fdg̃d

f̃R − K̃Rdg̃d


 , (33)

B =
(

0 B̃f B̃R

)
, (34)

b = b− B̃dg̃d (35)

and I is the identity matrix. We see that each entry of b corresponding to a multiplier acting on an essential
primal DOF vanishes. Also, these multipliers are superfluous as they do not influence the solution ũ and
can be left out completely.

As before, we denote the components ofK, f , andB in (32)–(34) that correspond to primal and remaining
DOF with the subscripts P and R, respectively. Hence,

KPP =

(
I 0

0 K̃ff

)
, KPR =

(
0

K̃fR

)
,

KRP =
(

0 K̃Rf

)
, KRR = K̃RR,

fP =

(
g̃d

f̃f − K̃fdg̃d

)
, fR = f̃R − K̃Rdg̃d,

BP =
(

0 B̃f

)
, BR = B̃R.

Again, the coupling conditions of the form (20) and (21) can be neglected at all the essential primal DOF,
but it has no effect on the algorithm if they remain.

Remark 4.2. Similar to the construction (32)–(35), we can also directly incorporate the essential boundary
conditions at the remaining non-primal essential DOF. If this is done, the corresponding multipliers can again
be left out. This approach would be closer to the original FETI-DP method as proposed in [18].

12

4.3.3. Dual problem

In our model problems the matrix K in (32) is invertible, and the first line of (31) yields

ũ = K
−1

(f −B
T
λ).

Inserting this identity into the second line of (31), we obtain the dual problem

Fλ = d (36)

with F = BK
−1

B
T
and d = BK

−1
f −b. To realize the application of K

−1
, we use the block factorization

K
−1

=

(
I 0

−K
−1

RRKRP I

)

(
S
−1

PP 0

0 K
−1

RR

)(
I −KPRK

−1

RR

0 I

)
(37)

where

SPP = KPP −KPRK
−1

RRKRP .

Recall that KRR is block diagonal. Hence, applying K−1
RR corresponds to solving local problems indepen-

dently on each subdomain, e.g. by sparse LU factorization [12]. Note that K−1
RR appears three times in (37),

but it has to be applied only twice, because two of the applications of K−1
RR are on the same vector.

The matrix SPP can be assembled from local contributions

S
(i)

PP = K
(i)

PP −K
(i)

PR(K
(i)

RR)
−1K

(i)

RP .

One can show that SPP is sparse and that it can be factorized using standard sparse LU factorization
[12]. The size of SPP is determined by the number of primal DOF. Since we only have primal DOF at the
subdomain vertices, their number is bounded by 4N . Typically, the number of subdomains, and therefore

the size of SPP , is much smaller than the size of K
(i)
RR, but even in the case of many subdomains SPP is

sparse.
We can solve the symmetric and positive definite system (36) for λ by a CG algorithm. Once we have

obtained λ, we can calculate

ũP = S
−1

PP

(
fP −B

T

Pλ−KPRK
−1

RR(fR −B
T

Rλ)
)
. (38)

The remaining local solutions are then given by

ũR = K
−1

RR

(
fR −B

T

Rλ−KRP ũP

)
. (39)

In [19], the unpreconditioned interface problem (36) is discussed for the classical FETI method, and it
is shown that the condition number is of order

κ(F) = O(H/h), (40)

where H and h denote the characteristic subdomain size and the finite element mesh size, respectively. The
numerical tests presented in Section 6 indicate that the IETI method behaves similarly. In the next section,
following [18], we define a preconditioner for the interface problem which will be used for the numerical
examples in Section 6.

13

4.4. Preconditioner

Our construction follows the scaled Dirichlet preconditioner that was introduced in [19, 28, 44] and
extended to the dual-primal formulation in [18, 29]. We indicate interior DOF with the subscript I, and
the DOF associated with the boundary ∂Ω(i) of a subdomain with the subscript B. Assume that the DOF
are now numbered such that the interior DOF are listed first, then the local stiffness matrix K(i) takes the
form

K(i) =

(
K

(i)
II K

(i)
IB

K
(i)
BI K

(i)
BB

)
. (41)

The dual-primal Dirichlet preconditioner is defined by

M−1 =

N∑

i=1

D(i) B(i)

(
0 0

0 S
(i)
BB

)
B(i) T D(i), (42)

where

S
(i)
BB = K

(i)
BB −K

(i)
BI(K

(i)
II)

−1K
(i)
IB.

Since K
(i)
II is the local stiffness matrix of Ω(i) with all boundary DOF fixed, it can be factorized as easily

and cheaply as K
(i)
RR. The matrix B(i) in (42) is the restriction of B to the interface conditions associated

with Ω(i). The matrix D(i) is a scaled diagonal matrix of size J × J , where J is the number of Lagrange
multipliers. Its entries are

(D(i))kk = 1/mult(k),

where mult(k) is the number of subdomains which have interfaces associated with the Lagrange multiplier
λk. In particular, mult(k) takes the following values:

mult(k) = 1, if λk corresponds to an essential boundary condition.
mult(k) = 2, if λk corresponds to a coupling condition that does not involve a subdomain vertex.
mult(k) ≥ 2, if λk corresponds to a coupling condition that involves a subdomain vertex.

These scalings can, e.g., be found in [28, 29], where the authors show that certain jumps in the diffusion
coefficient (problem (I)) or the Lamé parameters (problem (II)) can be treated robustly.

In [29], it was shown that the condition number of the preconditioned FETI-DP interface problem behaves
like

κ(M−1F) = O((1 + log(H/h)2),

where H and h are as defined at the end of Section 4.3. The numerical results presented in Section 6 show
that a similar behaviour can be observed in the IETI method.

4.5. Isogeometric tearing and interconnecting algorithm

To summarize, the overall IETI-DP algorithm is as follows.

1. For each i = 1, . . . , N , locally on each subdomain Ω(i) (in parallel)

a) Assemble the local stiffness matrix K(i) and load vector f (i) using a fully local numbering of the
DOF.

b) Partition K(i) and f (i) as in (28), factorize K
(i)
RR, calculate S

(i)

PP .

c) Partition K(i) as in (41), factorize K
(i)
II .

2. Assemble and factorize SPP , calculate d.
3. Solve Fλ = d by PCG with preconditioner M−1 as in (42).

14

4. Calculate ũP as in (38),

ũP = S
−1

PP

(
fP −B

T

Pλ−KPRK
−1

RR(fR −B
T

Rλ)
)
.

5. For each i = 1, . . . , N , obtain ũ
(i)
R as in (39) (in parallel),

ũ
(i)
R = K

(i)
RR

−1(
f
(i)
R − (B

(i)

R)Tλ−K
(i)

RP ũP

)
.

5. Refinement options

The tensor-product structure of NURBS basis functions is inconvenient for local refinement. The insertion
of a knot affects the whole domain and may introduce superfluous DOF. Recent work on methods for local
refinement in IGA includes analysis suitable T-splines (see, e.g. [3, 34, 35, 47, 48, 49]), THB-splines (see [20]),
and PHT-splines (see [13, 40]), as well as the use of finite element-based strategies in the IGA framework
(see [30]).

However, the IETI-approach introduces some possibilities for restricting the refinement to one or a few
subdomains (of many), even when working with tensor-product NURBS basis functions and straightforward
knot insertion. We will sketch two such methods: h-refinement on one subdomain and refinement by
substructuring (see Fig. 3). Note that, in both cases, we assume that the initial setting is fully matching.

(a) Shaded area marked for refinement.

(b) h-refinement of (a) on one subdomain (see Section 5.1).

(c) Refinement of (a) by two steps of 1-level substructuring
(see Section 5.2).

Figure 3: Two options for refining the shaded area in (a).

5.1. h-refinement on one subdomain

Although a knot insertion affects the whole parameter domain due to the tensor-product structure of the
NURBS basis functions, we can limit the refinement to a single subdomain, as depicted in Fig. 3(b). Such
a local refinement procedure was proposed in [10] in the context of multi-patch NURBS discretizations.

We assume that on an interface, which is not fully matching, the knot vector on one subdomain (the
fine side) is a refinement of the knot vector on the other subdomain (the coarse side), as in the example in

15

Fig. 3(b). In Fig. 4, such a case is illustrated schematically: The knot vector s(i) is obtained from s(j) by

one step of uniform h-refinement. In contrast to the fully matching case, the numbers of DOF of V
(i)
h and

V
(j)
h on the interface Γ(i,j) are not equal, and condition (ii) for the fully matching case is not fulfilled. In

reference to hanging nodes in finite element methods, we call this a setting with hanging knots (note that
we still assume that the geometry is conforming). As a consequence, we cannot couple the DOF as simply
as in (18). In particular, the matrix A(i,j) in (17) has to be modified accordingly.

The number of interface conditions on such an interface is determined by the fine side, which is chosen
as the master subdomain. Hence, we adapt the definition (15) of C as follows:
If Γ(i,j) is an interface with hanging knots, we define

(i, j) ∈ C, if #B(i, j) ≥ #B(j, i),

(j, i) ∈ C, otherwise.

If Γ(i,j) is a fully matching interface, we follow the definition of C in (15), i.e.,

(i, j) ∈ C, if i < j,

(j, i) ∈ C, otherwise.

For example, in Fig. 4, the master subdomain is Ω(i), i.e. (i, j) ∈ C.
Without loss of generality, we assume that s(i) is a refinement of s(j) and that the weights on the finer

side are obtained by the knot insertion algorithm [43]. Hence, on the interface Γ(i,j) the coarse basis function

R̂
(j)
ℓ |Γ(i,j) , ℓ ∈ B(j, i) can be represented exactly as a linear combination of fine basis functions R̂

(i)
k |Γ(i,j) ,

k ∈ B(i, j). Therefore, for each ℓ ∈ B(j, i), there exist coefficients zℓ,k, such that

R̂
(j)
ℓ |Γ(i,j) =

∑

k∈B(i,j)

zℓ,k R̂
(i)
k |Γ(i,j) . (43)

The coefficients zℓ,k can be obtained from well-known formulae for the refinement of B-Spline basis functions
[43].

We require C0-continuity of uh across the interface Γ(i,j), i.e. we require
∑

k∈B(i,j)

u
(i)
k R̂

(i)
k |Γ(i,j) =

∑

ℓ∈B(j,i)

u
(j)
ℓ R̂

(j)
ℓ |Γ(i,j)

=
∑

ℓ∈B(j,i)
k∈B(i,j)

u
(j)
ℓ zℓ,k R̂

(i)
k |Γ(i,j) .

By comparing the coefficients, we obtain

u
(i)
k −

∑

ℓ∈B(j,i)

zℓ,k u
(j)
ℓ = 0,

i.e. we obtain a continuity constraint in the same form as in (18) and (20), where the coefficients of the
coupling matrix A(i,j), see (17), are given by

a
(i,j)
k,ℓ = zℓ,k.

Remark 5.1. In [24], the issue of coupling mortar discretizations in the FETI-DP context was addressed.

The procedure for formulating the jump operator given therein would result in the same coefficients a
(i,j)
k,ℓ if

it is applied to the setting considered here.

With the modified coupling matrices, one can then perform the same steps as in section 4.3.2 and the
sections thereafter. Here we would like to point out that there are Lagrange multipliers which connect primal
essential DOF with a boundary condition as well as multipliers connecting one and the same primal DOF.
Both types of multipliers are superfluous and can be left out. However, in the presence of an interface with
hanging knots, there are also multipliers that connect primal and remaining DOF. These multipliers cannot
be left out and the corresponding entries in the vector b do not vanish in general.

16

s(i)

s(j)

Figure 4: Interface with hanging knots: p(i) = p(j) = 2,
s(i) = {0, 0, 0, 1/8, 2/8, . . . , 7/8, 1, 1, 1} is a refinement of
s(j) = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}.

5.2. Local refinement by substructuring

As an alternative, the number of DOF can be increased locally by subdividing one subdomain into
smaller subdomains as illustrated in Fig. 3(c).

If one wanted to subdivide the NURBS geometry mapping, e.g. in order to be able to edit the geometry
locally, one would split the mapping and construct new knot vectors, weights and control nets for the new
geometry mappings. This is not necessary in the IETI context, since we are not interested in actually
splitting the geometry representation. Instead, we split the parameter domain into smaller subdomains
which are mapped to the physical domain by the original (unchanged) coarse geometry mapping.

A very simple method for substructuring the subdomain Ω(i) is the following: We split the parameter
domain Q = [0, 1]2 into four subdomains

Q(i,1) = (0, 1/2)× (0, 1/2),

Q(i,2) = (0, 1/2)× (1/2, 1),

Q(i,3) = (1/2, 1)× (0, 1/2),

Q(i,4) = (1/2, 1)× (1/2, 1).

We refer to this substructuring method as cross insertion. The basis functions of the original parameter
domain Q are pushed forward to the smaller subdomain Q(i,k) by a linear mapping G(i,k) : Q → Q(i,k) and
then transformed to the physical domain by the original mapping G(i) (see Fig. 5 for an illustration). The
basis functions on Ω(i,k) have the form

R
(i)
k ◦

(
G(i,k)−1

◦G(i)−1
)
.

The domain decomposition obtained by substructuring is again a setting with hanging knots. The matrix
A(i,j) in the interface condition (18) is adapted as described in Section 5.1.

G(i)
G(i,k) Ω(i,k)

Ω(i)

Q(i,k)

Q

Q

Figure 5: Embedding smaller subdomains Q(i,k) into the original parameter domain Q(i).

When we refine by substructuring, we introduce situations where the vertex of one subdomain coincides
with the edge of another subdomain. Such cases are illustrated in Fig. 3(c) and Fig. 6(a). We call such
a subdomain vertex a hanging subdomain vertex (or short hanging vertex). Note that not every T-shaped
subdomain vertex is a hanging vertex, as illustrated in the example in Fig. 6(b).

17

Ω(1)

Ω(2)

Ω(3)

(a) Hanging subdomain vertex
marked by dashed circle.

Ω(1)

Ω(2)

Ω(3)

(b) T-shaped, but not hanging
subdomain vertex.

Figure 6: Examples for hanging and not hanging subdomain vertices.

The choice of primal DOF in substructured subdomains, where we have hanging vertices, is not as
straightforward as in the fully matching case. In the example of a hanging vertex in Fig. 6(a), there is (in
the scalar case) exactly one DOF on Ω(2) that is associated with the hanging vertex marked by the dashed
circle (cf. the discussion at the beginning of Section 4.3). While the same applies to Ω(3), this is not true
on Ω(1), where we have several NURBS basis functions which are nonzero at the marked hanging vertex.
Instead of incorporating a special treatment of hanging vertices, we choose to omit primal DOF at hanging
vertices and discuss under which conditions this is possible.

For the scalar elliptic problem (I), the kernel of the stiffness matrix of a floating subdomain is spanned
by the constant function, i.e., the kernel has dimension one. In this case, it is sufficient to have at least
one primal DOF on each subdomain. This is easily guaranteed, if we start from a fully matching setting,
apply substructuring by cross-insertion as described in Section 5.2, and select primal DOF at all subdomain
vertices which are not hanging. The example in Fig. 7(a) shows the positions of primal DOF after two cross
insertions.

(a) Cross-insertion results
in at least one primal DOF
on each subdomain.

(b) 1-level refinement re-
sults in at least two pri-
mal vertices on each subdo-
main.

Figure 7: Subdomains refined by substructuring. Positions of primal vertices marked by ©.

In a two-dimensional setting, we call a subdomain vertex a primal vertex, if the two DOF associated
with this vertex are primal. For the two-dimensional linearized elasticity problem (II), where the kernel
is spanned by the three rigid body modes, we need at least three primal DOF per subdomain. This is
satisfied, if we choose at least two primal vertices per subdomain (i.e., four primal DOF in total). However,
as illustrated in Fig. 7(a), this is not guaranteed if we apply substructuring by cross-insertion without
additional considerations.

For linearized elasticity problems, we introduce refinement levels and we assign refinement level 0 to
every subdomain in the initial setting. When a subdomain is split into four smaller subdomains by cross
insertion, the levels of the new, smaller subdomains are increased by 1 (see Fig. 8 for an illustration). We call
the refinement a 1-level substructuring, if the refinement levels of any two subdomains with an edge as their
interface differ by at most 1. If we start from a fully matching setting, apply 1-level substructuring by cross-
insertion, and choose all non-hanging vertices as primal vertices, then it is guaranteed that there are at least

18

two primal vertices, i.e., at least four primal DOF, on each subdomain. The example in Fig. 7(b) illustrates
the positions of primal vertices after two such 1-level substructuring steps. Note that, depending on the
location of the refined area, 1-level substructuring can effect neighbouring subdomains. This disadvantage
is accepted as a trade-off for avoiding an involved treatment of hanging vertices.

00
1 1

11

1

2

Figure 8: Refinement levels of subdomains (initial setting as in Fig. 3(a)).

Note that the discretization is only C0-continuous along subdomain interfaces. By substructuring a
subdomain, new interfaces are introduced, and thereby the discretization is changed.

Remark 5.2. Note that the refinement options discussed in Section 5.1 and Section 5.2 can be combined
by applying them one after the other. Furthermore, the coupling methods described in this section can be
combined with isogeometric local refinement methods such as those mentioned at the beginning of Section 5.
If such local refinement methods are applied only in the interior of one or many subdomains, obviously, the
coupling at the subdomain interfaces is not influenced. If the refined areas extend to subdomain boundaries,
and one side is a refinement of the other, C0 coupling can be done as described in this section.

5.3. Preconditioning in the presence of hanging knots

As mentioned in Section 5.1, when we have hanging knots, the coupling matrix B(i) is not a signed
Boolean matrix any more. The Dirichlet preconditioner that was defined in (42) can still be applied in
settings with hanging knots. However, as already mentioned in [24] in the context of mortar discretizations,
while the asymptotic behaviour of the condition number remains the same, the condition number itself
increases. This can also be observed in the numerical tests with the IETI-DP method (see Section 6 for the
results).

We now adapt the preconditioner for settings with hanging knots by replacing the scaling matrix D(i)

in (42) by a modified diagonal matrix D
(i)
A . Its entries are defined as follows:

(
D

(i)
A

)
kk

= 1/mult(k), if λk corresponds to a fully matching interface. Here, mult(k) is as defined in
Section 4.4.(

D
(i)
A

)
kk

= 1, if λk corresponds to an interface with hanging knots and Ω(i) is the master subdomain.(
D

(i)
A

)
kk

= 0, otherwise.

The preconditioner M−1
A for the case with hanging knots is defined analogous to (42) by

M−1
A =

N∑

i=1

D
(i)
A B(i)

(
0 0

0 S
(i)
BB

)
B(i)T D

(i)
A .

As it will be reported in Section 6, this preconditioner leads to lower condition numbers as compared to M−1

from Section 4.4 in settings with hanging knots. Note that we have M = MA in fully matching settings.

6. Numerical examples

In this section, we present three numerical test examples for the IETI-DP method. We test the method
and the refinement options presented in Section 5, and we study the performance of the proposed precondi-
tioners. The conjugate gradient method was applied to solve the interface problem Fλ = d in (36), both

19

without and with the discussed preconditioners. In the following tables, we display the numbers of iterations
needed until the stopping criterion

‖rk‖ℓ2/‖d‖ℓ2 < 10−8

was fulfilled, where rk is the residual in the k-th iteration and ‖ · ‖ℓ2 denotes the Euclidean norm. The
condition numbers in these tables were computed numerically using the Lanczos method.

Note that the aim of these examples (due to their sizes, they could be dealt with by using direct solvers)
is to illustrate the method and its potential. The true computational advantage of the IETI method against
direct solvers will become apparent in large problem sizes and/or three-dimensional problems.

6.1. Bracket under load

Our first example is a linearized elasticity problem (type (II) in Section 2.1). We consider the two
geometries displayed in Fig. 9(a) and Fig. 10(a), where the first one, which is taken from an illustration in
[11], has a rounded reentrant corner, and the second one has a sharp reentrant corner. We refer to these
geometries as case (A) and case (B), respectively.

In Fig. 9(a) and 10(a), we show the subdomain decomposition and indicate the boundary conditions. We
fix the two lower holes by applying homogenous essential boundary conditions, while a constant downward
pointing traction tN with magnitude 1000N is applied at the walls of the rightmost hole. The remaining
boundaries are free of traction. The material parameters are set to E = 3 · 107kPa and ν = 0.3. Note
that the circular holes contained in the domains are represented exactly by NURBS geometry mappings of
degree 2.

In Fig. 9(b) and 10(b), the calculated stress component σ11 is depicted for cases (A) and (B), respectively.
Note that the scales are different, and that the scale in Fig. 10(b) has been cutoff below for a better visibility
of the stress distribution. The results illustrate that the IETI-DP method can be applied to non-trivial
geometries including holes and consisting of numerous subdomains.

The condition numbers and the (P)CG iteration numbers for these fully matching settings are given in
the table in Fig. 11. The column labeled n shows the number of knot spans in the direction indicated by
the small arrows at the bottom in Fig. 9(a) and 10(a). The column #λ shows the number of Lagrange
multipliers, i.e., the size of the interface problem (36). The columns labeled F and M−1F display the
condition numbers of the interface problems and the (P)CG iteration numbers without preconditioner, and
with preconditioner M−1 as defined in Section 4.4, respectively. The entry “> 200” indicates that the
desired accuracy was not reached after 200 iterations. The results show the expected, moderate growth in
the preconditioned case.

In Fig. 10(b), the peak stress near the reentrant corner in case (B) is clearly visible. To obtain a better
resolution of the peak stress, we introduce case (C), which is indicated in Fig. 12(a). Here, the subdomains
near the corner have a finer discretization than the subdomains which are far from the corner, and we have
interfaces with hanging knots. The number of knot spans on the finest and coarsest subdomain discretizations
are denoted by nfine and ncoarse, respectively. These numbers are measured in the directions indicated by
the small arrows in Fig. 12(a). The ratio nfine/ncoarse = 4 is the same for all chosen meshes. The condition
numbers and (P)CG iteration numbers for this setting with hanging knots are presented in Fig. 12(b).
Clearly, the preconditioner M−1

A defined in Section 5.3 performs better than M−1 from Section 4.4. The
stress component σ11 is not plotted for case (C), since it is the same as in case (B), Fig. 10(b). The energy
norm of the numerical solutions in case (B) and case (C) is compared in Fig. 13. It shows that for given
DOF a faster convergence can be achieved by local h-refinement.

6.2. Bending of a cantilever

We now consider a linearized elasticity problem (type (II) in Section 2.1) on a cantilever of length L and
thickness D. It is fixed at x = 0 and subject to a parabolic traction at x = L with resultant P as illustrated
in Fig. 14(a). We choose the parameters as follows: L = 48m, D = 12m, E = 3 · 107kPa, ν = 0.3, and
P = 1000N.

20

ΓD

tN

n
(a) Setting in case (A).

0 3 7 10
0

3

7

10
1

0.5

0

−0.5

−1

−1.5

×104

(b) Stress component σ11.

Figure 9: Case (A), bracket with rounded reentrant corner.

ΓD

tN

n
(a) Setting in case (B).

0 3 7 10
0

3

7

10
1

0

−1

−2

−3

×104

(b) Stress component σ11.

Figure 10: Case (B), bracket with sharp reentrant corner.

condition numbers (P)CG iterations
Case n #λ F M

−1
F F M

−1
F

(A) 8 464 173.95 39.60 69 42
16 784 470.09 67.98 103 49
32 1424 1230.11 105.87 149 58
64 2704 3074.62 154.10 > 200 67

(B) 8 484 174.17 51.72 70 43
16 820 509.39 85.71 106 50
32 1492 1388.58 130.24 150 60
64 2836 3543.44 185.42 > 200 67

Figure 11: Condition numbers and (P)CG iterations for cases (A) and (B) of a bracket under load.

An analytical solution for the displacement field u = (u1, u2)
T can be found, e.g., in [30, 40, 51]:

u1 =
Py

6E0I

(
(6L− 3x)x + (2 + ν0)

(
y2 −

D2

4

))
,

u2 =−
P

6E0I

(
3ν0y

2(L− x) + (4 + 5ν0)x
D2

4

+ (3L− x)x2

)
,

where I = D3/12 is the moment of inertia of the cross section of the cantilever. When we consider the
plane stress problem, we set E0 = E and ν0 = ν. For the plane strain problem, we set E0 = E/(1− ν2) and

21

ΓD

tN

ncoarse

nfine

(a) Setting in case (C).

conditon numbers (P)CG iterations

ncoarse nfine #λ F M
−1

F M
−1
A

F F M
−1

F M
−1
A

F

4 16 428 469.89 344.72 86.40 71 69 45
8 32 708 1324.01 542.19 130.75 105 89 57

16 64 1268 3419.50 820.16 185.40 148 103 66
32 128 2388 8448.24 1170.29 258.89 > 200 120 75

(b) Condition numbers and (P)CG iterations for case (C).

Figure 12: Case (C), bracket with sharp reentrant corner and local h-refinement near the corner. The ratio
nfine/ncoarse = 4 is the same for all chosen meshes. The stress component σ11 as as in Fig. 10(b).

0.676

0.675

0.677

0.678

0.679

0 2 4 6 8
×104

Case (C)
Case (B)

DOF

Figure 13: Comparison of the energy norms of the discrete solutions ‖uh‖E in cases (B) and (C).

ν0 = ν/(1− ν). Then, in both cases, the resulting exact stress components are as follows:

σ11 =
P (L− x)y

I
,

σ12 = −
P

2I

(
D2

4
− y2

)
,

σ22 = 0.

We apply the exact displacement as essential boundary conditions at the boundary x = 0, and the exact
traction tN at x = L. The remaining boundaries at y = ±D/2 are free of traction.

Note that the exact displacement field u = (u1, u2)
T is a cubic polynomial. By using basis functions of

degree 3 and due to the simple geometry mappings, the exact solution u is in Vh. Although the exact solution
does not have peaks or singularities, we refine randomly chosen subdomains, in order to demonstrate the
performance of the IETI-DP method in settings with hanging knots. In Fig. 14(b), the thick lines indicate
the subdomain decomposition, while the thin lines schematically indicate how fine the discretizations of the
respective subdomains are, and whether the setting is fully matching or not. The numerical tests confirm
that, for all considered discretizations, the calculated numerical solution is exact (up to the accuracy to

22

which we solve (36) for λ).
The table presented in Fig. 14(d) shows that the condition numbers behave as expected. For cases

which are not fully matching, the columns labeled ncoarse and nfine indicate the number of knot spans in one
direction on the coarse and fine discretizations, respectively. The other columns are labeled as in the previous
example. In the settings (C), (D), and (E) with hanging knots, it can be observed that the condition number
of M−1F grows slowlier than in the unpreconditioned case. However, on coarse discretizations, both the
absolute value of the condition number and the number of (P)CG iterations are larger in the preconditioned
case than in the unpreconditioned case (cf. the discussion in the beginning of Section 5.3). The preconditioner
M−1

A performs much better in all cases with hanging knots.

6.3. Poisson problem on Yeti’s footprint

In our third example, we solve the Poisson problem −∆u = f (type (I) in Section 2.1 with α = 1) on
the physical domain Ω resembling the footprint of a Yeti. The domain is shown in Fig. 15(a) and consists
of 21 subdomains. We set Dirichlet boundary conditions at the big toe, and Neumann boundary conditions
everywhere else. The boundary conditions and the right hand side f are determined by the exact solution

u(x, y) =

{
(R− r(x, y))4 + y/10, if r(x, y) < R,

y/10, else,

where r(x, y) = |(x, y)− (x0, y0)|. This solution u is constructed in such a way that it has a peak at (x0, y0).
We set R = 1 and (x0, y0) = (2.6, 2.7) (see Fig. 15(a)).

Since the discussion of a posteriori error estimation is not in the scope of this paper, and because we
know the exact solution u, we apply adaptive refinement based on the exact error. For each subdomain
Ω(i), we calculate the local error in the energy norm η(i) = ‖u − uh‖E,Ω(i) . Then we mark all subdomains
for refinement, for which

η(i) ≥ 0.1max{η(j), j = 1, . . . , N}

holds. In each such refinement step, we apply uniform h-refinement on the marked subdomains. The global
mesh after 5 such refinement steps is shown in Fig. 15(b). In Fig. 15(c), we compare the error obtained
by global uniform refinement and by the described adaptive refinement. As expected, for a given number
of DOF a more accurate solution can be achieved by adaptive, local h-refinement, as compared to global
refinement in a fully matching setting.

In Fig. 15(d), the condition numbers and the (P)CG iteration numbers for the fully matching setting
are presented. The column labeled “DOF” indicates the global number of DOF. In Fig. 15(e), the condition
numbers and the (P)CG iterations in the adaptive refinement are shown.

7. Conclusion

We have proposed the IETI method which combines the ideas and advantages of IGA and the FETI
method. We preserve the exact geometry representation from the coarsest discretization level, thereby
eliminating the need for data transformation, and also eliminating consequent approximation errors in the
geometry. At the same time, we apply the techniques from FETI methods to couple NURBS patches and to
solve the presented model problems on complicated computational domains which consist of many NURBS
patches and may contain holes.

We have discussed the coupling of interfaces with hanging knots, thereby introducing options for local
refinement. These can be applied using only NURBS basis functions with tensor-product structure, without
the need for involved local NURBS-refinement techniques. Numerical examples demonstrated the perfor-
mance of the IETI-DP method and of the proposed preconditioners, both in fully matching settings, and in
settings with hanging knots.

23

L

D x

y

P

(a) Problem setting.

6

−6

0

0 48
(b) Stress component σ11.

Setting (A), 4 subdomains, fully matching. Setting (B), 18 subdomains, fully matching.

Setting (C), 4 subdomains, 2 of which are h-refined. Setting (D), 18 subdomains, 5 of which are h-refined.

Setting (E), 10 subdomains, with hanging vertices.

(c) Illustration of the tested discretizations.

condition numbers (P)CG iterations

Setting ncoarse n, nfine #λ F M
−1

F M
−1
A

F F M
−1

F M
−1
A

F

(A) ∗ 8 88 33.80 11.81 † 24 15 †

∗ 16 152 77.02 14.99 † 33 16 †

∗ 32 280 170.81 18.38 † 40 18 †

∗ 64 536 378.38 23.49 † 50 20 †

(B) ∗ 8 700 53.87 13.50 † 48 24 †

∗ 16 1100 116.68 16.79 † 67 27 †

∗ 32 2140 264.72 20.38 † 85 30 †

∗ 64 4060 595.88 24.21 † 120 34 †

(C) 8 16 136 66.03 109.10 28.43 23 31 21
16 32 248 157.41 146.07 35.53 37 38 22
32 64 472 358.85 184.14 43.02 48 41 24
64 128 920 795.88 224.55 51.11 62 47 28

(D) 4 8 580 46.38 74.78 31.02 50 53 35
8 16 940 102.90 109.54 38.59 68 63 39

16 32 1660 231.74 142.50 47.01 93 71 43
32 64 3100 530.70 175.41 55.94 123 77 46

(E) ∗ 8 338 184.11 351.08 98.71 53 58 37
∗ 16 578 387.44 433.00 141.50 69 63 41
∗ 32 1058 813.77 532.37 194.07 90 69 46
∗ 64 2018 1733.71 647.72 257.28 119 73 52

(d) Condition numbers and (P)CG iterations of the unpreconditioned and the preconditioned interface problem.
∗In cases (A), (B), and (E), the number of knot spans is the same on all subdomains.

†In fully matching settings, we have M
−1
A

= M
−1.

Figure 14: Bending of a cantilever, problem setting and discussed cases.

24

ΓD

(x0, y0)

1 2 3 40
0

1

2

3

4

5

(a) Problem setting on Yeti’s footprint.

1 2 3 40
0

1

2

3

4

5

(b) Discretization after 5 refinement
steps.

uniform ref.
adaptive ref.

DOF
103 104 105

100

10−1

10−2

10−3

10−4

(c) Exact errors in the energy norm
‖u− uh‖E vs. DOF.

condition numbers (P)CG iterations
n DOF #λ F M

−1
F F M

−1
F

4 852 180 16.26 5.52 29 17
8 2420 292 35.25 7.55 37 20

16 7956 516 81.37 9.90 46 23
32 28628 964 188.51 12.49 59 26
64 108372 1860 431.61 15.36 85 28

(d) Condition numbers and (P)CG iterations, fully matching setting with global refinement.

condition numbers (P)CG iterations

n DOF #λ F M
−1

F M
−1
A

F F M
−1

F M
−1
A

F

0 852 180 16.26 5.52 5.52 29 17 17
1 916 188 22.92 39.14 13.99 29 30 19
2 1204 212 51.94 68.62 19.63 31 33 20
3 2444 268 119.36 111.01 25.94 36 38 22
4 7196 384 272.22 174.72 33.13 44 44 23
5 25756 628 612.87 317.69 41.14 55 53 25

(e) Condition numbers and (P)CG iterations, adaptive refinement.

Figure 15: Yeti’s footprint with adaptive refinement.

In this paper, we have assumed that the subdomain interfaces are either fully matching or that the
discretization on one side is a refinement of the other. The coupling across fully matching interfaces can
be extended to three-dimensional problems in a straightforward manner. Also, preconditioners from FETI-
DP methods can be applied to a three-dimensional IETI method. The solver design and the choice of

25

primal DOF (including edge averages which have been proven necessary in three dimensions [29, 52]) are
more involved, in particular in the presence of hanging vertices. The treatment of more general interfaces,
including interfaces that are not necessarily geometrically conforming (i.e., that may have small gaps or
overlaps) is open for future work. Another interesting issue for future research on the IETI method is the
incorporation of fast iterative subdomain solvers, such as geometric multigrid solvers and solvers exploiting
the tensor product structure, e.g., wavelet solvers.

Acknowledgements

The authors gratefully acknowledge the support from the Austrian Science Fund (FWF) through the
project P21516-N18, the European Union through the 7th Framework Programme, project 218536 “EXCIT-
ING”, and the Austrian Academy of Sciences (ÖAW).

References

[1] M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, and A.-V. Vuong. Swept Volume Parameterization for
Isogeometric Analysis. In Proc. IMA Int. Conf. Mathematics of Surfaces XIII, pages 19–44. Springer, 2009.

[2] Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, T.J.R. Hughes, and G. Sangalli. Isogeometric analysis: approximation,
stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci., 16(7):1031–1090, 2006.

[3] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, and T.W. Sederberg. Isogeometric
analysis using T-splines. Comput. Methods Appl. Mech. Engrg., 199(5-8):229–263, 2010.

[4] Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based
turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Engrg., 197(1-
4):173–201, 2007.

[5] Y. Bazilevs, V.M. Calo, T.J.R. Hughes, and Y. Zhang. Isogeometric fluid-structure interaction: theory, algorithms, and
computations. Computational Mechanics, 43:3–37, 2008. 10.1007/s00466-008-0315-x.

[6] L. Beirão da Veiga, A. Buffa, J. Rivas, and G. Sangalli. Some estimates for h-p-k-refinement in isogeometric analysis.
Numerische Mathematik, 118:271–305, 2005.

[7] L. Beirão da Veiga, A. Buffa, D. Cho, and G. Sangalli. IsoGeometric analysis using T-splines on two-patch geometries.
Comput. Methods Appl. Mech. Engrg., 200(21-22):1787–1803, 2011.

[8] A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromagnetics: B-splines approximation. Comput.
Methods Appl. Mech. Engrg., 199(17-20):1143–1152, 2010.

[9] E. Cohen, T. Martin, R.M. Kirby, T. Lyche, and R.F. Riesenfeld. Analysis-aware modeling: Understanding quality
considerations in modeling for isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 199(5-8):334 – 356, 2010.

[10] J.A. Cottrell, T.J.R. Hughes, and A. Reali. Studies of refinement and continuity in isogeometric structural analysis.
Comput. Methods Appl. Mech. Engrg., 196:4160–4183, 2007.

[11] J.A. Cottrell, A. Reali, Y. Bazilevs, and T.J.R. Hughes. Isogeometric analysis of structural vibrations. Comput. Methods
Appl. Mech. Engrg., 195:5257–5296, 2006.

[12] T.A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006.
[13] J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, and Y. Feng. Polynomial splines over hierarchical T-meshes. Graphical

Models, 70:76–86, 2008.
[14] M.R. Dörfel, B. Jüttler, and B. Simeon. Adaptive isogeometric analysis by local h-refinement with T-splines. Comput.

Methods Appl. Mech. Engrg., 199(5-8):264–275, 2010.
[15] Z. Dostál, D. Horák, and R. Kučera. Total FETI – An easier implementable variant of the FETI method for numerical

solution of elliptic PDE. Commun. Numer. Methods Eng., 12:1155–1162, 2006.
[16] T. Elguedj, Y. Bazilevs, V.M. Calo, and T.J.R. Hughes. B̄ and F̄ projection methods for nearly incompressible linear

and nonlinear elasticity and plasticity using higher-order NURBS elements. Comput. Methods Appl. Mech. Eng., 197(33-
40):2732–2762, 2008.

[17] C. Farhat, F.X. Roux. A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J.
Numer. Meth. Engng, 32:1205–1227, 1991.

[18] C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen. FETI-DP: a dual-primal unified FETI-method – part I:
A faster alternative to the two-level FETI method. Int. J. Numer. Meth. Engng., 50:1523–1544, 2001.

[19] C. Farhat, J. Mandel, and F.X. Roux. Optimal convergence properties of the FETI domain decomposition method.
Comput. Methods Appl. Mech. Engrg., 115:265–385, 1994.

[20] C. Giannelli, B. Jüttler, and H. Speleers. THB-splines: The truncated basis for hierarchical splines. Comput. Aided
Geomet. Design, 29(7): 485–498, 2012.

[21] D. Großmann and B. Jüttler. Volumetric Geometry Reconstruction of Turbine Blades for Aircraft Engines. In: J.-D.
Boissonat et al. (Eds.), Curves and Surfaces – Proceedings of 7th International Conference, Avignon 2010, Lecture Notes
in Computer Science, vol. 6920: 280–295, Springer, 2012.

[22] T.J.R. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and
mesh refinement. Comput. Methods Appl. Mech. Engrg., 194(39-41):4135–4195, 2005.

26

[23] T.J.R. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods
Appl. Mech. Engrg., 199(5-8):301–313, 2010.

[24] H.H. Kim and C.-O. Lee. A preconditioner for the FETI-DP formulation with mortar methods in two dimensions. SIAM
Journal on Numerical Analysis, 42(5):2159–2175, 2005.

[25] A. Klawonn, L. Pavarino, and O. Rheinbach. Spectral element FETI-DP and BDDC preconditioners with multi-element
subdomains. Comput. Meth. Appl. Mech. Engrg., 198:511–523, 2008.

[26] A. Klawonn and O. B. Widlund. Dual-primal FETI methods for linear elasticity. Comm. Pure Appl. Math., 59(11):1523–
1572, 2006.

[27] A. Klawonn and O.B. Widlund. A domain decomposition method with Lagrange multipliers and inexact solvers for linear
elasticity. SIAM J. Sci. Comput., 22(4):1199–1219, 2000.

[28] A. Klawonn and O.B. Widlund. FETI and Neumann-Neumann iterative substructuring methods: Connections and new
results. Comm. Pure Appl. Math., 54(1):57–90, 2001.

[29] A. Klawonn, O.B. Widlund, and M. Dryja. Dual-primal FETI methods for three-dimensional elliptic problems with
heterogeneous coefficients. SIAM J. Numer. Anal., 40:159–179, 2002.

[30] S.K. Kleiss, B. Jüttler, and W. Zulehner. Enhancing isogeometric analysis by a finite element-based local refinement
strategy. Comput. Methods Appl. Mech. Engrg., 213-216:168–182, 2012.

[31] U. Langer and C. Pechstein. Coupled finite and boundary element tearing and interconnecting solvers for nonlinear
potential problems. Z. Angew. Math. Mech., 86(12):915–931, 2006.

[32] U. Langer and O. Steinbach. Boundary element tearing and interconnecting methods. Computing, 71(3):205–228, 2003.
[33] X. Li, J. Deng, and F. Chen. Polynomial splines over general T-meshes. The Visual Computer, 26:277–286, 2010.
[34] X. Li and M.A. Scott. On the nesting behavior of T-splines. Technical Report ICES REPORT 11-13.
[35] X. Li, J. Zheng, T.W. Sederberg, T.J.R. Hughes, and M.A. Scott. On linear independence of T-spline blending functions.

Computer Aided Geometric Design, 29(1):63–76, 2012.
[36] J. Mandel and R. Tezaur. Convergence of a substructuring method with Lagrange multipliers. Numer. Math., 73:473–487,

1996.
[37] J. Mandel and R. Tezaur. On the convergence of a dual-primal substructuring method. Numerische Mathematik, 88:543–

558, 2001.
[38] T. Martin and E. Cohen. Volumetric parameterization of complex objects by respecting multiple materials. Computers

& Graphics, 34(3):187–197, 2010.
[39] T. Martin, E. Cohen, and R.M. Kirby. Volumetric parameterization and trivariate B-spline fitting using harmonic functions.

Comput. Aided Geom. Design, 26(6):648–664, 2009.
[40] N. Nguyen-Thanh, H. Nguyen-Xuan, S.P.A. Bordas, and T. Rabczuk. Isogeometric analysis using polynomial splines over

hierarchical T-meshes for two-dimensional elastic solids. Comput. Methods Appl. Mech. Engrg., 200(21-22):1892–1908,
2011.

[41] P.N. Nielsen, A.R. Gersborg, J. Gravesen, and N.L. Pedersen. Discretizations in isogeometric analysis of Navier-Stokes
flow. Comput. Methods Appl. Mech. Engrg., 200(45-46):3242–3253, 2011.

[42] G. Of and O. Steinbach. The all-floating boundary element tearing and interconnectiong method. J. Num. Math., 17(4),
2009.

[43] L. Piegl and W. Tiller. The NURBS book. Springer-Verlag, London, UK, 1995.
[44] D. Rixen and C. Farhat. Preconditioning the FETI method for problems with intra- and inter-subdomain coefficient

jumps. In P. E. Bjørstad, M. Espedal, and D. E. Keyes, editors, Proceedings of 9th International Conference on Domain
Decomposition, pages 472–479, 1998.

[45] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, 2003.
[46] M.A. Scott, M.J. Borden, C.V. Verhoosel, T.W. Sederberg, and T.J.R. Hughes. Isogeometric finite element data structures

based on Bézier extraction of T-splines. Int. J. Numer. Meth. Engng, 88:126–156, 2011.
[47] M.A. Scott, X. Li, T.W. Sederberg, and T.J.R. Hughes. Local refinement of analysis-suitable T-splines. Comput. Methods

Appl. Mech. Engrg., 213-216:206–222, 2012.
[48] T.W. Sederberg, D.L. Cardon, G.T. Finnigan, and N.S. North. T-spline simplification and local refinement. ACM

Transactions on Graphics, 23(3), 2004.
[49] T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCs. ACM Transactions on Graphics,

22(3):161–172, 2003.
[50] T. Takacs and B. Jüttler. Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric

analysis. Comput. Methods Appl. Mech. Engrg., 200:3568–3582, 2011.
[51] S.P. Timoshenko and J.N. Goodier. Theory of Elasticity, 3rd edition. McGraw-Hill Book Company, New York, 1970.
[52] A. Toselli and O.B. Widlund. Domain Decomposition Methods - Algorithms and Theory. Springer-Verlag, Berlin, 2005.
[53] U. Trottenberg, C.W. Oosterlee, and A. Schüller. Multigrid. Academic Press, 2001.
[54] A.-V. Vuong, C. Giannelli, B. Jüttler, and B. Simeon. A hierarchical approach to adaptive local refinement in isogeometric

analysis. Comput. Methods Appl. Mech. Engrg., 200(49-52):3554 – 3567, 2011.
[55] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. Parameterization of computational domain in isogeometric analysis:

Methods and comparison. Comput. Methods Appl. Mech. Engrg., 200(23-24):2021 – 2031, 2011.

27

