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Abstract The envelope of a family of real, rational hypersurfaces is defined by an
implicit equation in the parameter space. This equation canbe decomposed into
factors that are mapped to varieties of different dimension. The factorization can be
found using solely gcd computations and polynomial divisions. The decomposition
is used to derive some general results about envelopes, which also contribute to the
analysis of self-intersections.
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1 Introduction

Envelopes of curves and surfaces are a classical topic of differential geometry and
kinematics [2, 7]. Due to their importance in various applications, computational
techniques for dealing with envelopes have attracted the interest of researchers
from several fields. These include robotics (collision detection and avoidance) and
gearing theory (design of matching pairs of gear teeth surfaces), geometrical op-
tics (caustics), NC-machining (offset curves for tool pathgeneration) and Com-
puter Aided Geometric Design (sweeps, convolutions, Minkowski sums). See e.g.
[1, 5, 6, 8, 9, 10] and the references cited therein.

In this paper, we generalize the approach presented in [11],which is restricted to
the curve case, to envelopes of general families of hypersurfaces. More precisely, we
will focus on the fact that envelopes are essentiallysingularitiesof the mapping that
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Bert Jüttler
Institute of Applied Geometry, Johannes Kepler University, Altenberger Str. 69, 4040 Linz, Austria
e-mail: bert.juettler@jku.at

1



2 Tino Schulz and Bert Jüttler

describes the defining family of hypersurfaces. We will identify and compute the
parts of the envelope possessing different dimension, and we derive some general
results of envelopes.

2 Envelopes of Rational Hypersurfaces

We recall basic properties of envelopes and show how to identify their parts pos-
sessing different dimensions. Consider a rational mapping

x(t) =
(
x1(t)/x0(t), . . . ,xn(t)/x0(t)

)⊤
(1)

where thexi(t) (i = 0. . .n) are real,n-variate polynomials. Here

t = (t1, . . . , tn)
⊤ ∈ I1×·· ·× In = I ⊂ R

n (2)

with closed real intervalsIi (i = 1. . .n). Moreover, we assume thatx0 6= 0 for t ∈
I , gcd(x0, . . . ,xn) = 1 and that the imagex(I) is not completely contained in any
hypersurface. Though we are mostly interested in real properties of x, it will be
necessary to consider the complex extension ofx : Cn → Cn. When not explicitly
stated differently we will make use of a complex variables∈ Cn and examinex(s)
in the remainder of this paper.

If we pick any indexj and uset j as a time-like parametert j = τ, then the mapping
x defines a family of rational hypersurfaces. For each value ofτ, the corresponding
hypersurface is obtained by varying the remainingn−1 parametersti (i 6= j).

The envelope of this family of hypersurfaces is defined by theproperty that it is
tangent to almost every member of the family. With respect tothe mappingx, we
can characterize the envelope as the image of those points where the JacobianJ is
singular, i.e.,envelopesare essentiallysingularities. Consequently, the envelope is
independent of the choice of the indexj. A short computation confirms that
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= h

(3)

where∂i denotes the differentiation with respect to thei-th variable. The determinant
defining the polynomialh is obtained by adding(∂ix0)/x2

0 times the leftmost column
to thei-th one fori = 1, . . . ,n, and then factoring out the common denominators.

Since the pointss∈Cn satisfyingh(s) = 0 are mapped to the envelope, we callh
theenvelope function. The zero set ofh consists of one or several (possibly complex)
hypersurfaces, i.e. surfaces whose dimension is exactlyn−1.
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3 Decomposing Envelopes

The envelope function possesses a factorization inC[s] into irreducible and rela-
tively prime polynomialsh j , j = 1, . . . ,M with certain multiplicities. By a suitable
ordering we can guarantee that the firstN factors (N ≤ M) do not dividex0, while
the remaining ones do. After eliminating all factors sharedwith x0 and reducing the
multiplicities of the remaining factors to 1 we obtain thereduced envelope function

ĥ(s) = ∏
j=1,...,N

h j(s). (4)

Instead of using factorization techniques, the reduced envelope function can be
found via suitable gcd computations, cf. [3]. Clearly,ĥ is squarefree and the gra-
dients satisfy(∇sĥ)(s) 6= 0 almost everywhere, where∇s denotes the gradient with
respect tos.

The zero sets of the factorsh j are mapped to components possessing different
dimensions. In order to identify those factorsh j whose zero sets are mapped to
varieties of a certain dimension, we consider the restriction of the differential ofx
at a points to the tangent spaces of these zero sets. If the rank of this restriction is
equal tor for almost all points satisfyingh j(s) = 0, then this algebraic variety is
mapped to a variety of dimensionr.

The differential ofx at s is the linear mapping defined by the JacobianJ(s). We
consider the augmented JacobianJ+(s) which is obtained by adding the row vector
(
(∇sĥ)(s)

)⊤
to J(s). The augmented Jacobian thus hasn+1 rows andn columns.

The dimension of the kernel ofJ+ equalsn− r, wherer = rkJ. For all points
s0 ∈ Cn satisfying(∇sĥ)(s0) 6= 0, the hypersurfacêh(s) = ĥ(s0) possesses a well-
defined tangent space ats0 and the kernel ofJ+(s0) is contained in it, due to the
additional row in the augmented Jacobian. Consequently, the augmented Jacobian
J+(s) – and hence also the JacobianJ(s) – maps this tangent space into a space of
dimensionr −1.

Thus, for almost all points satisfyingh j(s) = 0 for a particular indexj, the di-
mension of the image of this hypersurface underx, i.e., of the associated component
of the envelope, is equal to rkJ(s)− 1. This property is inherited by the matrix
V = (x0)

2J+, which has polynomial entries. The vanishing of alli-th order minors
of V (the determinants of all its(i × i)-submatrices) is a necessary and sufficient
condition for rkV ≤ i −1.

This observation leads us to formulate the following procedure for decomposing
ĥ into factors whose zero sets are mapped into components of different dimensions:

• Let gn+1 = ĥ. Further, letgi be the greatest common divisor ofĥ and of all i-th
order minors ofV (i = 1. . .n). Obviously,gi dividesgi+1, and the zero set ofgi

is mapped into components of maximum dimensioni −2.
• Further, let fi = gi+2/gi+1, (i = 0. . .n− 1). The zero set offi is mapped into

components of dimensioni. This gives the decomposition
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ĥ(s) =
n−1

∏
i=0

fi(s). (5)

The polynomialfn−1 is called theproper envelope function. A factor h j of ĥ is
calledproper, if and only if it is also a factor offn−1, otherwise it is said to be
improper.

We summarize these observations in

Theorem 1.The rational mappingx maps the zero set of the polynomial fi into a
component of the envelope which is an algebraic variety of dimension i or a collec-
tion of several such varieties.

Let Di be be the image of the zero set offi underx (i = 0, . . . ,n−1). The setsDi

are images of real algebraic hypersurfaces under a real rational mapping and are of
complex dimensioni. Their real dimension might be lower.

Theproper partDn−1 of the envelope is of particular interest. There exists a real,
squarefree polynomialq such that

Dn−1 ⊆V(q) = {p ∈ C
n : q(p) = 0} (6)

i.e. q= 0 is an implicit equation of the envelope. The following example illustrates
these facts.

Example 1.Let n= 3 and consider

x(s, t,u) =
(
(s+ t)(st+1)(u−1)

1+ s2 ,
4u

1+u2 ,
s2(1+ t2)(1−u2)2

(1+ s2)(1+u2)

)⊤

. (7)

Its reduced envelope function iŝh = (t + I)(t − I)(1+ st)(u+ 1)(u− 1)s ,where
I2 =−1. A short computation gives

f0 = u−1, f1 = (t + I)(t − I)(1+ st)(u+1) and f2 = s. (8)

By applyingx to the zero sets of the polynomialsfi we obtain that

• D0 is the point(0,2,0)⊤,
• D1 consists of an ellipse, a line, and two complex conjugate ellipses and
• D2 is a certain subset of thexy-plane.

Consequently, we getq(x,y,z) = z. The numerator ofq◦x includes all those factors
of ĥ that are mapped on the proper part of the envelope. Note thatf2 and two addi-
tional factors appear inq◦x with multiplicity 2. This will be investigated in the next
section.

The computation of the exact implicit equation of an envelope is rather expensive in
general. Although several methods exist [3], their complexity usually restricts their
practical application to planar or low-degree problems. Techniques forapproximate
implicitizationare a valuable alternative, see [4, 11].
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4 Using the Decomposition

In this section, we will use the factorization (5) to derive several properties of the
envelope. The first result generalizes Theorem 1 from [11].

Theorem 2.Let q be the implicit equation of the proper part of the envelope as
defined in(6). There exists a real, n-variate, polynomialλ̃ : Cn → C, such that

(q◦ x) · (x0)
d = λ̃ · ( fn−1)

2, (9)

where d is the degree of q.

Proof. SinceDn−1 ⊂ V (q) consists of ann− 1-dimensional family of pointsx(s)
fulfilling fn−1(s) = 0, we can conclude thatfn−1 is a factor of the numerator ofq◦x.
Additionally we note that iffn−1(s) = 0, then

∇s(q◦ x)(s) = J(s)⊤
(
∇xq◦ x

)
(s) = 0, (10)

becauseJ(s) spans the tangent space of the envelope. This implies that( fn−1)
2 is a

factor of the numerator ofq◦ x since fn−1 is squarefree. �

Theorem 2 implies that( fn−1)
2 is a factor of the compositionq◦ x. Now we study

the remaining factors of multiplicity 2:

Corollary 1. If λ̃ is not squarefree, then its factors of multiplicity greaterthan one
are also factors of̂h.

Proof. If λ̃ is not squarefree then there exist polynomialsν,µ : Cn → C such that
λ̃ = νµ , whereν is squarefree andµ has only factors of multiplicity greater than
one. For everys∈ Cn with µ(s) = 0 6= x0(s) we get that

(q◦ x)(s) = ν(s)µ(s)
(

fn−1(s)
)2

= 0 (11)

which implies
∇s(q◦ x)(s) = J(s)⊤

(
∇xq◦ x

)
(s) = 0, (12)

since∇sµ(s) = 0. The rightmost identity of equation (12) can only be fulfilled for a
n−1-dimensional family of points ifJ is singular. Thus every factor of the square-
free representation ofµ must also be a factor of̂h. �

Consequently, the factors ofλ̃ with a multiplicity greater than one correspond to
those factors of̂h that are “singularly” mapped on the proper part of the envelope.
Note thatλ̃ might contain factors ofx0 which we eliminate by setting

λ = λ̃/gcd(λ̃ ,x0). (13)
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Fig. 1 Example 2: A part of the envelope, which
is the offset of a parabola (dashed curve), and its
self-intersections.

5 Self-intersections and “Undercuts”

According to Theorem 2,q◦ x = 0 holds also for every point on the zero set ofλ .
The factors ofλ which are not factors offn−1 characterize additional intersections
of the familyx with the proper part of the envelope:

Corollary 2. Lets′ ∈Cn such that fn−1(s′) 6= 0 6= x0(s′). Assume there existss∈Cn

satisfying fn−1(s) = 0 andx(s) = x(s′). Thenλ (s′) = 0.

Proof. We directly obtain 0= (q◦ x)(s) = (q◦ x)(s′) = λ (s′) · fn−1(s′), which im-
pliesλ (s′) = 0. �

Consequently, theλ (s′) = 0 is a necessary condition for the pointx(s′) to be located
on the proper part of the envelope, and therefore to create an“undercut”. This inter-
esting observation may be used for the trimming of offsets and for eliminating the
undercut of envelope surfaces. We explain this by an example.

Example 2.Consider the rational mapping

x(s, t,u) =
1

x0(s, t)





(
1+ s2

)(
u+ut2+2t

)

2s(1+ t)(1− t)
s2+ t2−u2− s2t2− s2u2− t2u2− s2t2u2−1



 , (14)

with x0 =
(
1+ s2

)(
1+ t2

)
. It describes as a sphere of radius 1 whose center is

moving along a parabola in thexz-plane, whereu is the time-like parameter.
The proper envelope function isfn−1 = (1− s2− t2− s2t2)u+(1+ t)s2 and the

proper part of the envelope is the offset surface of distance1 of the parabola, see
Fig. 1. It is a pipe surface with the implicit equation

q(x,y,z) = 16(x2+ y2)2(x2+ y2+ z2)−2z(3x2−36y2−20z2)
+8z(5x4−4y4+ x2y2+4x2z2−4y2z2)+28x2+65y2+9z2

−47x4−56y4+16z4−76x2y2−24y2z2−40z−25,
(15)
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fn−1 = 0
λ = 0

parameter space image space

Fig. 2 Example 2: The zero sets offn−1 (shows as surface) andλ (shown as point cloud) in the
parameter space (left) are mapped onto the envelopeD2 in the image space (right). In particular,
the zero set ofλ s mapped to the undercut region.

and it possesses a certain region of self intersection. If one thinks ofx as describing
a moving cutting tool which moves along some path, then the part of the envelope
that is bounded by its singularities would be cut away. Thus,in situations like in
this example, this part is referred to asundercut. In several applications (e.g. offset
trimming), it is an important task to determine it.

Let λ (s, t,u) be defined as in section 4, i.e. takeλ̃ = (q◦ x) · (x0)
6/( f 2

n−1) and
remove common factors withx0. It is a rather complicated polynomial of tri-degree
(6,6,4) which describes two surfaces that are almost parallel. Figure 2 shows the
zero sets ofλ and fn−1 in parameter space (which are visualized by a point cloud
and by parameter lines, respectively) and their images under x. The image ofλ = 0
is the undercut region, and the curves defined byλ = fn−1 = 0 are mapped to the
the self-intersection curves of the envelope.

The additional components which are defined byλ also appear in the problem of
sorting assembly modes in robot kinematics. In that contextthey are referred to as
characteristic (hyper-)surfaces, see [12].

6 Conclusion

We have shown how to decompose the defining equations of an envelope into poly-
nomial factors that are mapped onto varieties of different dimension. The proposed
method is algorithmically simple and constructs an explicit decomposition only us-
ing gcd computations and polynomial division.

We then deduced some general properties of envelopes, generalizing existing
results for curves. In particular, we addressed some aspects which are closely related
to the analysis of self-intersections and “undercuts”.

Future work could be devoted to a more detailed investigation on the properties
of the factorization described in Theorem 2, to its application in the determination
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of undercut regions, and to the use of approximate implicitization techniques for
envelope surfaces.
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