Decomposing Envelopes of Rational
Hypersurfaces
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Abstract The envelope of a family of real, rational hypersurfaceseing:d by an
implicit equation in the parameter space. This equationtmamecomposed into
factors that are mapped to varieties of different dimensidwe factorization can be
found using solely gcd computations and polynomial divisioThe decomposition
is used to derive some general results about envelopeshalsic contribute to the
analysis of self-intersections.
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1 Introduction

Envelopes of curves and surfaces are a classical topicfefeiiftial geometry and
kinematics [2, 7]. Due to their importance in various apgiicns, computational
techniques for dealing with envelopes have attracted tterest of researchers
from several fields. These include robotics (collision déte and avoidance) and
gearing theory (design of matching pairs of gear teeth sasip geometrical op-
tics (caustics), NC-machining (offset curves for tool pgtneration) and Com-
puter Aided Geometric Design (sweeps, convolutions, Mivédd sums). See e.g.
[1,5, 6, 8, 9, 10] and the references cited therein.
In this paper, we generalize the approach presented infig¢h is restricted to

the curve case, to envelopes of general families of hypirses. More precisely, we
will focus on the fact that envelopes are essentisiligularitiesof the mapping that
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describes the defining family of hypersurfaces. We will tifgrand compute the
parts of the envelope possessing different dimension, andexive some general
results of envelopes.

2 Envelopes of Rational Hypersurfaces

We recall basic properties of envelopes and show how to ifgethieir parts pos-
sessing different dimensions. Consider a rational mapping

X(t) = (xa(t)/Xo(), .. Xa(t) 0(t)) (1)
where thex(t) (i =0...n) are realp-variate polynomials. Here
t=(tg,....tn)" €lyx--xlp=1CR" (2)

with closed real intervalg (i = 1...n). Moreover, we assume thag # 0 fort €

I, gcd(xo,...,X,) = 1 and that the image(l) is not completely contained in any
hypersurface. Though we are mostly interested in real ptiggeof x, it will be
necessary to consider the complex extensior of" — C". When not explicitly
stated differently we will make use of a complex variable C" and examine(s)

in the remainder of this paper.

Ifwe pick any indexj and us¢; as a time-like parametgr= 1, then the mapping
x defines a family of rational hypersurfaces. For each value tife corresponding
hypersurface is obtained by varying the remainingl parameters (i # j).

The envelope of this family of hypersurfaces is defined byptteperty that it is
tangent to almost every member of the family. With respe¢héomapping, we
can characterize the envelope as the image of those poimie\wie Jacobiad is
singular, i.e.envelopesre essentiallgingularities Consequently, the envelope is
independent of the choice of the indgxXA short computation confirms that

01X1 01Xo anl anO X0 (91Xo anXO
X ——— =Xy e -0
1 X5 Xo X5 1 | X1 01X1 -+ OnX1
detl=—| . . . . =Tl - . 3
Xo| : : - : X 7o e
01X 01X0 OnXn  OnXo Xn 01%n -+ OhXn
Xn —— Xn ——5 *%n
X % o % —

wheregd; denotes the differentiation with respect to ttth variable. The determinant
defining the polynomiati s obtained by addin(gixo) /x3 times the leftmost column
to thei-th one fori = 1,...,n, and then factoring out the common denominators.

Since the points € C" satisfyingh(s) = 0 are mapped to the envelope, we ¢all
theenvelope functionThe zero set dfi consists of one or several (possibly complex)
hypersurfaces, i.e. surfaces whose dimension is exaetl{.
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3 Decomposing Envelopes

The envelope function possesses a factorizatio@[sh into irreducible and rela-
tively prime polynomialdyj, j = 1,...,M with certain multiplicities. By a suitable
ordering we can guarantee that the fisstactors (N < M) do not dividexg, while

the remaining ones do. After eliminating all factors shastth xg and reducing the
multiplicities of the remaining factors to 1 we obtain tleeluced envelope function

hs)= [T hi®: (4)

Instead of using factorization techniques, the reduceelepe function can be
found via suitable gcd computations, cf. [3]. Cleathis squarefree and the gra-
dients satisfy(sh)(s) # 0 almost everywhere, whefes denotes the gradient with
respect te.

The zero sets of the factorg are mapped to components possessing different
dimensions. In order to identify those factdrs whose zero sets are mapped to
varieties of a certain dimension, we consider the resbrctf the differential of
at a points to the tangent spaces of these zero sets. If the rank of stiscteon is
equal tor for almost all points satisfyind;(s) = 0, then this algebraic variety is
mapped to a variety of dimension

The differential ofx atsis the linear mapping defined by the Jacohiés). We
consider the augmented Jacobidr(s) which is obtained by adding the row vector

((Dsﬁ) (s))T to J(s). The augmented Jacobian thus hasl rows anch columns.

The dimension of the kernel @f" equalsn —r, wherer = rkJ. For all points
S0 € C" satisfying(0sh) (sp) # 0, the hypersurfach(s) = h(sy) possesses a well-
defined tangent space &t and the kernel ofi™(sy) is contained in it, due to the
additional row in the augmented Jacobian. Consequendyatlymented Jacobian
J*(s) — and hence also the Jacobikis) — maps this tangent space into a space of
dimensionr — 1.

Thus, for almost all points satisfyirig (s) = O for a particular index, the di-
mension of the image of this hypersurface undeére., of the associated component
of the envelope, is equal to 3ks) — 1. This property is inherited by the matrix
V = (x0)2J*, which has polynomial entries. The vanishing ofiah order minors
of V (the determinants of all it§i x i)-submatrices) is a necessary and sufficient
condition for rkvV <i—1.

_ This observation leads us to formulate the following prazedor decomposing
h into factors whose zero sets are mapped into componentf@rfadit dimensions:

e Letgn1= h. Further, letg; be the greatest common divisor iofand of alli-th
order minors oV (i = 1...n). Obviously,g; dividesg;.1, and the zero set @j;
is mapped into components of maximum dimensier?.

e Further, letfi = gi12/0i+1, (i = 0...n—1). The zero set of; is mapped into
components of dimensidnThis gives the decomposition
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. n—1
h(s) = [ fi(s). (5)
1

The polynomialf,_1 is called theproper envelope functiorA factor h; of his
calledproper, if and only if it is also a factor off,_1, otherwise it is said to be
improper.

We summarize these observations in

Theorem 1. The rational mapping maps the zero set of the polynomiairto a
component of the envelope which is an algebraic varietyokdision i or a collec-
tion of several such varieties.

Let 2 be be the image of the zero setpfunderx (i =0,...,n—1). The setsZ
are images of real algebraic hypersurfaces under a reahedtinapping and are of
complex dimensiomn Their real dimension might be lower.

Theproper partZ,_1 of the envelope is of particular interest. There exists i rea
squarefree polynomigj such that

Zn-1SV(q) ={pecC": q(p) =0} (6)

i.e.q=0is an implicit equation of the envelope. The following exdeillustrates
these facts.

Example 1Letn= 3 and consider

(D6t DU—1)  4u 2A+2)A-u?)?\ ]
X(S’t’u)< 1+¢2 1+uw (149)(1+uw?) > )

Its reduced envelope function fs= (t +1)(t — I)(1+ st)(u+ 1)(u— 1)s ,where
12 = —1. A short computation gives

fo=u—1, fi=@t+D){t-1)(2+st)(u+1) and fr=s (8)

By applyingx to the zero sets of the polynomidiswe obtain that

e Y is the point(0,2,0) T,
e 9 consists of an ellipse, a line, and two complex conjugateseks and
e 95 is a certain subset of the~-plane.

Consequently, we gef(x,y,z) = z. The numerator ofjo x includes all those factors
of h that are mapped on the proper part of the envelope. Notd ilaatd two addi-
tional factors appear igo x with multiplicity 2. This will be investigated in the next
section.

The computation of the exact implicit equation of an envelyrather expensive in
general. Although several methods exist [3], their comipfaxsually restricts their
practical application to planar or low-degree problemshreques foapproximate

implicitizationare a valuable alternative, see [4, 11].
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4 Using the Decomposition

In this section, we will use the factorization (5) to deriwvearal properties of the
envelope. The first result generalizes Theorem 1 from [11].

Theorem 2.Let g be the implicit equation of the proper part of the enpelas
defined in(6). There exists a real, n-variate, polynomiat C" — C, such that

(ox)- (x0)* = A - (fa-2)?, )
where d is the degree of g.

Proof. Since Z,_1 C V (q) consists of am — 1-dimensional family of points(s)
fulfilling fn_1(s) =0, we can conclude thd_; is a factor of the numerator ofo x.
Additionally we note that iff,_1(s) = 0, then

Os(gox)(s) =3(s) " (Oxqox)(s) =0, (10)

becausd(s) spans the tangent space of the envelope. This implieg that)? is a
factor of the numerator afo x sincef,_1 is squarefree. ]
Theorem 2 implies thaf, 1)? is a factor of the compositiogo x. Now we study
the remaining factors of multiplicity 2:

Corollary 1. If A is not squarefree, then its factors of multiplicity greatiean one
are also factors oh.

Proof. If A is not squarefree then there exist polynomialg : C" — C such that
A =vu, wherev is squarefree and has only factors of multiplicity greater than
one. For everg € C" with p(s) = 0 # xo(s) we get that

(9ox)(s) = V(H(3)(fa-1(5))> =0 (11)

which implies
Os(gox)(s) =J(9) " (Oxqox)(s) =0, (12)

sincelsu(s) = 0. The rightmost identity of equation (12) can only be fulfili®r a
n— 1-dimensional family of points i is singular. Thus every factor of the square-
free representation @f must also be a factor ¢f. O

Consequently, the factors af with a multiplicity greater than one correspond to
those factors oh that are “singularly” mapped on the proper part of the erpelo
Note thatA might contain factors afy which we eliminate by setting

A =2/gedA, xo). (13)
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Fig. 1 Example 2: A part of the envelope, which
is the offset of a parabola (dashed curve), and its
self-intersections.

5 Self-intersections and “Undercuts”

According to Theorem 2o x = 0 holds also for every point on the zero setiof
The factors ofA which are not factors of,,_; characterize additional intersections
of the familyx with the proper part of the envelope:

Corollary 2. Lets € C"such that f_1(s) # 0 Xo('). Assume there exists C"
satisfying f_1(s) = 0andx(s) = x(s'). ThenA(s) =0.

Proof. We directly obtain G= (qox)(s) = (qox)(s) =A(S) - fh_1(S), which im-
pliesA(s) =0. O

Consequently, thé (s') = 0 is a necessary condition for the poxis') to be located
on the proper part of the envelope, and therefore to credteratercut”. This inter-
esting observation may be used for the trimming of offsetsfan eliminating the
undercut of envelope surfaces. We explain this by an example

Example 2Consider the rational mapping

(1+¢%) (u+ut?+2t)

X(st,u) = —— 25(1+t)(1-1) , (14)
X(s1) (SZHZ W2 — 212 — U AR — 2 — 1)
with xo = (14 %) (1+1t2). It describes as a sphere of radius 1 whose center is
moving along a parabola in the-plane, wherei is the time-like parameter.

The proper envelope function fg_; = (1— % —t2 — $t?)u+ (1+1)s and the
proper part of the envelope is the offset surface of distdnoéthe parabola, see
Fig. 1. It is a pipe surface with the implicit equation

axy,2) = 162 +y?)2(x% +y? 4+ 2%) — 22(3x% — 36y? — 207%)
+-82(5x* — 4y* + XPy? + 4x%°Z° — 4y°Z°) + 28x% + 65y° + 922 (15)
—47x* — 56y* + 167" — 76x%y? — 24y?°Z> — 40z— 25,
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Fig. 2 Example 2: The zero sets @f_1 (shows as surface) and (shown as point cloud) in the
parameter space (left) are mapped onto the envelapa the image space (right). In particular,
the zero set oA s mapped to the undercut region.

and it possesses a certain region of self intersection dftbimks ofx as describing
a moving cutting tool which moves along some path, then thiegfahe envelope
that is bounded by its singularities would be cut away. Thusituations like in
this example, this part is referred to @sdercut In several applications (e.g. offset
trimming), it is an important task to determine it. _

Let A (s,t,u) be defined as in section 4, i.e. take= (qoX) - (x0)®/(f2 ;) and
remove common factors witky. It is a rather complicated polynomial of tri-degree
(6,6,4) which describes two surfaces that are almost parallel.rEi@ushows the
zero sets ofA and f,,_1 in parameter space (which are visualized by a point cloud
and by parameter lines, respectively) and their imagesrundée image oA =0
is the undercut region, and the curves definediby f,_1 = 0 are mapped to the
the self-intersection curves of the envelope.

The additional components which are definedbgilso appear in the problem of
sorting assembly modes in robot kinematics. In that coriteeyt are referred to as
characteristic (hyper-)surfacesee [12].

6 Conclusion

We have shown how to decompose the defining equations of atogravinto poly-
nomial factors that are mapped onto varieties of differémiethsion. The proposed
method is algorithmically simple and constructs an exptlecomposition only us-
ing gcd computations and polynomial division.

We then deduced some general properties of envelopes,aijeimey existing
results for curves. In particular, we addressed some aspith are closely related
to the analysis of self-intersections and “undercuts”.

Future work could be devoted to a more detailed investigatiothe properties
of the factorization described in Theorem 2, to its appi@atn the determination
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of undercut regions, and to the use of approximate impigiton techniques for
envelope surfaces.
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