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Abstract. – Adaptive spline models for geometric modeling and spline-based PDEs

solvers have recently attracted increasing attention both in the context of computer aided ge-

ometric design and isogeometric analysis. In particular, approximation spaces defined over

extensions of tensor-product meshes which allow axis aligned segments with T–junctions

are currently receiving particular attention. In this short paper we review some recent

results concerning the characterization of the space spanned by the hierarchical B–spline

basis. In addition, we formulate a refinement algorithm which allows us to satisfy the

conditions needed for this characterization.

1. – Introduction

By using the same smooth function spaces for describing the geometry and per-
forming the simulation phase, the recently introduced isogeometric approach [8]
will potentially lead to major improvements of the product design process in cer-
tain parts of industrial applications. The geometry of the computational domain is
usually defined in terms of non–uniform rational B–splines (NURBS), the standard
representation model used in geometric modeling. Classic finite element methodolo-
gies transform the NURBS model provided by commercial computer aided design
(CAD) systems into an approximate triangular or polygonal geometry described
by piecewise linear or non–linear elements. On the other hand, the goal of the
isogeometric approach is to preserve the exact CAD geometry by eliminating the
time–consuming mesh generation task and avoiding additional interactions with the
CAD system during the mesh refinement procedure.

In order to extend the isogeometric methodology with spline representations
which allow local control of the refinement procedure, suitable applications of the T–
spline model and related issues have also been considered [1, 2]. Recently, alternative
solutions based on hierarchical B–splines have been investigated [11].

Starting from the classical construction of hierarchical tensor-product B–splines,
we will review some recent results concerning the characterization of multilevel spline
spaces and the identification of suitable hierarchical bases. We will also present a
simple hierarchical refinement strategy which allows to guarantee certain properties
of the corresponding multilevel spline space.

∗Conferenza tenuta a Bologna il 13 Settembre 2011 da C. Giannelli in occasione del XIX Con-
gresso dell’Unione Matematica Italiana. Lavoro svolto nell’ambito di una borsa Marie Curie in-
traeuropea del Settimo programma quadro della Commissione Europea.
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2. – Spline hierarchy

Hierarchical B–splines constitutes an effective extension of classical tensor-product
B–splines to address the problem of a local and adaptive mesh refinement in stan-
dard approximation algorithms [3, 4]. A sequence of nested tensor–product meshes
is used to identify different levels of resolution. B–splines defined with respect to
these increased levels of details are then suitably used over the regions selected to
be refined at the current refinement step.

We consider a sequence of tensor–product grids which corresponds to a nested
sequence of bivariate B–spline spline spaces V 0, . . . , V N−1 so that V `−1 ⊂ V `, for ` =
1, . . . , N−1. At each level `, the bi–degree and smoothness are (d, d) and (d−1, d−1),
respectively. The initial spline space V 0 is spanned by a bivariate tensor–product
B–spline basis B0 with respect to two bi–infinite uniform knot sequences. Any space
V ` instead is spanned by the normalized B–spline basis B` defined on corresponding
nested knot sequences obtained by subsequently applying dyadic subdivision to the
previous level.

Let {Ω`}`=0,...,N−1 be a nested sequence of subdomains so that Ω`−1 ⊇ Ω`, for
` = 1, . . . , N − 1. For each hierarchical level, Ω` is defined as a collection of cells
with respect to the tensor–product grid of level `−1. We say that a B–spline β ∈ B`

is active if and only if its support is completely contained in Ω` but not in Ω`+1,
and passive otherwise. A simple selection mechanism from a starting sequence of
B-spline bases allows to construct a basis for the corresponding multilevel spline
space [9, 10, 11].

Definition 2.1. The hierarchical B–spline basis is defined as the set of all active
B–splines over the tensor–product grid of each level.

The application of the hierarchical B–spline construction to scattered data ap-
proximations and to the solution of partial differential equations in isogeometric
analysis has already shown the potential of this refinement framework with respect
to the modeling of detailed local features and to the reduced number of degrees of
freedom needed to obtain a certain accuracy, see e.g., the recent work [11].

3. – Hierarchical spline spaces

Related issues to address naturally concern the characterization of the hierar-
chical spline space. In particular, we may investigate the possibility of representing
any function of arbitrary multi-degree and with maximum order of smoothness. By
focusing on the bivariate case, it is possible to show that, under some reasonable
assumptions on the domain configuration, we can give a positive answer to this
question.

Let S` be the the space of piecewise polynomials of bi–degree (d, d) on the sub-
division of the plane obtained by restricting the grid of V ` to Ω0 \Ω`+1 for a certain
level `. In the considered uniform setting characterized by single knots at all levels,
in order to prove that the number of B–splines whose support overlap Ω0 \ Ω`+1 is
equal to the dimension of S`, we need the following assumption.
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(a) grid of level 0 (b) grid of level 0,1 (c) grid of level 0,1,2

(d) 2–grid of level 0 (e) 2–grid of level 0,1 (f) 2–grid of level 0,1,2

Figure 1: Grids and d–grids for d = 2.

(A) Any pair of B–splines of level ` whose supports intersect opposite sides along
the boundary of Ω0 \ Ω`+1 do not overlap each other.

The complete analysis leading to the above assumption is carried over in [7] by
introducing the notion of offset at a certain distance to a given domain and leads
to the following result.

Theorem 3.1. [7] If Assumption (A) on the domain configuration holds for all
` = 0, . . . , N − 1, then the hierarchical B–spline basis introduced in Definition 2.1
spans the entire space W defined as

W =

{
f ∈ Cd−1,d−1(Ω0) : f

∣∣∣
Ω0\Ω`+1

∈ S` ∀` = 0, . . . , N − 1

}
.

Hence, the space spanned by hierarchical B–splines contains all spline functions of
a certain degree and maximum smoothness that exists on the underlying hierarchical
grids.

4. – A simple refinement algorithm

Finally, we present a method which allows to perform adaptive refinement while
satisfying the condition which was formulated in the previous section. We assume
that, for any level, the number of cells in each direction, is a multiple of d. By
denoting as d–grid of level ` the aligned disjoint boxes composed of d× d cells with
respect to the grid of V ` (see Figure 1), an algorithm to guarantee satisfaction of
assumption (A) is based on the following observation, see also Remark 21 in [7].

Remark 1. If Ω`+1, for ` = 0, . . . , N − 2, can be decomposed into a d–grid of level
`, then assumption (A) is satisfied.

A simple refinement procedure based on the above observations may be summa-
rized as follows.
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(a) Φ ∩ Ω0 (hatched) (b) identification of Ω̂1 (c) Φ ∩ Ω1 (hatched) (d) identification of Ω̂2

Figure 2: Identification of Ω̂1 and Ω̂2 in Example 1.

Algorithm 1.

Input:

I1 A nested hierarchy of domains
{

Ω`
}
`=0,...,N

so that Ω0 ⊇ Ω1 ⊇ . . . ⊇ ΩN ,

where each Ω` can be decomposed into a d–grid of level ` and ΩN = ∅;

I2 A set Φ of cells marked to be refined.

1. Ω̂0 = Ω0;

2. for ` = 0, . . . , N − 1
Ω̂`+1 = Ω`+1 ∪ C

where C is the union of all the cells c which belong to the d–grid of level ` so
that c ∩ Φ 6= ∅;

Output: the enlarged hierarchy of domains {Ω̂`}`=0,...,N so that Ω̂0 ⊇ Ω̂1 ⊇ . . . ⊇ Ω̂N ,

where each Ω̂` ⊇ Ω` is the union of disjoint boxes composed by d×d cells with respect
to the grid of V `−1.

Example 1. By considering the input data illustrated in Figure 2(a) and (c) with
d = 2, the application of step 2 of Algorithm 1 allows to identify Ω̂1 and Ω̂2 as shown
in Figure 2(b) and (d).

5. – Closure

Bases and dimensions of bivariate hierarchical tensor–product splines were re-
cently investigated [7] together with specific condition on admissible domain config-
urations. In this paper we presented a simple algorithm which ensures the repeated
fulfillment of this condition during the refinement procedure.

The hierarchical framework can even be adapted to the multivariate setting or
to more general spline spaces [5, 6]. The possibility of extending the analysis of
hierarchical spline space and the proposed refinement algorithm to a more general
multivariate setting is an interesting topic for future research.
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