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Abstract—We introduce a new metric framework which is
based on an injective embedding of [0, 1]2 into R

m, for m ≥ 2,
and an additional scaling function for re-scaling the distances.
The framework is used to construct a new type of generalized
Voronoi diagrams in [0, 1]2, which is possibly anisotropic.
We present different possible applications of these Voronoi
diagrams with several examples of generated diagrams.
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I. INTRODUCTION

The Voronoi diagram is a well known concept in geometry

with a wide range of possible applications, e.g. motion

planing, geometric clustering and meshing, cf. [1]. Beside

the classical Euclidean Voronoi diagram there exists a large

number of generalizations of this structure.

In this paper we generalize it by introducing a new metric

framework, referred to as scaled embedding generated (SEG)

metric, which is based on a one-to-one embedding of [0, 1]2

into R
m, for m ≥ 2, and an additional scaling function

for re-scaling the distances. The topic of this paper is an

extension of our work in [2] in two directions. On the one

hand we describe a generalization of the SEG metric to

discontinuous embeddings. On the other hand we present

several applications to Voronoi diagrams for demonstrating

the power of this framework.

This paper is organized as follows. In Section II, we

introduce the concept of the SEG metric and use it to

define the so-called SEG metric Voronoi diagrams. This

new class of Voronoi diagrams includes Voronoi diagrams

which are possibly anisotropic, since the SEG metric reflects

the anisotropy of the parameter lines of the associated

embedding. The SEG metric Voronoi diagram offers several

advantages compared to other types of anisotropic Voronoi

diagrams, e.g. [3], [4] and [5]. In our approach the compu-

tation of the single distances is fast and simple and the used

distance function really defines a metric. Moreover, the SEG

metric Voronoi diagram can be generated by intersecting

an Euclidean Voronoi diagram in R
m with the associated

embedding.

Section III describes different possible applications of

the SEG metric Voronoi diagrams, including diagrams for

Poincaré metric-like distances, diagrams for distance dis-

continuities and diagrams from distance graphs. The power

of this new class of Voronoi diagrams is presented with the

help of several examples. In Section IV, we conclude this

paper and describe some possible future work.

II. SEG METRIC VORONOI DIAGRAMS

We describe a new metric framework and use it to define

a class of anisotropic Voronoi diagrams.

A. The SEG metric framework

Definition 1: Let x : [0, 1]2 → R
m, for m ≥ 2, be a one-

to-one embedding with x(u, v) = (x1(u, v), . . . , xm(u, v)).
In addition, let r 7→ d(r), for r ≥ 0, be a scalar-valued

scaling function with the following properties:

• d(0) = 0
• d(r) > 0, for r > 0
• d′(r) ≥ 0, for r ≥ 0
• d(r)/r is monotonically decreasing, for r > 0.

The distance D between two points u1 = (u1, v1) and u2 =
(u2, v2) in [0, 1]2 is given by

D(u1,u2) = d(||x(u1, v1)− x(u2, v2)||), (1)

see Fig. 1.

Note that in contrast to [2], the embedding x(u, v) need

not to be continuous. The distance D defines again a metric

on [0, 1]2. The proof of this proposition works analogously

as the one in [2]. We will call D the scaled embedded

generated (SEG) metric. For m = 2 or m = 3, the

embedding x(u, v) is a parametric surface without self-

intersections in R
2 and R

3, respectively.

For simplicity we have chosen [0, 1]2 for the parameter

domain of the embedding x(u, v). But in general, the domain

can be extended to each subset of R2. Two possible scaling

functions are

d(r) = ar and d(r) = a ln(br + 1)

for suitable constants a, b > 0. In order to simplify the paper

we will restrict ourselves to d(r) = r for the examples in

Section III.
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Figure 1. (a) The concept of the scaled embedded generated (SEG) metric.
The distance ||x(u1)− x(u2)|| between the points x(u1) and x(u2) on
the embedding x(u, v) (b) leads to the distance D(u1,u2) between the
points u1 and u2 in the parameter domain [0, 1]2.

B. SEG metric Voronoi diagrams

We will use the SEG metric framework to generalize the

concept of Voronoi diagrams in [0, 1]2 in a canonical way.

Definition 2: Let P = {u1,u2, . . .} be a finite set of

points (called sites) in [0, 1]2 and let D be a SEG metric,

given by (1). We define the Voronoi cell of a site ui ∈ P

with respect to D as the open set

V i
D(P) = {u ∈ [0, 1]2 | D(u,ui) < D(u,uj) for all j 6= i}.

The Voronoi diagram VD(P) with respect to D is given by

the complement of all Voronoi cells in [0, 1]2,

VD(P) = [0, 1]2 \

(

⋃

i

V i
D(P)

)

.

We will call VD(P) the SEG metric Voronoi diagram.

The SEG metric Voronoi diagram can be generated with

the help of an Euclidean Voronoi diagram in R
m, see Fig. 2.

The construction consists of the following steps:

• Given the set of sites P = {u1,u2, . . .} with ui ∈ R
2,

and the SEG metric D, which is defined by the embed-

ding x(u, v). We calculate the points xi = x(ui) on the

embedding x(u, v).
• For the obtained set of points Px = {x1,x2, . . .} we

compute the corresponding Euclidean Voronoi diagram

in R
m.

• We intersect the resulting Voronoi cells of this Eu-

clidean Voronoi diagram with the embedding x(u, v),
which leads to a Voronoi diagram on x(u, v). The cor-

responding parameter values (u, v) ∈ [0, 1]2 of x(u, v)
defines the desired SEG metric Voronoi diagram VD(P)
in [0, 1]2.

III. APPLICATIONS

We present several applications of the SEG metric Voronoi

diagrams. For all described examples below the scaling

function is set to the identity, d(r) = r.

A. Poincaré metric-like distances1

Let c ∈ [0, 1]2 and let t 7→ r(t) for t ≥ 0 be a scalar-

valued function, which is assumed to have the following

properties:

1This metric is inspired by the Poincaré metric on the unit disk which
provides a model of the hyperbolic plane.
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Figure 2. (a) Construction of the SEG metric Voronoi diagram by
intersecting the embedding x(u, v) with an Euclidean Voronoi diagram
in R

m; (b) The corresponding parameter values of the embedding defines
the SEG metric Voronoi diagram in [0, 1]2.

• r(0) = 0
• r(t) > 0, for t > 0
• r′(t) > 0, for t ≥ 0.

We generate a SEG metric fulfilling

D(u, c) = r(||u − c||) for all u ∈ [0, 1]2.

The associated embedding x(u, v) of the desired SEG metric

can be constructed as follows:

x(u) =

{

(0, 0), for u = c,

(u− c) r(||u−c||)
||u−c|| , otherwise.

In the following example we use this framework to construct

a Poincaré metric-like distance function and generate some

SEG metric Voronoi diagrams with the help of this metric.

Example 3: We consider the point c = (0.5, 0.5) and

the function r(t) = (2t)3. For this initialization we obtain

a SEG metric for which some generalized circles with a

uniform sequence of radii with center c and the associated

embedding x(u, v) are visualized in Fig. 3(a) and (b),

respectively.

In addition, Fig. 3 displays an example of a resulting

SEG metric Voronoi diagram in (c), and the corresponding

Euclidean Voronoi diagram in (d). The sites are chosen

uniformly distributed, i.e as the vertices of a triangular mesh.

B. Modeling distance discontinuities

We consider the domain [0, 1]2, which is decomposed into

a finite number of disjoint subdomains Ω0 . . . ,Ωn, such that

n
⋃

i=0

Ωi = [0, 1]2.

An example of such a decomposition of the domain [0, 1]2

into five disjoint subdomains is shown in Fig. 4(a).

We will define a piecewise embedding x(u, v) on the

decomposition of the domain to describe the following

situation. Assume that the domain [0, 1]2 describes a part of

a map, where different obstacles such as rivers, fences etc.

are given. Crossing these obstacles costs resources, which is

modeled by an increase of the distance.

Example 4: We consider the decomposition of the do-

main [0, 1]2 into five subdomains shown in Fig 4, where
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Figure 3. (a) Generalized circles for a uniform sequence of radii with
the center c = (0.5, 0.5), described by D(u, c) = (2||u− c||)3; (b) The
associated embedding of [0, 1]2 into R

2; (c)-(d) Example of a SEG metric
Voronoi diagram and the corresponding Euclidean Voronoi diagram.

the two red lines specify a river with a bridge. In addition,

the points pi describe six supply stations for gas.

The task is to build a pipeline from any point of the

domain [0, 1]2 to the nearest supply station pi with respect

to the side constraint, that crossing a river, except over the

bridge, costs a certain fixed amount of resources. We also

make the simplifying assumption that the pipeline needs to

be straight. We define now a SEG metric and a Voronoi

diagram with the supply stations as sites, which reflects this

situation.

Depending on the height of the cost for the crossing,

we can generate a piecewise embedding x(u, v), which is

visualized in Fig. 4(b). The obtained SEG metric Voronoi

diagram and the corresponding Euclidean Voronoi diagram

with the supply stations pi as sites are presented in Fig 4(c)

and (d), respectively.

Due to the desired continuity of the embedding be-

tween Ω2 and the neighboring subdomains, the cost for

crossing the obstacle goes to zero when getting closer to the

bridge. But this is also quite realistic in application, since the

pipeline might then make a detour via the bridge, thereby

avoiding of crossing the obstacle. Also, the effect of the

obstacle decreases for larger distances to it. Again this can

be justified by the possibility of using a detour.

The SEG metric Voronoi diagrams shows clearly the

influence of the metric discontinuities.

C. Voronoi diagrams from distance graphs

In [2], we described a method to generate a SEG metric,

i.e. the associated embedding x(u, v), which approximates a

given distance graph G on n points pi in [0, 1]2. We required
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Figure 4. (a) Decomposition of the parameter domain [0, 1]2; (b) The
piecewise embedding, which induces the SEG metric for modeling the
distance discontinuities; (c) The SEG metric Voronoi diagram and (d) the
Euclidean Voronoi diagram with the supply stations pi as sites.

G to satisfy the generalized triangle inequality, that is, for

each edge (pα,pβ) the associated length Lα,β is at most

the length of any existing path in G from pα to pβ .

As a possible application of such a framework, we could

generate a SEG metric, which gives us the travel times by

car between cities and use this metric to construct a SEG

metric Voronoi diagram.

Example 5: We consider the map and the distance graph

from Fig. 5, which show 20 cities in Upper Austria, which

is one of the nine provinces in Austria. The red streets on

the map specify highways, the yellow ones are state roads.

But beside these fast roads, there exist a lot of country roads

connecting the neighboring cities.

The distance graph depicts some selected travel times by

car between these cities. In Table I, we have enumerated

the names of the cities, which represent the points pi on

the map and in the distance graph. The chosen parameter

values (u, v) ∈ [0, 1]2 for each point pi correspond to the

parameter values of the map in Fig. 5.

In Table II, we have listed the lengths Lα,β of the

edges (pα,pβ) in the distance graph given in Fig 5, which

correspond to the expected travel times by car between the

cities pα and pβ calculated by a navigation system.

We have used our graph fiting procedure from [2] for

generating a cubic spline embedding x(u, v) into R
7 to

obtain a SEG metric with an accurate approximation. In

Fig. 5, we have visualized the SEG metric Voronoi diagrams

obtained by two different sets of sites. In (c), the sites are

chosen uniformly distributed, in detail, as the vertices of a

triangular mesh. For the result in (d), we have chosen for

the sites the points pi from the distance graph. In addition,



Table I
THE NAMES OF THE CITIES WHICH REPRESENT A POINT pi ON THE MAP

AND IN THE DISTANCE GRAPH GIVEN IN FIG. 5.

p0 Wels p7 Gallneukirchen p14 Ottensheim

p1 Eferding p8 Enns p15 Gramastetten

p2 St. Martin i. M. p9 Steinhaus b. W. p16 St. Veit i. M.

p3 Marchtrenk p10 Scharten p17 Ernsthofen

p4 Ansfelden p11 Kleinzell i. M. p18 Ried i. R.

p5 Linz p12 Neuhofen a. K. p19 Neumarkt i. M.

p6 Hellmonsödt p13 Pasching

Table II
THE EXPECTED TRAVEL TIMES BY CAR Lα,β BETWEEN TWO CITIES pα

AND pβ IN THE DISTANCE GRAPH GIVEN IN FIG. 5.

L0,3 9 L3,4 15 L5,7 13 L8,17 15
L0,9 11 L3,9 17 L5,8 23 L8,18 15
L0,10 16 L3,10 20 L5,13 16 L9,12 20
L1,2 18 L3,12 15 L5,14 12 L11,14 24
L1,10 11 L3,13 15 L5,15 18 L11,16 26
L1,11 28 L5,5 16 L5,19 22 L12,17 33
L1,13 18 L4,8 15 L6,15 20 L14,15 13
L1,14 21 L4,12 15 L6,16 22 L15,16 16
L2,11 13 L4,13 15 L6,19 28 L17,18 25
L2,14 17 L4,17 27 L7,18 20 L18,19 24
L2,16 21 L5,6 21 L7,19 15

we have visualized the corresponding Euclidean Voronoi

diagram in (e).

One may observe that the Voronoi cells with respect to

the SEG metric take the highway layout and the geography

(e.g. the location of rivers) into account.

IV. CONCLUSION

This paper has been an extension of our work in [2].

We have presented several applications of the SEG metric

Voronoi diagram, which is possibly anisotropic and is a

generalization of the Euclidean Voronoi diagram in [0, 1]2

in a canonical way. E.g., the SEG metric framework allows

us to model distance discontinuities or to describe the travel

times by car between cities.

As a possible topic for future research one might study

computational methods for creating discontinuous embed-

dings modeling distances in the presence of obstacles.

For the case of a SEG metric induced by a smooth

embedding, we described in [2] some conditions under

which the resulting SEG metric Voronoi diagram is orphan-

free. Similar conditions for Voronoi diagrams obtained by

discontinuous embeddings could be of interest, too.

As a further topic of possible future work we can use the

SEG metric framework to generate generalized medial axis

for shapes.
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