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Abstract

A metric on a set A is a symmetric function which defines a nonnegative distance
between any two points of A, such that the triangle inequality is fulfilled. Given a set of
points, called sites, the metric can be used to generate Voronoi diagrams which capture
the nearest point information.
We present a new class of metrics on R

2, which we call the scaled embedding-generated
(SEG) metric. These metrics are defined with the help of a smooth one-to-one embedding
of R

2 into R
m and an additional scalar-valued function which is used to re-scale the

distances.
We describe a possible construction of an SEG metric which is based on the Gauß-

Newton algorithm. More precisely, we show how to generate a spline embedding, which
approximates a given distance graph on a finite set of points in R

2, in the sense of least
squares. Distances are required to satisfy the generalized polygon inequality.
The framework is used to define a new type of Voronoi diagram in R

2, which is possibly
anisotropic as it allows for different distance functions for the sites. We explain a simple
method to compute such Voronoi diagrams. Several examples of diagrams resulting from
different SEG metrics are presented.

1. Introduction

The Voronoi diagram of a finite set of points (or more general sites) is a powerful and
popular concept in geometry which possesses a wide range of applications, e.g. to motion
planning, geometrical clustering and meshing; cf. Aurenhammer & Klein (2000) and
Okabe et al. (2000). The classical Voronoi diagram uses the Euclidean metric to define
distances. One possible approach to generalize this setting is to use different distance
functions to generate the Voronoi cells. This concept has led to a large number of different
types of Voronoi diagrams described in the literature.
As a first example relevant to the present paper, we outline the idea of an anisotropic

Voronoi diagram in Labelle & Shewchuk (2003). For each point p (in R
2), a different

metric is defined, which specifies the distance to all other points in R
2, as seen from p.

The distance between two points is then given as the minimum of the two distances
resulting from their associated metrics. This distance is not a metric, in general, because
the triangle inequality need not be satisfied. However, this is no serious hinderance for
computing the anisotropic Voronoi diagram. The corresponding Voronoi cells can be
generated only with the help of the associated metrics for the given sites.
A similar concept is explained in Du & Wang (2005), where an anisotropic metric field

is used to define for each point p ∈ R
2 a possibly different anisotropic distance function.

In contrast to Labelle & Shewchuk (2003), the Voronoi cells are computed by using the
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complete metric field. Once again, the distance between two points does not define a
metric since this distance is not symmetric, in general.
Both types of anisotropic Voronoi diagrams can be seen as generalizations of the

weighted Voronoi diagram in Aurenhammer & Edelsbrunner (1984), where for each site
a multiplicatively weighted Euclidean distance is used. Further works following these or
similar anisotropic approaches are Boissonnat, Wormser & Yvinec (2007) and (2008),
Letscher (2007), Canas & Gortler (2011a) and (2011b), and Canas (2012).
A different idea for the construction of an anisotropic Voronoi diagram is presented in

Kunze, Wolter & Rausch (1997). A Voronoi diagram on a parametric surface is generated,
where the distances between the points on the surface are given by the corresponding
geodesic distances. By considering the resulting Voronoi diagram in the parameter do-
main of the surface we obtain a Voronoi diagram, which is possibly anisotropic. However,
the computation of this Voronoi diagram is rather expensive, since it requires the frequent
evaluation of geodesic distances on a parametric surface.
In the present paper we introduce a new metric framework on R

2, called scaled
embedding-generated metric (SEG metric), which is used to define an anisotropic type of
a Voronoi diagram. The new metric is defined with the help of an embedding of R2 into
a higher-dimensional space. The distance of two points in R

2 is given by the (weighted)
Euclidean distance of the two corresponding points on the resulting surface. As one pos-
sible way to construct a suitable embedding, a method is explained where the embedding
is generated from a distance graph via a fitting procedure.
The construction of the SEG metric Voronoi diagram has several advantages. We have

only one distance function for all points which indeed defines a metric on R
2. Moreover,

the computation of the distances is fast and simple. Also, some properties of the SEG
metric Voronoi diagrams can be derived from the properties of the Euclidean Voronoi
diagram in R

2 and R
3.

This paper is organized as follows. Section 2 recalls some basic concepts, including the
Voronoi diagram, the medial axis, and the local feature size for the Euclidean metric.
Section 3 describes the SEG metric setting mentioned above, which is based on a smooth
and injective embedding of R2 into Rm form ≥ 2 and a scalar-valued function. In the case
ofm = 2 and m = 3, the embedding is just a parametric surface without self-intersections
in R

2 and R
3, respectively.

In Section 4 we describe a method for constructing a SEG metric from a given distance
graph. The creation of the associated spline embedding is based on the Gauß-Newton
algorithm, a well known iterative method to solve non-linear least-squares problems. If
the distance graph satisfies the generalized polygon inequality, the embedding surface
is capable of approximating distances very accurately. Several examples of SEG metrics
resulting from different distance graphs are presented.
An application of the introduced framework is described in Section 5. We use the SEG

metric to define a generalized Voronoi diagram, and give conditions under which the
resulting Voronoi cells stay connected. Several examples of such Voronoi diagrams for
different SEG metrics are given, computed with the help of our algorithm.
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2. Preliminaries

We give a short overview of the concepts of Voronoi diagrams, medial axes, and local
feature size. We will later, in Section 5, generalize Voronoi diagrams with the help of the
metrics specified in Section 3. The concept of local feature size will be needed to describe
some properties of the SEG metrics and of the resulting SEG metric Voronoi diagrams.

2.1. Voronoi diagram

Let P = {p1,p2, . . .} be a finite set of points (called sites) in Euclidean m-space R
m,

for m ≥ 2. For a given metric D on R
m, we define the Voronoi cell, V i

D(P), of a site
pi ∈ P as the open set

V i
D(P) = {p ∈ R

m | D(p,pi) < D(p,pj) for all j 6= i}.

The Voronoi diagram, VD(P), is now given by the complement of all Voronoi regions
in R

m,

VD(P) = R
m \

(

⋃

i

V i
D(P)

)

.

We denote the Voronoi diagram with respect to the Euclidean metric by V (P). A Voronoi
diagram is called orphan-free if each of its Voronoi cells is connected. In the case of the
Euclidean metric, the diagram is always orphan-free, because its regions are intersections
of open halfspaces of Rm, and thus are convex polyhedra.

2.2. Medial axis

Let x : R2 → R
m, for m ≥ 2, be a continuous one-to-one embedding with

x(u, v) = (x1(u, v), . . . , xm(u, v)).

Consider the set X = x(R2) of all image points of the embedding x(u, v). We define the
medial axis of X as the (closure of the) set of all points in R

m that have at least two
closest points in X.
An equivalent definition could be given as follows. A ball Br(c) ⊂ R

m with radius r > 0
and center c ∈ R

m is given by

Br(c) = {p ∈ R
m | ||p− c|| ≤ r}.

Such a ball is called empty with respect to X if the interior of Br(c) contains no points
of X. We say that Br(c) is a medial ball if it is maximal with respect to X, i.e., if no
other empty ball B with B 6= Br(c) and containing Br(c) exists. The set of centers of
all medial balls for X form the medial axis of X.

2.3. Local feature size

We explain the concept of local feature size, which was introduced by Ruppert (1995). We
use a similar definition, presented by Amenta & Bern (1999), Amenta, Bern & Eppstein
(1998), Amenta, Choi & Kolluri (2001), and Dey (2007).
We define the local feature size at a point x̄ ∈ X, denoted by LFS(x̄), as the Euclidean

distance from x̄ to the nearest point of the medial axis of X.
The following definition of an ε-sample of the set X (cf. Amenta, Choi & Kolluri (2001)

and Dey (2007)) will be useful to describe a criterion for the sample density of points
in X, depending on the local behavior of the embedding x(u, v). Let Px = {x1,x2, . . .}
be a subset of X. We call Px an ε-sample of X if, for each point p ∈ X, there exists a
sample point xi ∈ Px, such that ||p− xi|| ≤ ε · LFS(p).
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3. The SEG metric framework

Let x : R2 → R
m, with x(u, v) = (x1(u, v), . . . , xm(u, v)), be a continuous one-to-one

embedding as above. In addition, let r 7→ d(r) for r ≥ 0 be a scalar-valued function (the
scaling function), which is assumed to have the following properties:
• d(0) = 0,
• d(r) > 0 for r > 0,
• d′(r) ≥ 0 for r ≥ 0, and
• d(r)/r is monotonically decreasing for r > 0.

We define the distance D between two points u1 = (u1, v1) and u2 = (u2, v2) in R
2 as

D(u1,u2) = d(||x(u1, v1)− x(u2, v2)||). (3.1)

Theorem 1. The distance D given by (3.1) defines a metric on R
2.

Proof. For all u1,u2,u3 ∈ R
2, the distance D has to satisfy the following conditions:

(i) D(u1,u2) ≥ 0,
(ii) D(u1,u2) = 0 iff u1 = u2,
(iii) D(u1,u2) = D(u2,u1), and
(iv) D(u1,u3) ≤ D(u1,u2) +D(u2,u3).

Conditions (i) and (iii) are trivially fulfilled. To show condition (ii), we have to use the
fact that the embedding x(u, v) has no self-intersection, since the map x : R

2 → R
m

is one-to-one. The triangle inequality (iv) remains to be shown. For the sake of brevity
we denote the Euclidean distance ||x(ui) − x(uj)|| by ℓi,j . Since the Euclidean metric
satisfies the triangle inequality, we obtain

ℓ1,3 ≤ ℓ1,2 + ℓ2,3.

Now we distinguish two cases.
• Case 1: (ℓ1,3 ≤ ℓ1,2) or (ℓ1,3 ≤ ℓ2,3).

Since d′(r) ≥ 0 for r ≥ 0 we have

d(ℓ1,3) ≤ d(ℓ1,2) or d(ℓ1,3) ≤ d(ℓ2,3),

which implies

d(ℓ1,3) ≤ d(ℓ1,2) + d(ℓ2,3).

This shows the triangle inequality (iv).
• Case 2: ℓ1,3 > ℓ1,2 and ℓ1,3 > ℓ2,3.

Since d(r)
r

is monotonically decreasing we know that

d(ℓ1,3)

ℓ1,3
≤

d(ℓ1,2)

ℓ1,2
and

d(ℓ1,3)

ℓ1,3
≤

d(ℓ2,3)

ℓ2,3
.

Now we have

d(ℓ1,2) + d(ℓ2,3) = ℓ1,2
d(ℓ1,2)

ℓ1,2
+ ℓ2,3

d(ℓ2,3)

ℓ2,3
≥

≥ ℓ1,2
d(ℓ1,3)

ℓ1,3
+ ℓ2,3

d(ℓ1,3)

ℓ1,3
= (ℓ1,2 + ℓ2,3)

d(ℓ1,3)

ℓ1,3
≥

≥ ℓ1,3
d(ℓ1,3)

ℓ1,3
= d(ℓ1,3)

which proves the triangle inequality (iv).
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For m = 2 or m = 3, the embedding x(u, v) is a parametric surface without self-
intersections in R

2 and R
3, respectively. Two examples of possible scaling functions are

d(r) = ar or d(r) = a ln(br + 1) (3.2)

for suitable real constants a, b > 0.
With the help of the metric D in (3.1), we can define a generalized disk B̃r(c) and a

generalized circle C̃r(c) with radius r > 0 and center c ∈ R
2, which are given by

B̃r(c) = {p ∈ R
2 | D(p, c) ≤ r}

and

C̃r(c) = {p ∈ R
2 | D(p, c) = r},

respectively. That means we have ∂B̃r(c) = C̃r(c).
The following two propositions specify conditions for the cases m = 2 and m = 3,

which guarantee that generalized disks and circles behave ‘topologically well’ in the sense,
that they are topological disks and a topological circles, respectively. Proposition 3 follows
directly from earlier results of Amenta, Bern & Eppstein (1998) and Dey (2007).

Proposition 2. Let m = 2, c ∈ R
2, and r > 0. Then a generalized disk B̃r(c) and a

generalized circle C̃r(c) are a topological disk and a topological circle, respectively.

Proof. Since x(u, v) is a continuous one-to-one embedding in R
2, the assertion is

trivially true.

Proposition 3. Let m = 3, c ∈ R
2, r > 0 and r̄ = d−1(r). If r̄ < LFS(x(c)), then a

generalized disk B̃r(c) and a generalized circle C̃r(c) is a topological disk and a topological
circle, respectively.

Proof. This will be shown by proving the following equivalent statement.
If r̄ < LFS(x(c)), then the intersection of a ball

Br̄(x(c)) = {p ∈ R
3 | ||p− x(c)|| ≤ r̄}

and of a sphere

Cr̄(x(c)) = {p ∈ R
3 | ||p− x(c)|| = r̄}

with the set X = x(R2) is a topological disk and a topological circle, respectively.
The proof will be similar to the one of Corollary 3 of Amenta, Bern & Eppstein (1998).

We will need later Lemma 1.1 of Dey (2007), which can be rephrased for our situation
as follows.
If a ball Br̃(q) = {p ∈ R

3 | ||p − q|| ≤ r̃} with q ∈ R
3 and r̃ > 0 intersects the set

X at more than one point where either (i) Br̃(q) ∩ X is not a topological disk or (ii)
∂(Br̃(q)) ∩X is not a topological circle, then a medial axis point of X is in Br̃(q).
We will now prove the proposition by contradiction. Let Br̄(x(c)) be a ball which does

not intersect the set X in a topological disk. Because of Lemma 1.1 of Dey (2007), the
ball Br̄(x(c)) contains a point p of the medial axis of X with ||p − x(c)|| ≥ LFS(x(c))
and hence we get r̄ ≥ LFS(x(c)), which is a contradiction. A similar approach can be
used for the case of the sphere Cr̄(x(c)).

As an example, Figure 1 displays generalized circles for different SEG metrics induced
by embeddings into R

3.
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(a)

(b)

(c)

(d)

Figure 1. (a) Examples of embeddings into R
3 restricted to the parameter domain [0, 1]2;

(b)-(d) Generalized circles for a uniform sequence of radii for different SEG metrics induced by
the corresponding embeddings.

4. Fitting SEG metrics to distance graphs

We now explain a method for computing suitable SEG metrics. The idea is to construct
a spline embedding x(u, v) which approximates a given distance graph best in the sense
of least squares. The distance graph is used to specify a set of distances between points
in the parameter domain.

We start with the definition of the distance graph. Then we explain the general frame-
work of the fitting procedure, which is based on the Gauß-Newton algorithm. Finally we
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modify this algorithm to ensure that the resulting embedding has no self-intersections,
which is a necessary condition to induce a metric.

4.1. Distance graph

Let I = [0, 1]2 be the unit square, and let Q = {q1, . . . ,qn} be a set of points in I.
Further, let A be a set of index pairs

A = {(α, β)} ⊂ {1, . . . , n}2,

satisfying α < β for all (α, β) ∈ A. Then a distance graph G is given by the points of Q
and by the edges eα,β = (qα,qβ), for (α, β) ∈ A, with assigned edge lengths Lα,β.
The lengths Lα,β are not necessarily the Euclidean lengths of the corresponding edges

eα,β . Instead, we may consider generalized distances between the points qα and qβ .
A distance graph G is said to be valid if the distances satisfy the generalized polygon

inequality. That is, for each edge eα,β the associated length Lα,β is at most the length
of any existing path from qα to qβ in the distance graph.
Though the generalized polygon inequality is no indispensible condition for the follow-

ing surface fitting procedure to work, a significant deviation will cause inaccuracy of the
approximation.
Several examples of valid distance graphs are shown in Figures 2, 4 and 5.

4.2. Fitting procedure

The goal of this section is to construct an embedding which constitutes a least-squares
approximation of a given distance graph. For simplicity, we choose the scaling function
as d(r) = r. We are going to construct an embedding x(u, v), having a B-spline repre-
sentation of degree (p1, p2),

x(u, v) =

n1
∑

j=0

n2
∑

k=0

cj,kM
p1

j (u)Np2

k (v)

with control points cj,k ∈ R
m. The respective basis functions (Mp1

j (u))j=0,...,n1
and

(Np2

k (u))k=0,...,n2
are B-splines of degree (p1, p2) with respect to the open knot se-

quences S = (sj)j=0,...,n1+p1+1 and T = (tk)k=0,...,n2+p2+1, respectively.
Note that the embedding is only defined for the unit square [0, 1]2 which contains

the given points. However, it could be extended to the entire plane R
2 with the help of

suitable extrapolation techniques.
We compute the unknown coefficients c = (c0,0, . . . , cn1,0, c1,0, . . . , cn1,n2

) by solving
the minimization problem

c = argmin
∑

(α,β)∈A

Rα,β(c)
2, (4.1)

where

Rα,β(c) = ||x(qα)− x(qβ)||
2 − L2

α,β .

Since the optimization problem (4.1) is non-linear and the objective function is a sum of
squares, we can use the Gauß-Newton algorithm to solve it. For each iteration step, we
minimize the objective function

(

∑

(α,β)∈A

(Rα,β(c
0) +∇Rα,β(c

0)(∆c − c0))2
)

+ ω||∆c− c0||2, (4.2)

which includes a Tikhonov regularization term, with respect to ∆c.
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In the objective function (4.2), the vector c0 denotes the solution from the last step,
∆c is the update, and ∇Rα,β is the row vector given by the partial derivatives of Rα,β

with respect to the control points cj,k. In addition, ω > 0 is the parameter for the
Tikhonov regularization term.
For the first iteration step, we have to choose an initial solution for c0. This will be

described in more detail in the next section.
Since the objective function (4.2) is quadratic in the update ∆c, we obtain a system of

linear equations for ∆c. We repeat the minimization steps until ||c0−∆c|| is smaller than
some chosen tolerance, or until we have exceeded a maximal (user-specified) number of
iterations. In the latter case, we have still two possibilities to decrease the approximation
error: We could increase the number of degrees of freedom of the B-spline representation
by raising the number of control points or the degree of the B-splines, or we can increase
the dimension of the embedding.

4.3. Avoiding self-intersections

Since the construction from the previous section does not guarantee that the resulting
embedding is free of self-intersections, we slightly modify the algorithm as follows.
The main idea is to construct an embedding x(u, v) = (x1(u, v), . . . , xm(u, v)) with

m ≥ 3, where the first two coordinate functions are simply linear functions with respect
to u and v, respectively. That is, we put

x1(u, v) = c(1) u

and

x2(u, v) = c(2) v

with real coefficients c(1) and c(2). The remaining coordinate functions xi(u, v) for i ∈
{3, . . . ,m} are spline functions of degree (p1, p2)

xi(u, v) =

n1
∑

j=0

n2
∑

k=0

c
(i)
j,kM

p1

j (u)Np2

k (v)

with c
(i)
j,k ∈ R.

By solving the minimization problem (4.1) with the help of the Gauß-Newton algo-
rithm as described in the previous section, we obtain an embedding x(u, v) which has
no self-intersections, as long as none of the coefficients c(1) and c(2) becomes zero in the
optimization process. To avoid this case, we allow the user to specify the coefficients in
our implementation. On the one hand the coefficients should not be chosen too large to
make an approximation of the distance graph possible, on the other hand a choice of too
small coefficients could lead in Section 5 to a SEG metric Voronoi diagram with a lot of
orphans. Depending on the given distance graph we have tested different coefficients to
find a satifying choice. We have used this approach in all the presented examples below.
The use of these two linear functions can be seen as some kind of regularization. By

using sufficiently small coefficients (combined with a sufficiently large dimension of the
embedding), one can minimize the influence of this regularization while still avoiding
self-intersections of the embedding.

The remaining coefficients c
(i)
j,k of the initial solutions were chosen randomly from the

interval [−0.1, 0.1]. We always used several initial values. Note that different initial solu-
tions give different results, and we picked the best one. In our experience, however, the
obtained approximate solutions were different but they produced approximations of the
given distance graph of similar quality, which was measured by the approximation error.
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Our resulting but restricted embedding x(u, v) induces a SEG metric on [0, 1]2. By
extending the restricted embedding to a continuous one-to-one embedding x : R2 → R

m,
we obtain a SEG metric on R

2, which approximates the given distance graph.
We considered the scaling function d(r) = r for sake of simplicity. By choosing different

scaling functions (for example as in (3.2)) it is possible to construct modified SEG metrics
from the same distance graph. A similar optimization procedure could be applied to the
parameters of the scaling functions d. However, this has not been implemented and tested.
In the following example we demonstrate the effect of our algorithm on the basis of

the distance graph given in Figure 2. We approximated this discrete graph by a smooth
spline embedding into R

5. Examples of embeddings into R
3 resulting from other distance

graphs are visualized in Figure 4.
We have summarized some details of the constructed spline embeddings, like the di-

mension m, the degree (p1, p2), and the number of variable control points, for all our
examples below (Examples 1 to 3) in Table 2. The numbers of executed iterations and
the resulting relative errors are shown. The time for constructing all these spline embed-
dings is in the order of a few seconds, by using our non-optimized test software.

4.4. Example 1

We consider the distance graph from Figure 2, which consists of 11 points q0, . . . ,q10 ∈
[0, 1]2 and of all possible edges (qα,qβ). That is, the distance graph is the complete graph
in this case. The assigned distances Lreal

α,β are given in the upper triangle of the distance
matrix in Table 1. The overall sum of distances is 647.35.
We use our fitting algorithm from Section 4.3 to generate a cubic spline embedding

into R
5; compare Table 2. As mentioned before, we have fixed both coefficients c(1) and

c(2) as 1, and have chosen the remaining coefficients of the initial solution randomly.
The projections of the resulting spline embedding into the 3-dimensional spaces x1x2x3,
x1x2x4 and x1x2x5 are visualized in Figure 3. The lower triangle of the distance matrix
in Table 1 shows the approximated distances Lapprox

α,β obtained from this embedding. The
total error of the initial and approximated distances is

∑

(α,β)∈A

|Lreal

α,β − Lapprox

α,β | = 0.05.

This shows that the fitting algorithm for the approximation surface in R
5 led to a satis-

factory result in this case.

5. SEG metric Voronoi diagrams

We will now use the metric D defined in (3.1) to construct a respective Voronoi diagram
in R

2, in a simple way.
Let P = {u1,u2, . . .} be a set of sites in R

2. The SEG metric Voronoi diagram VD(P)
for D can be generated in the following way. Given the sites ui ∈ R

2, we first compute
the corresponding points xi = x(ui) on the embedding x(u, v), which has been used to
define D. Then we compute, for the obtained set of points Px = {x1,x2, . . .} in R

m,
their Euclidean Voronoi diagram V (Px). By intersecting the resulting Voronoi cells with
the embedding surface x(u, v), we obtain a Voronoi diagram on x(u, v), which defines for
the corresponding parameter values (u, v) ∈ R

2 the desired SEG metric Voronoi diagram
VD(P) in R

2.
This approach is similar to that in Boissonnat, Wormser & Yvinec (2008), who showed

that the anisotropic Voronoi diagram of Labelle & Shewchuk (2003) can be obtained by
intersecting a so-called power diagram in R

5 with a suitable surface. (Power diagrams
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q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

(0,0)

(0,1)

(1,0)

(1,1)

Figure 2. Complete distance graph on 11 points in [0, 1]2. Distances are assigned as in Table 1.

x1

x2
x3

x1

x2

x4

x1

x2
x5

x1x2x3-space x1x2x4-space x1x2x5-space

Figure 3. The resulting embedding projected to the 3-dimensional spaces x1x2x3, x1x2x4 and
x1x2x5. The x1- and x2-directions are scaled by a factor of 10 for better visibility.

are generalized Voronoi diagrams whose cells are still polyhedral; see e.g. Aurenhammer
& Klein (2000).)
Before discussing several instances of SEG metric Voronoi diagrams constructed with

our approach in detail, let us give some conditions under which the SEG metric Voronoi
diagram is orphan-free. Recall that a Voronoi diagram is called orphan-free if each of its
Voronoi cells is connected. Disconnectedness of a cell in the SEG metric Voronoi diagram
means that the corresponding m-dimensional (polyhedral) cell in the Euclidean Voronoi
diagram intersects the embedding surface more than once.

Lemma 4. For m = 2, the SEG metric Voronoi diagram is always orphan-free.

Proof. Since x(u, v) is a smooth one-to-one embedding into R
2, and the Euclidean

Voronoi diagram V (Px) in R
2 has convex (hence connected) cells, the resulting SEG

metric Voronoi diagram VD(Px) is orphan-free, too.

Lemma 5. Let m = 3, and assume that x(u, v) is C2-smooth. If the set of sites Px =
{x(u1),x(u2), . . .} is a 0.18-sample of the surface X = x(R2), then the resulting SEG
metric Voronoi diagram VD(P) is orphan-free.
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q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

q0 8.31 7.35 12.41 10.95 10.30 15.52 15.83 19.05 5.74 21.12

q1 8.31 12.69 4.58 9.85 5.74 10.10 16.31 17.03 12.17 15.13

q2 7.34 12.69 15.17 8.83 10.95 15.07 10.44 14.87 5.00 20.20

q3 12.41 4.58 15.17 10.10 5.10 6.71 15.78 15.00 15.26 11.05

q4 10.96 9.85 8.83 10.10 5.10 9.00 9.95 10.72 12.21 12.88

q5 10.30 5.75 10.96 5.10 5.10 5.92 11.70 11.70 12.37 10.95

q6 15.52 10.10 15.07 6.71 9.00 5.91 11.23 8.83 16.31 5.92

q7 15.83 16.31 10.44 15.78 9.95 11.70 11.23 5.66 13.04 14.59

q8 19.05 17.03 14.87 15.00 10.72 11.70 8.83 5.66 17.49 10.05

q9 5.74 12.17 5.01 15.26 12.21 12.37 16.31 13.04 17.49 22.02

q10 21.12 15.13 20.20 11.05 12.88 10.95 5.92 14.59 10.05 22.02

Table 1. Upper triangle: The initially assigned distances Lreal

α,β for the edges (qα,qβ) of the
distance graph in Figure 2. Lower triangle: The approximated distances Lapprox

α,β obtained from
the resulting embedding, computed with our fitting algorithm. Bold lengths identify distances
where Lapprox

α,β differs from Lreal

α,β .

Proof. It is sufficient to show that each Voronoi cell V i(Px) of the Euclidean Voronoi
diagram V (Px) in R

3 intersects the embedding x(u, v) in a topological disk. Since x(u, v)
is a C2-smooth embedding into R

3 and the set of sites Px is a 0.18-sample of X we can
apply Lemma 3.10 of Dey (2007), which exactly states the desired fact.

By choosing an appropriate spline function x3 in the graph fitting algorithm from
Section 4.3, it is possible to construct a C2-smooth embedding into R

3, which satisfies
the assumptions of Lemma 5.
Observe that the proofs of Lemmas 4 and 5 actually imply a stronger result. The regions

in the SEG metric Voronoi diagram are not only connected but are simply connected,
under the restrictions given there.

5.1. Example 2

We consider three different distance graphs as shown in Figure 4. For each graph we have
constructed an embedding into R

3, see (b) and Table 2, which induces an SEG metric,
by approximating the corresponding graph. Based on these metrics, several examples
of Voronoi diagrams for different sets of sites P have been generated. We have used
uniformly distributed sites in (c) and non-uniformly distributed sites in (d) and (e).
In the first example, the distance graph is given by a uniform quadrilateral mesh,
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for which all edges have the same distance, except for one column where distances are
longer. The resulting B-spline surface is elongated in this region and leads, in the case
of uniformly distributed sites, to an SEG metric Voronoi diagram with ‘slimmer’ cells in
the corresponding part of the domain.
The second distance graph is given by a uniform triangular mesh, where at two parts

(bottom left and top right) the lengths of the edges are larger than those of the remaining
edges. By using our fitting algorithm we get a B-spline surface with two ‘hills’ at these
parts. For the case of uniformly distributed sites, we obtain an SEG metric Voronoi
diagram with strongly curved Voronoi cells in the corresponding parts of the domain.
In the last example, the distance graph is a triangular mesh again. The length of

every other of the edges connected with the center point is larger compared to the other
distances. As a resulting embedding we obtain a B-spline surface with various ‘hills’.
For uniformly distributed sites, the SEG metric Voronoi diagram contains many cells of
disk-like shape.
Observe that in the case of uniformly distributed sites (c), for all examples the resulting

SEG metric Voronoi diagrams are orphan-free, whereas for the non-uniformly distributed
sites in (d) two examples contain orphans. By adding more sites to the diagrams in (d),
we can obtain Voronoi diagrams which are orphan-free (e).

5.2. Example 3

We present further examples of SEG metric Voronoi diagrams, for the more involved
distance graphs shown in Figure 5. To obtain SEG metrics with good approximations,
we have generated spline embeddings into the higher-dimensional spaces R5 and R

7; cf.
Table 2. Resulting Voronoi diagrams are displayed for two different kinds of sets of sites,
uniformly distributed in (b) and (c) and non-uniformly distributed in (d) and (e).
In the first example, the distance graph is given by a square with its two diagonals,

with diagonal lengths set to only about one half of the Euclidean lengths. For uniformly
distributed sites, Voronoi cells which are close to the corners of the square are elongated.
In the last two examples we obtain SEG metric Voronoi diagrams containing various
disk-like Voronoi cells again. For each such cell, the corresponding site is the closest one
to a point of the distance graph.
In the cases of uniformly distributed sites (b) and (c) the Voronoi diagrams are orphan-

free for all shown examples, whereas for the non-uniform distribution (d) one diagram
has orphans. Again, we can obtain an orphan-free Voronoi diagram by adding further
sites (e).
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Figure 4. (a) Distance graphs; (b) Resulting embeddings into R
3; (c)-(e) Examples of SEG

metric Voronoi diagrams for different sets P of sites. Occuring orphans are indicated by arrows.
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Figure 5. More distance graphs and their resulting SEG metric Voronoi diagrams for different
sets of sites. Arrows indicate existing orphans. The metrics are induced by embeddings into R

5,
R

5 and R
7, respectively.
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Ex. 1 Ex. 2.1 Ex. 2.2 Ex. 2.3 Ex. 3.1 Ex. 3.2 Ex. 3.3

dimension m 5 3 3 3 5 5 7

degree (p1, p2) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3)

# contr. points 75 20 49 169 48 147 245

# iterations 15 40 40 18 12 26 32

relative error 7.72 10−5 2.63 10−3 5.33 10−4 1.52 10−2 3.43 10−8 7.27 10−8 1.63 10−7

Table 2. Some details of the constructed spline embeddings (Examples 1 to 3), the number of
iterations, and the resulting relative errors (

∑
(α,β)∈A

|Lreal

α,β − Lapprox

α,β |)/
∑

(α,β)∈A
Lreal

α,β .

6. Concluding remarks

We have introduced the concept of scaled embedding-generated (SEG) metrics, and
have studied some of their properties. SEG metrics are a versatile tool for reflecting
the anisotropy specified by distance graphs in the plane. Also, they lead to a new type
of generalized Voronoi diagram in R

2 in a canonical way.
Various questions remain open, for example, conditions under which Voronoi cells are

connected (or simply connected), when the embedding is in dimensions higher than 3.
In the non-orphan-free case, bounds on the number of connected Voronoi sub-cells are of
interest.
Instead of the Voronoi diagram, also the generalized medial axis for shapes with respect

to the disks defined by the new metric is worth studying.
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