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Voronoi Diagrams from Distance Graphs ∗
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Abstract

We present a new type of Voronoi diagram in R
2

that respects the anisotropy exerted on the plane by
a given distance graph. It is based on a metric ob-
tained by smoothly and injectively embedding of R2

into R
m, and a scalar-valued function for re-scaling

the distances.

A spline representation of the embedding surface is
constructed with the Gauß-Newton algorithm, which
approximates the given distance graph in the sense
of least squares. The graph is required to satisfy the
generalized polygon inequality.

We explain a simple method to compute the
Voronoi diagrams for such metrics, and give condi-
tions under which Voronoi cells stay connected. Sev-
eral examples of diagrams resulting from different
metrics are presented.

1 Introduction

The Voronoi diagram of a given set of sites is a power-
ful and popular concept in geometry which possesses
a wide range of applications, e.g. to motion plan-
ning, geometrical clustering and meshing [2]. Beside
the classical Euclidean Voronoi diagram there exists
a large number of generalizations of this structure.

Two examples relevant for the present note are the
anisotropic Voronoi diagrams described in [7] and [9].
For each point p (say in R

2), a different metric is de-
fined which specifies the distances to all other points,
as seen from p. However, the distance between two
arbitrary points does not define a metric, because ei-
ther the triangle inequality or the symmetry is vio-
lated. This is no serious hinderance for computing
the anisotropic Voronoi diagram, though.

A different approach is followed in [8]. A Voronoi
diagram on a parametric surface is generated, by tak-
ing geodesic distances between the points on the sur-
face. The corresponding structure in the parameter
domain of the surface is a Voronoi diagram which is
possibly anisotropic. The computation of this type
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of diagram is rather expensive, as geodesic distances
have to be computed frequently.
In this note we introduce a new metric framework

on R
2, called scaled embedding-generated (SEG) met-

rics, and use it to define a class of anisotropic Voronoi
diagrams. It is based on a smooth one-to-one embed-
ding of R2 into R

m, for m ≥ 2, and a scalar-valued
scaling function. The construction of SEG metric
Voronoi diagrams has several advantages. We have
only one distance function for all points, which in-
deed defines a metric on R

2, and the computation of
distances is fast and simple. Also, some properties of
such diagrams can be derived from the properties of
the Euclidean Voronoi diagram in R

2 and R
3.

2 Preliminaries

We recall some basic concepts needed in the subse-
quent considerations.

Definition 1 The medial axis of a set X ⊂ R
m is the

(closure of the) set of all points in R
m that have at

least two closest points in X.

Definition 2 [1, 6] The local feature size at a point
p ∈ X, denoted by LFS(p), is the Euclidean distance
from p to the nearest point of the medial axis of X.

Definition 3 [1, 6] Let Px = {x1,x2, . . .} be a finite
subset of X. We call Px an ε-sample of X if for each
point p ∈ X there is a sample point xi ∈ Px with
||p− xi|| ≤ ε · LFS(p).

Definition 4 Let P = {p1,p2, . . .} be a finite set
of points (called sites) in R

m. For a given metric D
on R

m, we define the Voronoi cell of a site pi ∈ P as
the open set

V i
D(P) = {p ∈ R

m | D(p,pi) < D(p,pj) for all j 6= i}.

The Voronoi diagram VD(P) is given by the comple-
ment of all Voronoi cells in R

m,

VD(P) = R
m \

(
⋃

i

V i
D(P)

)

.

We denote the Voronoi diagram with respect to
the Euclidean metric by V (P). A Voronoi diagram
is called orphan-free if all its Voronoi cells are con-
nected. In the case of the Euclidean metric, the di-
agram is always orphan-free, because its regions are
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intersections of open halfspaces of Rm, and thus are
convex polyhedra.

3 The SEG metric framework

We now introduce the metric framework we would like
to work with.

Definition 5 Let x : R
2 → R

m, for m ≥ 2, be
a continuous one-to-one embedding, with x(u, v) =
(x1(u, v), . . . , xm(u, v)). In addition, let r 7→ d(r), for
r ≥ 0, be a scalar-valued scaling function with the
following properties:

• d(0) = 0

• d(r) > 0, for r > 0

• d′(r) ≥ 0, for r ≥ 0

• d(r)/r is monotonically decreasing, for r > 0

We define the distance D between two points u1 =
(u1, v1) and u2 = (u2, v2) in R

2 as

D(u1,u2) = d(||x(u1, v1)− x(u2, v2)||). (1)

Theorem 6 The distance D given by (1) defines a
metric on R

2.

Proof. For all u1,u2,u3 ∈ R
2, the distance D has to

satisfy the following conditions:

(i) D(u1,u2) ≥ 0,

(ii) D(u1,u2) = 0 iff u1 = u2,

(iii) D(u1,u2) = D(u2,u1), and

(iv) D(u1,u3) ≤ D(u1,u2) +D(u2,u3).

Conditions (i) and (iii) are trivially fulfilled. To show
condition (ii), we have to use the fact that the embed-
ding x(u, v) has no self-intersections, since the map
x : R

2 → R
m is one-to-one. The triangle inequal-

ity (iv) remains to be shown. For the sake of brevity
we denote the Euclidean distance ||x(ui)−x(uj)|| by
li,j . Since the Euclidean metric satisfies the triangle
inequality, we have

l1,3 ≤ l1,2 + l2,3.

Now we distinguish two cases.
Case 1: (l1,3 ≤ l1,2) or (l1,3 ≤ l2,3).
Since d′(r) ≥ 0 for r ≥ 0 we have

d(l1,3) ≤ d(l1,2) or d(l1,3) ≤ d(l2,3),

d(l1,3) ≤ d(l1,2) + d(l2,3).

This shows the triangle inequality (iv).
Case 2: l1,3 > l1,2 and l1,3 > l2,3.
Since d(r)/r is monotonic decreasing we know that

d(l1,3)

l1,3
≤

d(l1,2)

l1,2
and

d(l1,3)

l1,3
≤

d(l2,3)

l2,3
.

Now we have

d(l1,2) + d(l2,3) = l1,2
d(l1,2)

l1,2
+ l2,3

d(l2,3)

l2,3
≥

≥ l1,2
d(l1,3)

l1,3
+ l2,3

d(l1,3)

l1,3
= (l1,2 + l2,3)

d(l1,3)

l1,3
≥

≥ l1,3
d(l1,3)

l1,3
= l1,3,

which proves the triangle inequality (iv). �

We will call D the scaled embedding-generated
(SEG) metric in the sequel. For m = 2 or m = 3,
the embedding x(u, v) is a parametric surface with-
out self-intersections in R

2 and R
3, respectively. Two

examples of possible scaling functions are

d(r) = ar or d(r) = a ln(br + 1) (2)

for suitable constants a, b > 0.
With the help of the metric D, we can define gen-

eralized disks with radius r > 0 and center c ∈ R
2,

Br(c) = {p ∈ R
2 | D(p, c) ≤ r}.

Clearly, for embedding dimension m = 2, these disks
are topological disks, by the properties of x(u, v).
Moreover, we have:

Lemma 7 Let m = 3, c ∈ R
2, and r̄ = d−1(r). If

r̄ < LFS(x(c)), then the disks Br(c) are topological
disks (and generalized circles are topological circles).

4 Fitting SEG metrics to distance graphs

We now explain a method for computing suitable
SEG metrics. The idea is to construct a spline em-
bedding x(u, v) which approximates a given distance
graph G on n points in the unit square [0, 1]2 of the
parameter domain R

2.
To achieve high accuracy in the approximation, we

require G to satisfy the generalized polygon inequality,
that is, for each edge (p, q) the associated length Lp,q

is at most the length of any existing path in G from
p to q.
For simplicity, the scaling function is temporarily

set to the identity, d(r) = r.
We will construct an embedding surface x(u, v) =

(x1(u, v), . . . , xm(u, v)) with m ≥ 3, where the first
two coordinate functions are the linear functions
x1(u, v) = c(1) u and x2(u, v) = c(2) v. The remaining
coordinate functions xi(u, v) for i ≥ 3 are given by
B-spline functions of degree (p1, p2),

xi(u, v) =

n1∑

j=0

n2∑

k=0

c
(i)
j,kM

p1

j (u)Np2

k (v)

with c
(i)
j,k ∈ R. The basic functions (Mp1

j (u))j=0,...,n1

and (Np2

k (u))k=0,...,n2 are B-splines of degree (p1, p2)
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with respect to the open knot sequences S =
(sj)j=0,...,n1+p1+1 and T = (tk)k=0,...,n1+p1+1, respec-
tively. Now we compute the unknown coefficients

c = (c(1), c(2), c
(3)
0,0, . . . , , c

(3)
n1,n2) by solving the mini-

mization problem

c = argmin
∑

(p,q)∈G

(

||x(p)− x(q)||2 − L2
p,q

︸ ︷︷ ︸

Rp,q(c)

)2

.

Since this optimization problem is non-linear and
the objective function is a sum of squares, we use the
Gauß-Newton algorithm to solve it. For each iteration
step, we minimize the objective function
(

∑

(p,q)∈G

(Rp,q(c
0)+∇Rp,q(c

0)(∆c−c
0))2
)

+ω||∆c−c
0||2, (3)

which includes a Tikhonov regularization term, with
respect to ∆c.
In the objective function (3), the vector c0 denotes

the solution from the last step, ∆c is the update, and
∇Rp,q is the row vector given by the partial deriva-
tives of Rp,q with respect to the control points cj,k.
In addition, ω > 0 is the parameter for the Tikhonov
regularization term.
The obtained embedding x(u, v) has no self-

intersections, as long as none of the coefficients c(1)

and c(2) becomes zero in the optimization process. To
avoid this case, or the case that one of them is close
to zero, we allow the user to specify these coefficients
in our implementation. We have used this approach
in all the examples presented below.
The use of the two linear functions above can be

seen as some kind of regularization. By using suffi-
ciently small coefficients c(1) and c(2) (combined with
a sufficiently large dimension of the embedding), one
can minimize the influence of this regularization while
still avoiding self-intersections of the embedding. The

remaining coefficients c
(i)
j,k of the initial solutions were

chosen randomly from the interval [− 1
10 ,

1
10 ].

Note that different initial solutions give different re-
sults. In our experience, however, the obtained differ-
ent solutions were approximations of similar quality of
the distance graph G. Moreover, we noticed that for
most of our tested distance graphs an embedding of
R

2 into R
m for m ∈ {3, 4, 5} leads to a satisfactory re-

sult. It seems, that as long as the generalized polygon
inequality is fulfilled, the distance graph is usually ‘al-
most exactly’ approximated by the produced embed-
ding. But especially in the case of a distance graph
with a high valency for each point, an embedding into
a higher dimension could probably be needed.
The resulting embedding x(u, v) induces an SEG

metric on the unit square [0, 1]2. By extending this
restricted embedding to a continuous one-to-one em-
bedding x : R

2 → R
m, we obtain an SEG metric

on R
2, which accurately approximates a given dis-

tance graph.

5 SEG metric Voronoi diagrams

We will now use the metric D in (1) to construct a
respective Voronoi diagram in R

2, in a simple way.
Let P = {u1,u2, . . .} be a set of sites in R

2. The
SEGmetric Voronoi diagram VD(P) forD can be gen-
erated in the following way. Given the sites ui ∈ R

2,
we first calculate the corresponding points xi = x(ui)
on the embedding x(u, v), which has been used to
define D. Then we compute, for the obtained set
of points Px = {x1,x2, . . .} in R

m, their Euclidean
Voronoi diagram V (Px). By intersecting the resulting
Voronoi cells with the embedding surface x(u, v), we
obtain a Voronoi diagram on x(u, v), which defines for
the corresponding parameter values (u, v) ∈ R

2 the
desired SEG metric Voronoi diagram VD(P) in R

2.
This approach is similar to that in [3], who showed

that the anisotropic Voronoi diagram of [9] can be
obtained by intersecting a so-called power diagram in
R

5 with a suitable surface. (Power diagrams are gen-
eralized Voronoi diagrams whose cells are still convex
polyhedra; see e.g. [2].)
Before giving examples of SEG metric Voronoi dia-

grams constructed with our approach, let us consider
some conditions under which VD(P) is orphan-free.
Disconnectedness of a Voronoi cell in VD(P) means
that the corresponding m-dimensional polyhedral cell
in the Euclidean Voronoi diagram intersects the em-
bedding surface more than once.
Clearly, VD(P) is orphan-free in the case m = 2,

since x(u, v) then is a smooth one-to-one embedding
into R

2, and the Euclidean Voronoi diagram is always
orphan-free. We further have:

Lemma 8 Let m = 3, and assume that x(u, v) is
C2-smooth. If the set of sites x(P) is a 0.18-sample
of the surface X = x(R2), then the resulting dia-
gram VD(P) is orphan-free.

Proof. It is sufficient to show that each Voronoi
cell V i(Px) of the Euclidean Voronoi diagram V (Px)
in R

3 intersects the embedding x(u, v) in a topologi-
cal disk. Since x(u, v) is a C2-smooth embedding into
R

3, and x(P) is a 0.18-sample of X, we can apply
Lemma 3.10 in [6], which exactly states the desired
fact. �

6 Examples

Consider the two distance graphs shown in Figure 1.
For both graphs we have constructed embeddings
into R

3. Voronoi diagrams have been generated for
the resulting approximating SEG metrics, for a set of
uniformly distributed sites.
Two more involved distance graphs are depicted in

Figure 2. To obtain SEG metrics with accurrate ap-
proximations, we have generated spline embeddings
into R

5 and R
7, respectively. The obtained SEG met-

ric Voronoi diagrams are shown for a set of uniformly
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Figure 1: (a) Distance graphs; (b) Embeddings into
R

3; (c) Examples of SEG metric Voronoi diagrams.
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Figure 2: (a) Distance graphs; (b) and (c) Examples
of SEG metric Voronoi diagrams.

distributed sites in (b), and for a set of non-uniformly
distributed sites in (c). Occurring orphans are indi-
cated by arrows.

7 Conclusion

We have introduced the concept of scaled embedding-
generated (SEG) metrics, and have studied some of
their properties. SEG metrics are a versatile tool for
reflecting the anisotropy specified by distance graphs
in the plane. Also, they lead to a new type of gener-
alized Voronoi diagram in R

2 in a canonical way.
As a possible application of our framework, we

could generate a metric, which gives us the time of
travel between cities. For the construction of the as-
sociated spline embedding, only a small number of
selected times would be needed.
Various questions remain open, for example, con-

ditions under which Voronoi cells are connected (or
simply connected), if the embedding is in dimensions
higher than 3; cf. the results in [4, 5]. In the non-
orphan-free case, bounds on the number of connected
Voronoi sub-cells are of interest.
Instead of the Voronoi diagram, also the medial axis

for shapes with respect to the generalized disks de-
fined by the new metric is worth studying.
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