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Abstract

We introduce layered Reeb graphs as a representation
for the topological structure of Reeb spaces and sketch
a boundary-based algorithm for computing them.

1 Introduction

Reeb graphs are topological graphs originating in
Morse theory, which represent the topological struc-
ture of a Riemannian manifold based on a scalar-
valued, sufficiently smooth function defined on it (see
[1] for an introduction). The use of more than one
function leads to Reeb spaces, which are thus able
to capture more features of an object. Reeb spaces
were considered in 2008 [4], but appear to be little
researched by now, especially Reeb spaces for mani-
folds with boundary. In the first part of this work, we
introduce the layered Reeb graph as a discrete repre-
sentation for Reeb spaces of 3-manifolds with respect
to two scalar-valued functions. After that we present
a restricted class of defining functions, for which the
layered Reeb graph can be computed from a bound-
ary representation of the spatial domain of interest.
This leads to substantial computational advantages if
the manifold is given in a boundary description, since
no volumetric description has to be constructed.

2 Definition of the layered Reeb graph

After defining Reeb graphs and -spaces, we present an
approach for computing Reeb graphs or -spaces by a
sweep algorithm. This motivates the definition of the
layered Reeb graph.

2.1 Reeb graphs and -spaces

Consider n scalar-valued functions f1, . . . , fn defined
on a d-manifold (or manifold with boundary) M . Any
subset of these functions defines level sets, where all
these functions have constant values. Connected parts
of M on the same level set are called level set compo-
nents.

Definition 1 Points where level set components of
all functions f1, . . . , fn or components of their bound-
ary meet or disappear are called critical, all other
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points are regular. Contracting every level set com-
ponent to a point gives the Reeb space of M with
respect to f1, . . . , fn. In the special case of n = 1 we
speak of a Reeb graph.

In the following, we will only consider three special
cases of this definition:

• Reeb graph of a 2-manifold (Figures 1 and 2b),

• Reeb graph of a 3-manifold (Figures 2c-d), and

• Reeb space of a 3-manifold with respect to two
functions (Figure 3).

Figure 1: Reeb graph of a 2-manifold with boundary
in the plane with respect to the height function, which
maps each point to its last Cartesian coordinate.
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Figure 2: Reeb graphs of manifolds in space with re-
spect to the height function. (a) The object: sphere
with a bowl-shaped void. (b) Reeb graph of the sur-
face considered as 2-manifold in space. (c) Reeb graph
of the object. (d) Reeb graph of the air-volume sur-
rounding the object.
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Figure 3: Reeb space of a vertical pipe with respect
to the z and y- coordinate. Middle: Lines in the hor-
izontal cut show common level sets. Right: Structure
of the resulting Reeb space.
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2.2 Sweep algorithm for computing Reeb spaces

In the remainder of this paper, we consider two suf-
ficiently smooth, scalar-valued functions f and g on
R3, and a 3-manifold M with boundary embedded in
R3. We are interested in the Reeb space with respect
to (f1, f2) with f1 = f |M and f2 = g|M .

Consider a level set of f at function value f = c,
and the restriction gc of g onto this level set. The
Reeb graph of the level set f = c (considered as a 2-
manifold with boundary) with respect to gc contracts
all those points of the level set with the same gc-value.
We denote these Reeb graphs as level set Reeb graphs.

A point of a level set Reeb graph thus represents
a connected component of points of M which are
mapped to the same value both by f and g. Sweeping
through the level sets of f and continually connecting
subsequent level set Reeb graphs gives the Reeb space
of M with respect to (f, g).

This motivates the following algorithm for the com-
putation of Reeb spaces: First, identify those points of
M where changes occur in the structure of level sets of
f or of their level set Reeb graphs. We will call these
points events in the following. Then, sweep through
the level sets of f . At each event, find the level set
components in which changes occur, and update their
level set Reeb graphs. These can be computed by a
sweep inside the level set.

2.3 The layered Reeb graph

Consider the Reeb graph of M with respect to f . An
arc of this graph represents an evolving level set com-
ponent of f . This component’s level set Reeb graph
goes through structural changes only at certain event
points. In the layered Reeb graph, the original Reeb
graph arc is divided at these events, and each part
stores its level set Reeb graph, see Figure 4.

Figure 4: Layered Reeb graph. Left: vertical cut
through a 3-manifold. Middle: level sets of f . Right:
layered Reeb graph.

Definition 2 The layered Reeb graph of a 3-
manifold M with boundary with respect to two suf-
ficiently smooth, scalar-valued functions f and g is
obtained as follows. Take the Reeb graph with re-
spect to the first function f and subdivide each arc
into parts of level set Reeb graphs with equivalent

topological structure. Then enhance these parts by
adding their level set’s Reeb graphs with respect to g
as a secondary structure.

3 Boundary-based computation of layered Reeb
graphs

Several algorithms are described in the literature
which compute the Reeb graph of a surface for a
given surface description or the Reeb graph of a three-
dimensional domain for a given volumetric descrip-
tion (like e.g. [8, 2, 6]). These algorithms typically
allow for a rather general choice of defining functions.
In this section we will restrict the defining functions
such that the layered Reeb graph of a 3-manifold with
boundary can be computed using only a boundary
description of this manifold. This leads to computa-
tional advantages if the manifold is given in a bound-
ary description, since no volumetric description has
to be constructed. Additionally, it is thus possible
to compute the layered Reeb graph of an unbounded
manifold, for which the construction of a volumetric
description may impose problems.

3.1 Feasible functions

The defining function for a Reeb graph has to meet
two basic requirements:

(i) Firstly, it has to be possible to identify all the
critical points, where structural changes in the
level sets occur, using only function values on the
boundary. This excludes the existence of local
extrema or saddle points inside the considered
manifold, see Figure 5.

(ii) Secondly, it should be possible to reconstruct the
full structure of a level set knowing only the inter-
section of the level set with the manifold’s bound-
ary. This will become clearer in the following
sections.

�

� �

�

�

HaL

�

�

�

�

�

HbL

� �

�

�

�

�

HcL

Figure 5: Contours of the function (x, y)→ xy consid-
ered on planar 2-manifolds M with boundary. Critical
points are marked by crosses. (a) forbidden: the ori-
gin is a critical point inside M . (b) forbidden: the
origin is a critical point, but a regular point on the
boundary. (c) allowed: all critical points on M are
local minima or maxima on the boundary.
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Feasibility of the first function

The first function f has to allow the computation of
a Reeb graph of the 3-manifold M . For the Reeb
graph of a 3-manifold, the considered level sets are,
in general, surfaces.

Critical points (or curves) that are not induced by
the boundary may occur where these level set sur-
faces touch each other or contract to a point. Since
these cases are characterized by a zero gradient, we
prescribe ∇f 6= 0 to meet requirement (i).

The intersection of the level set surface with the
manifold’s boundary consists, in general, of closed
curves. For requirement (ii), we need to be able
to identify the relative positions of such boundary
curves. Additionally, we need to know whether the in-
side or outside of such a curve is part of the considered
level set. This can be deduced from the curve’s ori-
entation, provided that the boundary curves be com-
puted in a certain orientation derived from the man-
ifold’s surface orientation. Using these two basic op-
erations, the full structure of a level set can be recon-
structed from the computed boundary curves. This
is also a prerequisite of computing the Reeb graph
of a level set component with respect to the second
function.

This second requirement is fulfilled by functions for
whose level sets a regular parametrization is known.
Then, the two basic operations mentioned in the
last paragraph can be reduced to operations in the
level set’s parameter domain. For instance, if an-
other sufficiently smooth functions h is given such
that ∇g × ∇h = λ ∇f for some scalar field λ > 0,
then g and h can be used as parameter functions on
any level set of f , see Figure 6a.

Feasibility of the second function

The second function g is used to compute the Reeb
graph of a level set surface of f . So, for every value c of
f , the restriction gc of g to the level set f = c needs to
meet the two basic requirements for the computation
of a Reeb graph.

Consider requirement (i), i.e., that critical points
are determined by the function values on the mani-
fold’s boundary. The level sets of gc are now, in gen-
eral, curves. They are formed by the intersection of
level set surfaces of f and g, and thus have the tan-
gential direction ∇f ×∇g. Critical points inside the
manifold occur if these level set curves touch or col-
lapse to a point, which may happen only if the gradi-
ents of f and g are linearly dependent. So in order to
meet the first requirement, we assume ∇f ×∇g 6= 0.

For requirement (ii), we need to be able to recon-
struct the structure of a level set from its boundary,
e.g. in order to determine which level set component
a critical point belongs to, while sweeping through
the level sets of gc. The level sets of gc consist of

segments on a curve, and their boundaries are simply
points. We consider again the auxiliary function h,
which is then monotonic along the level set of gc, see
Figure 6b. Then the curve endpoints can be sorted by
their h-values, and intervals between them form level
set components.
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Figure 6: (a) Parametrization (g, h) of f -level sets.
(b) Monotonic function h on level sets of g|{f=c}.

Summary

Summing up we arrive at the following observation.

Lemma 1 Assume ∇f × ∇g 6= 0. Additionally, as-
sume that another function h is available such that
∇h ×∇g = λ ∇f for some scalar field λ > 0. Then,
the layered Reeb graph with respect to f and g is
determined by function values of f, g and h on the
boundary of M .

Proof. According to the observations in the previous
sections, critical points of f and gc on M that are not
determined by function values on the boundary are
excluded by ∇f 6= 0 and ∇f ×∇g 6= 0, respectively.
Using the additional function h, the level sets of f
can be equipped with a regular parametrization (g, h).
Additionally, h is monotonic along the level sets of gc.
So all in all, requirements (i) and (ii) are met both for
f and g|{f=c} �

3.2 Relation to Jacobi sets

Consider the critical points induced by the boundary.
A boundary point p can only cause a change in the
level set component if the functions’ common level set
touches the boundary in p without intersection. With
N denoting the surface normal vector of M , these
points are characterized by (∇f ×∇g) ·N = 0, since
∇f ×∇g is the tangent direction of the level set of f
and g. This leads to a connection to the Jacobi set of
the functions’ restrictions to the manifold’s surface,
as defined in [3].

Definition 3 ([3]) The Jacobi set of two smooth
functions ϕ and ψ on a surface consists of all points
with ∇ϕ × ∇ψ = 0, with ∇ denoting the gradient
operator on the surface.
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We get the following relation between Reeb spaces
and Jacobi sets.

Lemma 2 Let f̄ and ḡ denote the restrictions of f
and g to the boundary of M . Then, the critical points
of (f, g) which are induced by the boundary of M form
the Jacobi set of f̄ and ḡ.

Proof. Let ∇̄ denote the gradient operator with re-
spect to the boundary surface. For points on the Ja-
cobi set, the gradients ∇̄f̄ and ∇̄ḡ are linearly depen-
dent vectors in the boundary surface’s tangent plane.
Together with the surface normal vector N they de-
fine a plane ε, see Figure 7. Since ∇f and ∇g consist
of ∇̄f and ∇̄ḡ, respectively, and components in the
direction of N , they are also contained in ε. There-
fore, (∇f ×∇g) ·N = 0, which characterizes a critical
point of (f, g) induced by the boundary of M . The
argumentation works analogously in the other direc-
tion. �
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Figure 7: In critical points, gradients of f and g are
coplanar with the surface normal vector N .

According to [3], the Jacobi sets of two functions de-
fined on a surface are in general curves, so the critical
points of f and g form curves on the manifold’s sur-
face. While sweeping through level sets of f , changes
in the level set Reeb graphs thus occur at crossing
points of these Jacobi curves, or at local extrema of
the surface, which form monotonicity changes of Ja-
cobi curves with respect to f . So the events to be con-
sidered in the sweep are crossing- and monotonicity-
changing points of the Jacobi curves of f and g.

3.3 Realization

The double-layered sweep algorithm sketched in the
last paragraph of section 2.2 has been implemented
for manifolds given by a triangular surface mesh, ex-
tending the algorithm for Reeb graphs as presented in
[7]. We consider the piecewise linear approximations
of the defining functions, as induced by the triangular
mesh. If the mesh is fine enough compared to curva-
tures of the surface and the defining functions, the
gradients of the piecewise linear approximation will
approximate the smooth gradients sufficiently well.

In this setting, all critical points occur on edges
of the surface mesh, so the Jacobi curves consist of
mesh-edges. Using the criterion presented in [3], each
edge is tested whether it is part of the Jacobi set or
not. Additionally, boundary curves of the level sets of
f are polygons, which can be computed and handled
efficiently.

Conclusion

We presented a discrete representation for Reeb
spaces of 3-manifolds with boundary with respect to
two scalar-valued functions, the layered Reeb graph.
Furthermore we introduced restrictions on the defin-
ing functions, which allow the layered Reeb graph
to be computed from a boundary description of the
manifold. In the next step, we seek to find a geo-
metrically meaningful embedding of the Reeb space
of a 3-manifold with respect to two functions into
space. This leads to a topological skeleton of the 3-
manifold, which promises to be more efficiently com-
putable than, for example, the manifold’s medial axis.
The freedom in the choice of defining functions allows
a customization of such a Reeb skeleton to give opti-
mized results for given manifold.
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