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Abstract

This paper is motivated by the representation of the test functions in Isogeometric
Analysis (IgA). IgA is a numerical method that uses the NURBS-based representation of
a CAD model to generate the finite-dimensional space of test functions which is used for
the simulation. More precisely, the test functions are obtained by composing the inverse
of the geometry mapping with the NURBS basis functions. We derive a representation
of the derivatives of these test functions in NURBS form.

More precisely, given a (possibly piecewise) rational geometry mapping and rational
test functions defined on it, we present a method to compute the derivatives of the test
functions with respect to the global coordinate system. The derivatives are again given
as a rational function defined on the rational geometry mapping. All computations can
be described compactly using homogeneous coordinates.

We then use these results to derive conditions on the isogeometric test functions which
guarantee Ck smoothness, in particular for the interesting case of singularly parametrized
domains. The conditions depend heavily on the given geometry mapping. We present C0,
C1 and C2 smoothness results for a special class of singularly parametrized domains in
R

2 and compare them with existing H1 and H2 regularity results. The framework can
be applied to all types of singularities and to derivatives of higher order.

1. Introduction

This work has been motivated by the isogeometric method, introduced by Hughes et al.
(2005). Isogeometric analysis (IgA) directly uses the NURBS based representation of a
CAD model to construct a test function space for numerical simulations. An isogeometric
test function is the composition of a NURBS function with the inverse of the geometry
mapping.

In many applications of IgA, the isogeometric test functions are used to perform the
discretization of a partial differential equation on the physical domain. Consequently, it
is necessary to evaluate the derivatives of the test functions. Fast and stable algorithms
to compute the derivatives are of vital interest. As the main contribution of our paper,
we provide a simple closed-form representation for the derivatives of the isogeometric
test functions as parametric surface patches.

Contributions to the theoretical background of IgA include the numerical analysis
concerning consistency and stability of the method Hughes et al. (2010), Echter & Bischoff
(2010), Cottrell et al. (2007). The case of singularly parametrized domains is not covered
by these general results; hence it has to be treated separately.

We consider singularly parametrized domains, since they are particularly useful for
modeling of physical domains of general shape. Two dimensional NURBS possess a
tensor-product structure, hence they can only describe quadrangular domains directly
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without the use of singularities. However, the smoothness of the test functions might be
reduced due to the presence of a singularity.
We derive a representation of the derivatives and present conditions on the test func-

tions that guarantee smoothness in the presence of singularities. Related results con-
cerning the smoothness of rational singular Bézier patches can be found in Bohl & Reif
(1997), Sederberg et al. (2011). Our approach provides a systematic approach to derive
conditions which characterize smoothness of arbitrary order for singular surface patches.
The remainder of the paper is organized as follows. We begin with a short introduc-

tion to isogeometric analysis in Section 2.1. The remaining parts of Section 2 recall the
homogeneous representation of rational Bézier patches and specify the notation used in
the following. Section 3 presents an algorithmic approach to compute the derivatives of
functions on rational patches with respect to the coordinates in the physical domain.
In Section 4 we define a special class of singularly parametrized patches and present an
algorithmic approach to analyze the Ck smoothness properties of the isogeometric test
functions on this class of singular mappings. Finally we compare the Ck smoothness
conditions with the Hk regularity conditions of the test functions presented in Takacs &
Jüttler (2011), Takacs & Jüttler (2012).

2. Preliminaries

We start with a short introduction to the isogeometric method, which is the motiva-
tion for our work. Then we recall the notion of rational Bézier patches in homogeneous
coordinates, which serves as the model case that we consider from now on.

2.1. Motivation: Isogeometric analysis

Isogeometric analysis (IgA) is an approach to solve partial differential equations on ge-
ometries derived from CAD systems. Since we are considering surface patches we restrict
ourselves to the two-dimensional case. Nonetheless, the isogeometric method can be ap-
plied for domains in higher dimensions in a similar fashion.
The physical domain Ω ⊂ R

2 is parametrized by piecewise rational (i.e. NURBS)
functions over some parameter space B ⊂ R

2, which is typically a box. This geometry
mapping takes the form

G(u) =
∑

i

Pi ri,d(u), u ∈ B

with NURBS basis functions ri,d of degree d = (d1, d2) and control points Pi. For details
on rational B-splines and their applications in computer aided geometric design we refer
to Hoschek & Lasser (1993), Piegl & Tiller (1995), Prautzsch, Boehm & Paluszny (2002).
A finite-dimensional space of test functions Vh is defined to serve as a solution space for

the discretized physical problem on Ω. The basis functions spanning Vh are constructed
from the same rational B-spline (NURBS) function space as the geometry mapping.
Let G satisfying G(B) = Ω be a mapping which is bijective in the interior of the

domain. The space of isogeometric test functions on the physical domain is given by

Vh = span
i∈I

{̺i,d} , (2.1)

where I is a suitable index set and the functions spanning Vh are defined by

̺i,d : Ω → R : (x, y) 7→ (ri,d ◦G−1)(x, y).

Here the functions ri,d form a basis for the NURBS function space Nh. In the context of
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B
Ω

G =
∑

i
Piri,d

ri,d ̺i,d
R

Figure 1. Two-dimensional geometry mapping G with parameter domain B, physical domain
Ω and basis functions ri,d and ̺i,d

isogeometric analysis the components of G are functions from the same NURBS space
Nh. Figure 1 summarizes these definitions of the functions G, ri,d and ̺i,d.
For many applications, such as solving partial differential equations numerically or reg-

ularizing solutions of partial differential equations, it is necessary to compute derivatives
of the functions ϕ ∈ Vh,

ϕ(x, y) =
∑

i

fi ̺i,d(x, y),

which are obtained as linear combinations of the functions ̺i,d with certain real coeffi-
cients fi. We present a construction of a (piecewise) rational Bézier representation for
the derivatives

(∂xϕ)(x, y) =
∂ϕ

∂x
(x, y) and (∂yϕ)(x, y) =

∂ϕ

∂y
(x, y)

of these functions in Section 3. Special attention will be paid to the case of a singular
mapping G which shall be discussed in Section 4.

2.2. Rational functions and homogeneous coordinates

Since we consider rational B-spline functions we can take advantage of the concept of
homogeneous coordinates.

Definition 1. Every point x = [x1, . . . , xn]
T in R

n can be represented in homogeneous
coordinates by

x̃ = (x̃0, x̃1, . . . , x̃n)
T ∈ R

n+1\
{

(0, 0, . . . , 0)T
}

,

where any two points x and y are identical if and only if the homogeneous coordinate
vectors x̃ and ỹ are linearly dependent. We shall denote this equivalence relation on the
space of homogeneous coordinate vectors by

x̃
.
= ỹ.

We extend this equivalence relation to Cartesian coordinate vectors by identifying every
Cartesian coordinate vector with a special homogeneous coordinate vector via

[x1, . . . , xn]
T = (1, x1, . . . , xn)

T . (2.2)

We shall use square brackets [· · · ] and standard brackets (· · · ) to identify Cartesian and
homogeneous coordinate vectors, respectively.

Given a vector x̃ ∈ R
n+1, we need to distinguish three cases. Either

• x̃ is the homogeneous coordinate vector of a (finite) point, i.e. x̃0 6= 0,
• x̃ is the homogeneous coordinate vector of a point at infinity, i.e. x̃0 = 0 and ‖x̃‖ 6= 0,

or
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• x̃ is a basepoint, i.e. x̃ = (0, . . . , 0)T .

There is a well-known connection between rational parametrizations in Cartesian co-
ordinates and polynomial parametrizations in homogeneous coordinates, since we have
that

[x1(u)/x0(u), . . . , xn(u)/x0(u)]
T .
= (x0(u), x1(u), . . . , xn(u))

T
,

where u ∈ B ⊂ R
2 is the parameter and the coordinate functions xi are polynomials.

2.3. NURBS and rational Bézier patches in IgA

In the following analysis we restrict ourselves to the case of rational Bézier patches
in homogeneous coordinates. From this we can conclude results for general NURBS
parametrizations using knot insertion and subdivision into rational Bézier segments.
In the context of T-splines in IgA, the subdivision into Bézier segments is discussed in
Borden et al. (2011).
Considering the case of a single bivariate Bézier patch we assume that the domain Ω

is parametrized by a rational function G : B → Ω with

G(u)
.
=

∑

i∈I





wi

Xi

Yi



 bi,d(u), (2.3)

where

I =
{

i ∈ (Z+)
2
: 0 ≤ i ≤ d

}

and u ∈ B = ]0, 1[
2
.

The functions bi,d (u) are tensor product Bernstein polynomials of degree d with

b(i1,i2),(d1,d2)(u1, u2) =

(

d1
i1

)

ui1
1 (1− u1)

d1−i1

(

d2
i2

)

ui2
2 (1 − u2)

d2−i2

where i = (i1, i2), d = (d1, d2) and u = (u1, u2).

3. Derivatives of functions on rational patches

We present an analytic representation of the derivatives of functions on rational Bézier
patches in homogeneous coordinates.

3.1. Representing functions in homogeneous coordinates

In the following we consider a function ϕ which is defined on the domain Ω via

ϕ(x, y) = (

(

f

ω

)

◦G−1)(x, y), (3.1)

where G is the geometry mapping

G(u)
.
= (ω(u), X(u), Y (u))

T
, (3.2)

as in (2.3). The denominator ω appearing in (3.1) is the same as the denominator of the
geometry mapping.

Following the isogeometric approach, the function f is represented in the same basis
as the geometry mapping, i.e. f is specified as

f(u) =
∑

i∈I

fibi,d(u).
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G =
∑

(wi, Xi, Yi)
T bi,d

F =
∑

(wi, Xi, Yi, fi)
T bi,d

Figure 2. Example for a parametric rational surface patch as in (3.3) with corresponding
control point grid

The function f/ω on the parameter domain B satisfies

f(u)

ω(u)
= ϕ

(

X(u)

ω(u)
,
Y (u)

ω(u)

)

.

The function is represented via
[

f(u)

ω(u)

]

=

(

1
f(u)/ω(u)

)

.
=

∑

i∈I

(

wi

fi

)

bi,d(u) =

(

ω(u)
f(u)

)

.

Note that we have used the equivalence (2.2) of homogeneous and cartesian coordinates
for n = 1 to formulate this equation.
By combining the function f and the geometry mapping G,

F(u) =
∑

i∈I









wi

Xi

Yi

fi









bi,d(u) (3.3)

we represent the graph of the function ϕ (which depends on x = (x, y)) as a parametric
rational surface patch with parameters u. Figure 2 presents an example of such a para-
metric rational surface patch. It visualizes the surface in R

3, the underlying domain in
R

2, as well as their corresponding control point grids.
Using this representation we specified the function space Vh from (2.1), which con-

sists of linear combinations of isogeometric basis functions with certain coefficients fi.
In particular, we may recover the isogeometric basis functions, ϕ = ̺k,d, by choosing

Kronecker-type coefficients, fi = wiδ
k
i for i ∈ I. Here δki = δk1

i1
δk2

i2
is the Kronecker delta

for double indices.
Note that the functions ϕ ∈ Vh, the graph surface F as in (3.3), and the coefficient

matrix F̂ = (fi)i∈I all represent the same mathematical object.

3.2. Derivatives of functions in homogeneous coordinates

The following theorem gives a homogeneous Bézier representation of the derivatives of
a function ϕ. To simplify the notation we write ∂k instead of ∂/∂uk. Moreover we omit



Derivatives of Isogeometric Test Functions 6

the argument of the functions and we denote with V[i] the i-th component of the vector
V, where the indices of homogeneous coordinate vectors run from 0 to n.

Theorem 1. Given a function ϕ whose graph is represented via (3.3). Then the graphs
of the partial derivatives ∂xϕ and ∂yϕ are described by the parametric surfaces

DxF = (ωJ, XJ, Y J, ωHx · (∂1H
x × ∂2H

x))T (3.4)

and

DyF = (ωJ, XJ, Y J, ωHy · (∂1H
y × ∂2H

y))T (3.5)

respectively, where J = G · (∂1G × ∂2G), G = (ω,X, Y )T , Hx = (ω, f, Y )T and Hy =
(ω,X, f)T . Thus, the derivatives satisfy

(∂xϕ)

(

X

ω
,
Y

ω

)

=
(DxF)[3]

(DxF)[0]
and (∂yϕ)

(

X

ω
,
Y

ω

)

=
(DyF)[3]

(DyF)[0]
.

We denote with Dx and Dy the operators mapping F onto the right hand side of (3.4)
and (3.5), respectively.

Proof. Since ϕ ◦G = f we have

∇uf = (∇uG)T (∇ϕ)(G),

where ∇u denotes the gradient with respect to u and ∇ denotes the gradient with respect
to x. After a short calculation we arrive at

(∇ϕ)(G) = (∇uG)−T∇uf =
1

J

(

Hx · (∂1Hx × ∂2H
x)

Hy · (∂1Hy × ∂2H
y)

)

.

This leads to
[

X

ω
,
Y

ω
, (∂xϕ) ◦G

]T
.
= (ωJ, XJ, Y J, ωHx · (∂1H

x × ∂2H
x))

T
.

A similar representation can be derived for ∂yϕ.

Consequently, we consider a function ϕ whose graph surface is described by a para-
metric representation F, i.e.,

F
.
= [x, y, ϕ]

T

then we can compute a similar representation for the graph surface of its partial deriva-
tives, i.e.

DxF
.
= [x, y, ∂xϕ]

T and DyF
.
= [x, y, ∂yϕ]

T .

An analysis of the degrees of the rational parametric representations leads to the following
result.

Corollary 1. If F has a NURBS representation of degree d = (d1, d2), then DxF

and DyF have a NURBS representation of degree 4d− 1 = (4d1 − 1, 4d2 − 1). However,
if we consider (non-rational) B-splines of degree d, i.e. ω ≡ 1, then DxF and DyF have
a NURBS representation of degree 3d − 1. In all cases, the control points of DxF and
DyF depend linearly on the coefficients fi.

Proof. This corollary is a direct consequence of Theorem 1. The linear dependence on
the coefficients fi follows directly from the linearity of the differentiation operator.
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F(0,2)F(0,2)F(0,2)F(0,0)F(0,0)F(0,0)

F(2,0)F(2,0)F(2,0) F(2,2)F(2,2)F(2,2)

Figure 3. Control point grid and patch (left) for the example in Section 3.3 and of the first
derivative (right).

If F is represented via control points

Fi = (wi, Xi, Yi, fi)
T for i ∈ I,

then we define the control points for DxF as

Fx
i = (wx

i , X
x
i , Y

x
i , fx

i )
T for i ∈ I =

{

i ∈ Z
2 : 0 ≤ i ≤ 4d− 1

}

. (3.6)

A similar notation is used forDyF where we obtain control points Fy
i . Note that w

x
i = wy

i ,
Xx

i = Xy
i , Y

x
i = Y y

i , but f
x
i 6= fy

i in general.
It should be noted that the graphs of the first derivatives of a function represented

by polynomial parametric surfaces are (almost) always rational surfaces. The presented
computation of the derivatives can be applied iteratively to compute higher order deriva-
tives. For instance, in order to compute the second order partial derivatives we apply the
operator twice, leading to

DxDxF
.
=

[

x, y,
∂2ϕ

∂x2

]T

, etc.

These surfaces representing the graphs of second order derivatives possess a Bézier rep-
resentation of degree 4(4d− 1)− 1.

3.3. An example

We demonstrate the influence of the coefficients fi on the control points of DxF by a
simple example. Consider the biquadratic patch F shown in Figure 3 (left) whose control
points are listed in the following table:

F(i,j) j = 0 j = 1 j = 2

i = 0
(

1,−1, 1, f(0,0)
)T (

1, 0, 2, f(0,1)
)T (

1, 1, 1, f(0,2)
)T

i = 1
(

1,−2, 0, f(1,0)
)T (

1, 0, 0, f(1,1)
)T (

1, 2, 0, f(1,2)
)T

i = 2
(

1,−1,−1, f(2,0)
)T (

1, 0,−2, f(2,1)
)T (

1, 1,−1, f(2,2)
)T

Due to the symmetry of the patch we consider only the derivative with respect to x.
The control points of the patch DxF are shown on the right-hand side in Figure 3. Since
we have ω ≡ 1 the degree of the derivative reduces to (5, 5). The weights wx

i are listed
in the following table:

wx
(i,j) j = 0 j = 1 j = 2

i = 0 0 24
5

36
5

i = 1 24
5

192
25

228
25

i = 2 36
5

228
25

252
25
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Mx
(i,j) j = 0 j = 1 j = 2

i = 0





8 −4 0
−4 0 0
0 0 0









28
5

−

12
5

−

4
5

−

4
5

−

8
5

0
0 0 0









18
5

−

4
5

−2
2
5

−

4
5

−

2
5

0 0 0





i = 1





4 −

12
5

0
4
5

−

8
5

0
−

4
5

0 0









16
5

−

44
25

−

12
25

44
25

−

48
25

44
25

−

4
25

−

8
25

0









56
25

−

16
25

−

32
25

42
25

−

4
5

−

26
25

2
25

−

4
25

−

2
25





i = 2





6
5

−

6
5

0
16
5

−

12
5

0
−

2
5

−

2
5

0









36
25

−

6
5

−

6
25

76
25

−

52
25

−

12
25

8
25

−

18
25

−

2
25









6
5

−

12
25

−

18
25

58
25

−

4
25

−

34
25

12
25

−

8
25

−

8
25





Table 1. Some of the matrices Mx
(i,j) for the example in Section 3.3.

The weights for i > 2 or j > 2 can be derived from the symmetry of the patch. We can
write fx

j as the Frobenius inner product, which is defined by

A : B =
∑

k,ℓ

Ak,ℓBk,ℓ,

of a certain matrix Mx
j with the 3× 3-matrix of coefficients F̂ = (fi)0≤i≤d,

fx
j = Mx

j : F̂ ,

for j ∈ I =
{

j ∈ Z
2 : 0 ≤ j ≤ 5

}

. Table 1 lists some of the matrices Mx
j .

The remaining matrices are again similar, due to the symmetry of the patch. The
presented example shows that most of the matrices Mx

(i,j) are dense, this is due to the
fact that the support of each function ̺i,d, corresponding to fi, covers the whole domain
Ω. However, the matrices along the boundaries are not dense. Note also that the presented
patch is singular in the four corner points of the parameter domain.

For a particular choice of the coefficients fi the resulting patch for the derivative
contains basepoints at the corners of the parameter domain. Such patches are used in
Warren (1990) for the geometric design of more general, non-quadrangular, domains.

4. Isogeometric functions defined on singular patches

Given a rational patch with singular points, we use the previous results in order to analyze
the order of smoothness of the isogeometric functions which can be defined on these
patches. More precisely, we consider a rational geometry function G with denominator ω
as in (3.2). We assume ω(u) > 0 for all u ∈ B̄. Let det∇uG(u) ≥ 0 with det∇uG(u) = 0
if and only if u ∈ D0 ⊂ B̄. Consequently, D0 denotes the set of singular points of the
geometry mapping G.

4.1. General results

We investigate several general properties of functions on singular patches, without taking
into account the Bézier representation of the considered functions. Note that

J = ω3 det∇uG
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as defined in Theorem 1 is the Jacobian determinant ofG multiplied by a positive weight.
Since we assumed ω to be positive, the singularity of G can be classified based on an
analysis of the zero-set D0 of J.

Lemma 1. If G is a regular mapping, i.e. J(u) > 0 for all u ∈ B̄, then ϕ ∈ C∞(Ω̄)
for all ϕ ∈ Vh.

This is not always true for functions ϕ defined on singular mappings. The following
proposition provides a necessary condition for C1 smoothness.

Proposition 1. Consider a function ϕ ∈ Vh which corresponds to the rational para-
metric surface F. If there exists a u ∈ B̄ such that J(u) = 0 and

(DxF)[3](u) 6= 0 or (DyF)[3](u) 6= 0,

then ϕ 6∈ C1(Ω̄), where (D⋆F)[3] denotes the third component of D⋆F as in equation (3.4)
or (3.5).

Proof. The proof of this proposition follows directly from the properties of the function
space C1 and from Theorem 1.

For non-trivial function spaces Vh on singularly parametrized domains it is always
possible to construct such a function ϕ. Consequently, if singularities are present, then
C1 smoothness can be achieved only if both DxF and DyF possess basepoints at the
singular points, i.e., DxF(u) = DyF(u) = (0, 0, 0, 0)T for u ∈ D0.
In the following we consider a particular class of singularly parametrized patches and

analyze the derivatives of test functions defined on these singular patches. We identify
the class of functions for which the Bézier representation fulfills conditions ensuring C1

and C2 smoothness. In the presented case the smoothness properties can be analyzed
systematically. The analysis can be generalized to other classes of singular geometry
mappings, but this is beyond the scope of the present paper.

4.2. Model case: Collapsing edge

In this section we assume that one of the edges of the control grid collapses to a single
point.

Definition 2. Consider a function φ which is defined by a rational parametric surface
F with the control points

Fi = (wi, Xi, Yi, fi)
T

for i ∈ I. We assume that the weights satisfy wi > 0 for all i ∈ I and that

(Xi, Yi)
T
= 0 if and only if i ∈ I0,

where I0 = {(i, j) ∈ I : i = 0}. Furthermore, we assume that the mapping

u 7→ [X(u)/ω(u), Y (u)/ω(u)]T

is singular if and only if u ∈ D0 = {0} × [0, 1]. We say that such a function ϕ is a
function on an edge-degenerated patch.

Considering a patch with a degenerated edge we recall the well-known condition on
the control points that guarantees the continuity of the function.

Proposition 2. Let F be a parametric surface representing the graph of a function ϕ
on an edge-degenerated patch. Then the function ϕ ∈ Vh corresponding to F is continuous,
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i.e. ϕ ∈ C0(Ω), if and only if the control points Fi are linearly dependent for all i ∈ I0.
This is equivalent to

fi = λwi ∀ i ∈ I0

for some λ ∈ R.

This proposition is one ingredient for the higher order smoothness analysis of isoge-
ometric test functions. Another ingredient is described on the proposition below which
describes possible cancellation of basepoints. It can be used under the conditions formu-
lated in the following assumption.

Definition 3. Consider a parametric surface F with control points Fi for i ∈ I. It is
said to satisfy the cancellation assumption if

• all points Fi correspond to real points for i ∈ I\I0 and
• all points Fi be basepoints for i ∈ I0,

where I0 = {(i, j) ∈ I : i = 0}.

In this case the following fact is also well-known.

Lemma 2. Consider a function F of degree (d1, d2) which fulfills the cancellation as-
sumption. Then there exists a polynomial parametrization in homogeneous coordinates
F∗ = (1/u1)F of degree (d1 − 1, d2) with

F(u)
.
= F∗(u) =

1

u1
F(u).

where u = (u1, u2). The control points of F∗ depend linearly on the non-zero control
points of F. More precisely, we have that F∗

i−(1,0) = (d1/i1)Fi for i ∈ I\I0.

We can arrange the homogeneous control points Fi in a matrix of size (d1+1)×(d2+1).
The proposition states that if the first row of the matrix contains only basepoints, then
this row can be cancelled out entirely.
In order to analyze C1 smoothness of functions defined on singular mappings we need

some preparations. Let

F̂ =







f(0,0) · · · f(0,d2)

...
. . .

...
f(d1,0) · · · f(d1,d2)






(4.1)

be the matrix of all coefficients fi ∈ I. We know that the control points of DxF and DyF

depend linearly on the coefficients fi, hence we can find matrices Mx
i and My

i such that

Mx
j : F̂ = fx

j and My
j : F̂ = fy

j (4.2)

for j ∈ I = {(i, j) ∈ Z
2 : 0 ≤ (i, j) ≤ 4d− 1}. Now we can prove the following result.

Theorem 2. Consider a function ϕ ∈ Vh on an edge-degenerated patch and let F be
the parametrization of the graph surface, There exists a λx ∈ R, such that F̂ solves

Mx
i : F̂ = 0 for i ∈ I0 = {(0, j) ∈ I} and

Mx
j : F̂ = λxwx

j for j ∈ I1{(1, j) ∈ I} (4.3)

if and only if ∂xϕ ∈ C0(Ω̄). Hence ϕ ∈ C1(Ω̄) if and only if F̂ fulfills (4.3) for x and an
equivalent system for y. Note that the coefficients of the linear system (4.3) for F̂ and
λx are completely defined via equations (3.4), (3.5), (3.6) and (4.2) and the cancellation
described in Lemma 2.
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Proof. The representation derived in Theorem 1 leads to

DxF
.
= (ωJ, XJ, Y J, ωHx · (∂1H

x × ∂2H
x))

T
.

The control points fulfill Fx
i = (0, 0, 0, fx

i )
T for all i ∈ I0. Hence DxF fulfills the cancel-

lation assumption (Definition 3) if and only if fx
i = 0 for all i ∈ I0, which is equivalent

to

Mx
i : F̂ = 0 for i ∈ I0.

We now apply Lemma 2 and obtain a reduced function DxF/u1 which is again a function
on an edge-degenerated patch (Definition 2). Now we can apply Proposition 2 to the
reduced function, which gives the condition

fx
j = λxwx

j ,

for a certain constant λx and for all j ∈ I1. This is equivalent to

Mx
j : F̂ = λxwx

j ,

which concludes the proof.

This theorem can be applied to analyze higher order derivatives as well. To prove C2

smoothness one has to start with a homogeneous Bézier representation of ∂xϕ and ∂yϕ
and derive conditions for the second derivatives ∂2

xϕ, ∂x∂yϕ and ∂2
yϕ.

The presented results for C1 smoothness are equivalent to the well-known condition
that ϕ ∈ C1(Ω̄) if and only if all

Fi, for i ∈ {(i, j) ∈ I : 0 ≤ i ≤ 1} ,

lie in a common plane.
In the following we present examples of edge-degenerated patches as in Assumption 2

and derive C0, C1 and C2 smoothness conditions for general functions ϕ ∈ Vh.

4.3. Study of continuity on example patches

We present two example patches and compare the results. We start with a general bi-
quadratic patch in Example 1 and present a degree-elevated bilinear patch in Example
2.

Example 1. Consider a biquadratic patch (d = (2, 2)) with the control points listed
in the following table, where the coefficients f(i,j) ∈ R can be chosen arbitrarily.

F(i,j) j = 0 j = 1 j = 2

i = 0
(

1, 0, 0, f(0,0)
)T (

1, 0, 0, f(0,1)
)T (

1, 0, 0, f(0,2)
)T

i = 1
(

1, 12 , 0, f(1,0)
)T (

1, 1
2 ,

1
2 , f(1,1)

)T (

1, 0, 12 , f(1,2)
)T

i = 2
(

1, 1, 0, f(2,0)
)T (

1, 1, 1, f(2,1)
)T (

1, 0, 1, f(2,2)
)T

Figure 4 (left) shows the control point grid of this patch.
Let F̂ be the matrix of coefficients as in (4.1). It is clear that every matrix F̂ ∈ R

3×3

corresponds to a function ϕ ∈ Vh and vice versa.
In this case we have

J(u1, u2) = u1(2 − 2u2 + 2u2
2)

with zero set D0 = {u : u1 = 0}. Let ⋆ = x or ⋆ = y. The control points of the derivatives



Derivatives of Isogeometric Test Functions 12

F(0,j)F(0,j)F(0,j) F(2,0)F(2,0)F(2,0)

F(2,1)F(2,1)F(2,1)F(2,2)F(2,2)F(2,2)

F(0,j)F(0,j)F(0,j) F(2,0)F(2,0)F(2,0)

F(2,1)F(2,1)F(2,1)

F(2,2)F(2,2)F(2,2)

Figure 4. Control point grid for Example 1 (left) and 2 (right)

are listed in the following table:

D⋆F(i,j) j = 0 j = 1 . . . j = 7

i = 0 (0, 0, 0, ∗)T (0, 0, 0, ∗)T . . . (0, 0, 0, ∗)T

i = 1
(

2
7 , 0, 0, ∗

)T (

12
49 , 0, 0, ∗

)T
. . .

(

2
7 , 0, 0, ∗

)T
,

The remaining homogeneous control points (for i ≥ 2) correspond to finite points. Note
that the terms ∗ depend linearly on F̂ and, in general, depend on all components of F̂ .
In order to have well defined derivatives, the control points in the first row need to be
basepoints. Due to Lemma 2 this is equivalent to

Mx
i : F̂ = My

i : F̂ = 0 for i ∈ I0.

This system of equations can equivalently be rewritten as

f(0,0) = f(0,1) = f(0,2). (4.4)

Theorem 2 states that ϕ ∈ C1(Ω̄) is equivalent to F̂ solving (4.4) and additionally

f(0,0) + f(1,1) = f(1,0) + f(1,2). (4.5)

Hence the dimension of the solution space, which is the dimension of the space Vh ∩C1,
is 6.
Now we look at the C2 smoothness conditions. If we apply Theorem 2 to the derivatives

of ϕ we get that ϕ ∈ C2(Ω̄) is equivalent to F̂ being a solution of the system of linear
equations (4.4), (4.5) and additionally

2f(0,0) + f(2,0) + f(2,1) = 2f(1,0) + 2f(1,1)
2f(0,0) + 2f(1,1) + f(2,0) = 4f(1,0) + f(2,2).

Hence, the dimension of the space Vh ∩ C2 is only 4. The following example will show
that this dimension depends heavily on the given geometry mapping.

Example 2. Consider another biquadratic patch (d = (2, 2)) with the control points
listed in the following table:

F(i,j) j = 0 j = 1 j = 2

i = 0
(

1, 0, 0, f(0,0)
)T (

1, 0, 0, f(0,1)
)T (

1, 0, 0, f(0,2)
)T

i = 1
(

1, 12 , 0, f(1,0)
)T (

1, 12 ,
1
4 , f(1,1)

)T (

1, 12 ,
1
2 , f(1,2)

)T

i = 2
(

1, 1, 0, f(2,0)
)T (

1, 1, 12 , f(2,1)
)T (

1, 1, 1, f(2,2)
)T

Again, we consider arbitrary coefficients f(i,j) ∈ R. Note that this patch can be ob-
tained by applying degree elevation to a degenerate bilinear patch. Figure 4 (right) shows
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the grid of control points. Similar to Example 1 the condition ϕ ∈ C1(Ω̄) can be reduced
to

f(0,0) = f(0,1) = f(0,2)
f(1,0) + f(1,2) = 2f(1,1).

(4.6)

The conditions characterizing ϕ ∈ C2(Ω̄), however, do not give any additional equations
in this case! Hence, the dimensions of Vh ∩ C1 and of Vh ∩ C2 are both equal to 6. One
can even show that dim(Vh ∩ C∞) = 6 for Example 2, due to the fact that the patch is
actually a degree elevated bilinear patch.

4.4. Connection between Ck smoothness and Hk regularity

We conclude a direct connection between the presented Ck smoothness conditions and
the Hk regularity conditions. In Takacs & Jüttler (2011), Takacs & Jüttler (2012) we
analyzed the regularity of the isogeometric test functions in the presence of singularities
in the geometry mapping. In that case some of the functions ϕ may not fulfill ϕ ∈ H1(Ω)
or ϕ ∈ H2(Ω). These conditions are equivalent to the boundedness of the H1 seminorm

|ϕ|2H1(Ω) =

∫

Ω

(∂xϕ(x, y))
2
+ (∂yϕ(x, y))

2
d(x, y)

and the H2 seminorm

|ϕ|2H2(Ω) =

∫

Ω

(

∂2
xϕ(x, y)

)2
+ 2 (∂x∂yϕ(x, y))

2
+
(

∂2
yϕ(x, y)

)2
d(x, y)

of the isogeometric test function ϕ, respectively.
In the following we assume that the graph surface F is a polynomial patch, i.e. all

weights fulfill wi = 1. In this case we know the following.

Theorem 3 (Takacs & Jüttler (2012)). Let ϕ ∈ Vh be a function on an edge-
degenerated patch with homogeneous control points Fi. The function ϕ fulfills ϕ ∈ H1(Ω)
if and only if

Fi = Fj ∀i, j ∈ I0.

Furthermore, if all

Fi, i ∈ I0 ∪ I1 = {(i, j) : 0 ≤ i ≤ 1, 0 ≤ j ≤ d2} ,

lie in a common plane, then ϕ ∈ H2(Ω).

Proof. This is a direct consequence of Theorems 4.4 and 4.5 in Takacs & Jüttler
(2012).

If we compare these H1 and H2 regularity results with the C0 and C1 smoothness
results presented earlier, we get the following.

Corollary 2. Let ϕ ∈ Vh be a function on an edge-degenerated patch. Then ϕ ∈
Hk(Ω) if and only if ϕ ∈ Ck−1(Ω̄) for k = 1, 2.

Proof. For k = 1 this follows from Theorem 3 and Proposition 2. The inclusion
ϕ ∈ C1(Ω̄) ⇒ ϕ ∈ H2(Ω) follows from Theorem 3 and Proposition 2. We only give a
sketch of the proof for ϕ ∈ C1(Ω̄) ⇐ ϕ ∈ H2(Ω). Assume there exists a function ϕ 6∈ C1.
Without loss of generality ∂xϕ 6∈ C0, which leads to ∂xϕ 6∈ H1. This is equivalent to
either ∂x∂xϕ 6∈ L2 or ∂y∂xϕ 6∈ L2 which leads to ϕ 6∈ H2. In order to show ∂xϕ 6∈ C0 ⇒
∂xϕ 6∈ H1 it is necessary that the equivalence from Theorem 3 is also valid for general
weights, which was shown in Takacs & Jüttler (2011).
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The results presented here are related to the Sobolev embedding theorems for the
Sobolev spacesH1(Ω) = W 1,2(Ω) and H2(Ω) = W 2,2(Ω) (see Adams & Fournier (2003)).

5. Conclusion

In this paper we developed an analytic representation of the derivative of an isogeometric
test function on a rational patch in homogeneous coordinates. Given a function which
is described by a rational graph surface F which is obtained by adding a coordinate
to an existing geometry mapping G, we presented a simple and systematic method to
compute and to analyze the partial derivatives. This approach can be applied iteratively
to derivatives of higher order.
Using this algorithmic approach we specified conditions that guarantee the smooth-

ness of isogeometric functions. We presented C0, C1 and C2 smoothness results for a
certain class of singularly parametrized domains and compared them with existing H1

and H2 regularity results. Finally we applied the presented methods to two examples on
biquadratic patches, showing that the dimension of the spaces of smooth isogeometric
test functions depends heavily on the properties of the geometry mapping.
The presented framework can be generalized to other types of singularities and to

higher order derivatives. It may also be of interest to analyze the complexity and the
computational cost of the presented algorithms for general problems.
The presented method is a useful tool to analyze smoothness properties of general

isogeometric test functions. It may be of interest to apply the algorithm to other appli-
cations where a NURBS representation of the derivatives is needed. One can for instance
use the NURBS representation of the derivatives to generate an approximation of the
gradient of an isogeometric function. We are convinced that implementations of many ap-
plications in isogeometric analysis, where derivatives of functions are present, can benefit
substantially from using the operators Dx and Dy and exploiting their properties.
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