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Abstract

We present a new fairing method for planar curves, which is particularly well suited for the regularization of the medial

axis of a planar domain. It is based on the concept of total variation regularization. The original boundary (given as

a closed B-spline curve or several such curves for multiply connected domains) is approximated by another curve

that possesses a smaller number of curvature extrema. Consequently, the modified curve leads to a smaller number

of branches of the medial axis. In order to compute the medial axis, we use the state-of-the-art algorithm from [1]

which is based on arc spline approximation and a domain decomposition approach. We improve this algorithm by

using a different decomposition strategy that allows to reduce the number of base cases from 13 to only 5. Moreover,

the algorithm reduces the number of conic arcs in the output by approx. 50%.
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1. Introduction

The medial axis of a planar domain, which was in-

troduced in 1967 by Blum [2], is a highly useful con-

cept in geometry processing for describing the shape of

the domain in an efficient way. The range of possible

applications of the medial axis (transform) is huge and

includes shape recognition, path planning, mesh gener-

ation, offset curve trimming, and font design; cf. [3-7].

Depending on the type of the boundary representa-

tion of the domain, there exist different algorithms for

the construction of its medial axis. In case of curved

boundaries, the computation of the medial axis is a non-

trivial problem. Some existing algorithms performing

this computation are [1, 8, 9, 10, 11, 12]. In this work,

we will use a slightly improved version of the method

described in [1], which is based on domain decompo-

sition and an arc spline approximation of the given B-

spline boundary of the domain.

The medial axis of a connected planar domain is an

embedded planar graph, typically with curved edges.

For such a domain with a C2-smooth boundary (with

counter-clockwise orientation for the outer boundary,
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and clockwise orientation for boundaries of holes), each

leaf (i.e., each vertex of degree 1) of the medial axis

is induced by a local curvature maxima of the bound-

ary curve. More precisely, a curvature maxima gener-

ates a leaf if and only if the curvature is positive and

the osculating circle is contained in the interior of the

domain. Consequently, the number of leafs can be re-

duced by decreasing the number of curvature maxima

and by decreasing the values of the curvature at the re-

maining maxima. When considering a domain that is

bounded by a smooth curve with a high number of local

curvature maxima, the medial axis has a large number

of branches. Such complicated medial axes are not well

suited for certain applications, such as shape recogni-

tion. Regularization methods that lead to a simplified

medial axis are therefore of interest.

For instance, when a non-regularized medial axis is

used for object recognition in Computer Vision, this

may falsify the result of this operation. Similarly, when

it is used for “blocking” (segmentation) in the context

of quadrilateral mesh generation, then the structure of

the resulting mesh will be unnecessarily complicated.

The present paper addresses the following problem:

Consider a connected planar domain whose boundary

is given by one (or several) closed B-spline curve(s).

Due to the variations of the curvature (in particular the

number of extrema), the medial axis possesses a large
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Figure 1: (a) An example of a non-regularized medial axis of a simply

connected domain with a large number of branches. (b) The result-

ing regularized medial axis obtained by applying our regularization

method.
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from regularized MAT
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Figure 2: Direct and indirect method for medial axis regularization.

number of branches, see Figure 1 (a). We present a reg-

ularization method that simplifies this medial axis by

removing unwanted branches (leafs), see Figure 1 (b).

The existing methods for regularizing the medial axis

of a simply connected domain can roughly be classi-

fied into two approaches: direct and indirect methods.

Indirect methods simplify the boundary of the domain

to obtain a simpler medial axis, whereas direct meth-

ods deal with the initial medial axis to regularize it. The

main steps of both methods are summarized in Figure 2.

A group of direct methods are the so-called prun-

ing techniques. The amount of existing literature about

these methods is large. The papers [13] and [14] present

surveys of different existing pruning algorithms.

One such example is the method in [15], which de-

scribes a concept for computing a regularized medial

axis of a domain, called the λ-medial axis. The λ-medial

axis is a subset of the medial axis, which is homotopy

equivalent to the domain, provided that the parameter λ

is chosen sufficiently small. In some situations, how-

ever, the parameter λ has to be selected larger to obtain

a good pruning result, which would lead to a loss of im-

portant information of the medial axis about the shape

of the domain.

More generally, when using the pruning approach,

the direct geometric connection between the shape of

the domain and its medial axis is lost, since the simpli-

fied medial axis is no longer the medial axis of the given

domain, and sometimes (depending on which pruning

method is used) not even of a simplified domain derived

from it.

A direct method, which can usually overcome the

problem of losing important information of the medial

axis, is the concept of scale axis transform [16]. First,

the medial axis transform of the initial domain is com-

puted and is used to extend the domain by enlarging the

maximal disks by a factor s > 1. This extended domain

possesses now a simpler medial axis compared to the

initial one. By shrinking the maximal disks of the me-

dial axis transform of the extended domain by the same

factor s, a domain is obtained which is “close” to the ini-

tial one and having the same regularized medial axis as

the extended domain. This concept has been extended

to discrete three-dimensional shapes in [17].

For most direct techniques, the resulting error of the

simplified approximated domain can be controlled only

indirectly via simple parameters. A recently investi-

gated direct method, which possesses a direct control

of the error, is presented in [18]. The idea is to regu-

larize the medial axis by repeatedly removing endpoints

of the medial axis until the resulting one-sided Haus-

dorff distance is greater than some chosen tolerance.

Furthermore, the obtained medial axis is approximated

by several spline curves in such a way that the distance

between the boundary of the initial domain and of the

simplified domain is minimized.

Another disadvantage of direct techniques is that

most direct methods require the computation of the full

medial axis of the initial domain to be able to regular-

ize it. This is in contrast to indirect methods, where the

medial axis of the initial domain is not needed for its

simplification.

The class of indirect methods mainly consists of al-

gorithms for smoothing the boundary of the domain. A

smoothing algorithm that is suitable for medial axis reg-

ularization should reduce the number of local curvature

extrema, while keeping the resulting approximation er-

ror as small as possible.

The process of smoothing a B-spline curve with re-

spect to its curvature (“fairing”) has been studied thor-

oughly. The classical approach to fairing is based on the

minimization of the integral of the squared (first deriva-

tive of the) curvature or of the integral of the squared
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ℓ-th derivative of the given B-spline curve for comput-

ing the modified curve, ℓ = 2, 3, 4. Some examples are

[19-27] , which include local and global fairing meth-

ods.

For instance, Eck and Hadenfeld [19] describe a very

efficient iterative and local fairing algorithm. They min-

imize the integral of the squared ℓ-th derivative of the

given B-spline curve by modifying exactly one control

point in each iteration step. Since the resulting mini-

mization problem is linear, the method is fast and sim-

ple.

An example of a global fairing strategy is explained

in [21], where the so-called minimum variation curves

are constructed by minimizing the integral of the

squared first derivative of the curvature of the B-spline

curve.

A recent alternative approach for fairing a given

(spline) curve is explained in [28], where the curve is

approximated by piecewise clothoid curves.

The existing fairing methods, however, are not well

suited for the regularization of the medial axis, since the

number of remaining curvature maxima of the boundary

curve remains still too high after modifying the given

spline curve.

We present now a new fairing method which is es-

pecially tailored to the needs of medial axis regulariza-

tion. The algorithm has been inspired by the concept

of total variation regularization in image processing (cf.

[29, 30]). Similar to this approach, our fairing method

minimizes a linear combination of a least squares ap-

proximation term and the integral of the absolute value

of the first derivative of the curvature of the B-spline

curve. The latter term plays the role of the total varia-

tion term. The aim of our approach is to support the cre-

ation of fewer monotonic pieces of the curvature (i.e.,

spiral segments). This allows a substantial reduction of

the number of local curvature extrema (maxima) while

keeping the approximation error relatively small. Our

method is a global optimization strategy which uses the

gradient descent method for solving the minimization

problem.

Variational fairing methods for level set curves are

described in [31, 32, 33]. These algorithms are not di-

rectly applicable to B-spline curves and rely on the min-

imization of the arc length (or higher order functionals)

for smoothing.

The remainder of the paper is organized as follows.

We start with some basic definitions in Section 2. In par-

ticular, we introduce a class of simply connected planar

domains, whose boundaries are represented by closed

smooth B-spline curves. We also recall the concept of

medial axes and describe a method for the medial axis

computation. More precisely, we present an improved

version of the algorithm from [1] that will be used in our

work. In addition, we summarize the main idea of total

variation regularization which has originated in image

processing.

Section 3 presents a new method for fairing closed

B-spline curves by reducing the number of local curva-

ture extrema via total variation regularization. We com-

pare our fairing algorithm with the method of Eck and

Hadenfeld [19] (the “E&H method”). For this purpose

we demonstrate the effect of the two different fairing

algorithms by several examples. In order to make the

paper self-contained, the E&H method is summarized

in Appendix A.

Section 4 uses our method for fairing the boundary

curve of a domain to obtain a simplified structure of its

medial axis. We show a few examples of generated me-

dial axes for several domains and compare them again

with the results obtained by the E&H fairing method.

2. Preliminaries

We describe the class of connected planar domains

that will be considered in this work. Moreover, we give

a short overview of the concept of medial axes and ex-

plain the algorithm that we will use for medial axis com-

putation. Finally, we recall the concept of total variation

regularization which has originated in image process-

ing.

2.1. Basic definitions

Let Ω ⊂ R
2 be the closure of a connected bounded

open domain, whose boundary ∂Ω is described by one

(or several) regular, simple, and closed C3-smooth B-

spline curve(s) p of degree d ≥ 4. More precisely, the

curve p is given by the B-spline representation

p(t) =

m∑

i=0

Nd
i (t)ci, t ∈ [0, 1], (1)

with control points ci ∈ R
2 and m ≥ 2d − 1. The

basis functions (Nd
i
(t))i=0,...,m are B-splines of degree d

with respect to an increasing knot sequence T =

(ti)i=0,...,m+d+1 with td = 0 and tm+1 = 1. In order to

ensure a C3-connection at the closing point p(0) = p(1),

i.e.
dk

dtk
p(t)

∣
∣
∣
t=0
=

dk

dtk
p(t)

∣
∣
∣
t=1

for k ∈ {0, . . . , 3}, it suffices to require that the first d

control points coincide with the last d control points,

i.e.

ci = ci+m−d+1
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for i ∈ {0, . . . , d − 1}, and the knots satisfy

ti+1 − ti = tm+2+i − ti+m+1

for i ∈ {0, . . . , d − 1}.

An example of a domain Ω, whose boundary ∂Ω is

given by such a closed B-spline curve p, is shown in

Figure 3 (a).

We recall that the curvature κ of the (closed) B-spline

curve p is given by

κ(t) =
ṗ1(t) p̈2(t) − ṗ2(t) p̈1(t)

( ṗ2
1
(t) + ṗ2

2
(t))

3
2

, t ∈ [0, 1],

where p1 and p2 are the first and second coordinate

function of the curve p, respectively. The dots ˙ and ¨

denote the derivatives with respect to the curve param-

eter t. Since the B-spline curve p is regular and at least

C3-smooth, the curvature κ is at least C1.

Figure 4 (see also Examples 2 and 3 below) shows

three examples of planar domains, their curvature dis-

tribution, the medial axis, and the curvature distribution

of an arc spline approximation. (The latter approxima-

tion will be discussed later.)

2.2. Medial axis

We recall the notion of the medial axis, which was

introduced by Blum in [2].

A disk Dr(z) ⊂ R
2 with radius r > 0 and center z ∈

R
2 is the set

Dr(z) = {x ∈ R2| ||x − z|| ≤ r}.

We say that a disk Dr(z) ⊆ Ω, which is inscribed into

(i.e., contained in) Ω, is maximal, if there does not exist

another inscribed disk Dr̄(z̄) with Dr̄(z̄) , Dr(z) and

Dr̄(z̄) ⊆ Ω, which contains Dr(z), i.e. Dr(z) ⊂ Dr̄(z̄).

The set of all maximal inscribed disks Dr(z) ⊆ Ω is

called the medial axis transform of Ω and is denoted by

MAT(Ω). The medial axis of Ω, denoted by MA(Ω), is

simply the set of centers of all disks in MAT(Ω).

Equivalently, the medial axis MA(Ω) can be defined

as the (closure of the) set of all points in Ω, that have at

least two closest points on ∂Ω.

Our assumptions on the domain Ω imply that the

medial axis MA(Ω) is an embedded planar graph

with finitely many edges and vertices. In detail, the

edges are the bisector curves (branches) of the me-

dial axis MA(Ω). The internal vertices, which are also

called branching points, are the intersections of these

curves; and the non-internal vertices, which are also

called leafs, are induced by local curvature maxima of

the boundary curve p. Moreover, the branching points

are vertices of valency n ≥ 3 and the leafs are vertices

of valency one. Figure 3 (b) shows a simple example of

a medial axis of a simply connected domain, where the

three types of components (i.e. bisector curves, branch-

ing points and leafs) are identified.

Our strategy for the regularization of the medial axis

in Section 4 will be based on the approximation of the

boundary curve p by a curve with a smaller number of

local curvature maxima to reduce the complexity of the

medial axis, see Section 3. It should be noted, how-

ever, that some of the local curvature maxima of p do

not generate a leaf. More information about the theoret-

ical background of medial axes is available in the rich

literature on this topic, e.g. [4, 6, 34].

2.3. Computation of the medial axis

A fast and simple method for the medial axis compu-

tation of a simply connected domain is explained in [1].

It has later been extended to the case of planar domains

of general topology [35]. In this work, we will use

a modified algorithm for generating the medial axes,

which leads to a smaller number of base cases and a

reduced data volume.

As a preprocessing step, the boundary of the domain,

which is given by a simple closed B-spline curve p, is

approximated by spiral biarcs, see [36]. Boundary seg-

ments with vanishing curvature (line segments) are kept

unchanged. The use of spiral biarcs implies that the arc

spline approximation of the boundary preserves the lo-

cal curvature extrema of the initial boundary curve.

Figure 4 also shows the curvature distribution of the

arc spline approximation. The curvature is now piece-

wise constant, but the distribution of the extremal values

has been preserved due to the use of spiral biarcs.

Now, following the approach in [1], we use the ran-

domized Divide & Conquer algorithm medial-axis

for computing the exact medial axis of the approximated

boundary. It is based on the Domain Decomposition

Lemma from [4], which provides a tool for splitting the

domain into subdomains in such a way that the union of

the medial axes of the subdomains is the medial axis of

the whole domain.

In the divide step, a maximal disk D is chosen that

splits the boundary ∂Ω into k ≥ 2 chains. This is han-

dled by the algorithms maximal-disk for k = 2 and

maximal-disk* for k > 2. Then the chains are closed

with artificial arcs that lie on ∂D, which leads to new,

separate domains Ω0 . . .Ωk.

This disk D is constructed by randomly selecting a

curve b of the boundary and finding the maximal disk D

touching one of the endpoints of b instead of the mid-

dle point of b as suggested in [1]. In this way, b does
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Figure 3: (a) The boundary ∂Ω of the domain Ω is a closed B-spline curve p of degree 4 with 24 control points ci with uniform knots. (b) The

medial axis of the domain Ω consists of several components.

Input: Ω - simply connected planar domain

Output: axis - medial axis of the domain

1 if Ω is base case then

2 directly compute the medial axis of Ω

3 else

4 repeat

5 {b,y} = pair of curve of ∂Ω and

endpoint of b ;

6 D = maximal-disk(b,y,∂Ω) ;

7 until D is reducing ∨ there is no more

pair {b, y} left;

8 if D is non-reducing then

9 b̄ = neighbour curve of b ;

10 D = maximal-disk*(b,b̄,∂Ω) ;

11 end

12 k = number of tangent points on D ;

13 split Ω into Ω1 . . .Ωk ;

14 axis = {} ;

15 for i=1. . . k do

16 axis =

append(axis,medial-axis(Ωi)) ;

17 end

18 end

19 return axis ;

Algorithm 1: medial-axis

not have to be subdivided and therefore the number of

the newly introduced curves on the boundary is brought

down by one in each step. To ensure that this step re-

duces the size of the problem, each boundary ∂Ωi should

consist of less curves than the original boundary ∂Ω.

Disks which do not fulfill this condition are called “non-

Input: b, y, ∂Ω - curve of boundary,

endpoint of b, boundary

Output: D - maximal disk

1 D = half-plane tangent to b in y ;

2 k = number of curves on ∂Ω ;

3 for i = 1. . . k do

4 bi = i-th curve of ∂Ω ;

5 if b , bi ∧ D ∩ bi , ∅ then

6 D = disk at y tangent to bi ;

7 end

8 end

9 return D ;

Algorithm 2: maximal-disk

reducing” and cannot be used. Hence, a different disk

has to be found. The divide step is applied to the single

resulting domains Ω0 . . .Ωk as long as no base case is

reached.

The difference in the selection of the point and the

fact that also every branching point will be found by

maximal-disk* lead to a reduction of the number of

base cases from 13 (as in [1]) to only 5, see Figure 5.

To verify that a given boundary chain is a base case, the

following three criteria have to be fulfilled:

• The number of non-artificial curves is < 3.

• The number of artificial arcs is < 3.

• There are no concave vertices in the chain.

If all resulting domains Ωi are base cases, then the

conquer step is applied. First, the medial axes of the
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Figure 4: The boundary curves (top row) of the three different domains are described by simple closed B-spline curves. Due to the oscillating

curvatures (second row), the medial axes (third row) possess a large number of branches. In addition, the curvature plots of the biarc approximations

(bottom row) of the boundaries for the medial axis computation are shown. See Examples 2 and 3.
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(1) (2) (3) (4) (5)

Figure 5: The five base cases of algorithm medial-axis (1 to 4 from [1]). The dashed lines represent artificial arcs.

Input: b, b̄, ∂Ω - curves of boundary,

boundary

Output: D - maximal disk

1 D = the whole plane ;

2 k = number of curves on ∂Ω ;

3 for i = 1. . . k do

4 bi = i-th curve of ∂Ω ;

5 if b , bi , b̄ ∧ D ∩ bi , ∅ then

6 D = disk tangent to bi, b and b̄ ;

7 end

8 end

9 return D ;

Algorithm 3: maximal-disk*

base cases are computed directly. Second they are glued

together at the centers of the maximal disks, which were

chosen in the divide step, to obtain the medial axis of the

original domainΩ.

We have implemented the algorithm medial-axis

with the help of the commercial ParasolidTM kernel and

used it to generate the regularized medial axes of our

examples in Section 4.

By using the concept of generalized domains from

[35], our implementation can also deal with domains

that are multiply connected. Due to space limitations

we do not present the details of this approach.

2.4. Total variation regularization

Total variation regularization is a well known con-

cept in image processing (cf. [29, 30]). The idea is to

approximate the original function u0(x) (e.g. a noisy

image) by a function u(x), which minimizes the total

variation of u, i.e.
∫

|∇u(x)|dx.

In order to keep the unknown function u as close as pos-

sible to the original function u0, the least squares (or L2)

approximation term

∫

1

2
(u(x) − u0(x))2dx

is added to the minimization problem. Summing up,

the function u is computed by minimizing the objective

function

min
u

∫

1

2
(u(x) − u0(x))2dx + α

∫

|∇u(x)|dx

which depends on the regularization parameter α > 0.

As a useful property, total variation regularization en-

courages the creation of larger monotonic pieces of the

newly constructed functions u compared to other mini-

mization methods, while keeping the approximation er-

ror relatively small. Indeed, if we consider the set of all

functions on an interval [0, 1] with prescribed boundary

values u(0) = u0, u(1) = u1, then the minimum of the

total variation equals |u0 − u1| and it is realized by any

monotonic function. We will demonstrate this effect of

using total variation regularization on the basis of an

example, and we will compare the results with the ones

obtained by three other minimization methods.

Example 1. We consider the periodic uniform C3-

smooth B-spline function u0(t) of degree 4 with 84 con-

trol points given in Figure 6 (blue function). We will

construct periodic uniform B-spline functions u(t) of de-

gree 4 with 24 control points ĉ = (ĉ0, . . . , ĉ23) which

minimize the objective function

ĉ = arg min

∫ 1

0

1

2
(u(t) − u0(t))2dt + α

∫ 1

0

η(u)dt (2)

for different smoothing terms η(u), given by

(a) η(u) = | d
dt

u(t)|,

(b) η(u) = ( d
dt

u(t))2,

(c) η(u) = ( d2

dt2 u(t))2, and
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dt

u(t)| (b) η(u) = ( d
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Figure 6: Example 1. (a-d) The resulting periodic B-spline functions u (black) for a given periodic

B-spline function u0 (blue) by minimizing the objective function (2) for different choices of η(u) (a-d).

The weight α was chosen such that the approximation term satisfies ν = 0.0289. (e) The periodic B-

spline function u (black) obtained by pure least squares fitting (i.e. α = 0). The box in the center shows

a close-up view.

(e) α = 0

(d) η(u) = ( d3

dt3 u(t))2.

The optimization problem (2) combined with the

term (a) is now exactly the total variation regularization

problem. For this minimization problem we generate

a periodic B-spline function u, see Figure 6(a) (black

function), which has an approximation term with the

value ν = 0.0289. In addition, we compare this func-

tion with the resulting functions obtained by minimiz-

ing (2) combined with the terms (b-d), see Figure 6(b-d)

(black functions). In order to obtain comparable results

we choose the parameter α for the different optimiza-

tion problems in such a way that we get the same values

for the approximation terms. One can see that the total

variation regularization creates fewer and larger mono-

tonic segments of the function u compared to the other

three minimization methods.

In the next section we will modify this concept for fair-

ing planar B-splines curves. We reduce the number

of local curvature extrema by reducing the number of

monotonic segments of the curvature.

3. Total curvature variation (TCV) fairing

We describe a method for fairing the boundary

curve p with respect to the number of local curvature

extrema. This will be achieved by adapting the con-

cept of total variation regularization, which originated

in image processing (see [29, 30] and Section 2.4), to

the curve fairing problem.

Later we will use this method in Section 4 to regular-

ize the medial axis MA(Ω). Using a modified boundary

curve that possesses a smaller number of local curvature

extrema reduces the number of leafs, branching points

and edges of the medial axis MA(Ω).

The total curvature variation (TCV) fairing algorithm

generates a simple closed B-spline curve q : [0, 1] →

R
2 which approximates the given curve p and possesses

a reduced number of local curvature extrema compared

to the original curve p. The newly constructed curve q

should have the same degree d, the same number of con-

trol points m, the same knot sequence T , and therefore

also the same smoothness as the original curve.

The curve q is constructed as follows. Let c̄ =

(c̄0, . . . , c̄m) be the unknown coefficients of the curve q,

which are computed by solving the minimization prob-

lem

c̄ = arg min f (c̄), (3)

subject to the constraint

c̄i = c̄i+m−d+1

for i ∈ {0, . . . , d − 1}, where

f (c̄) = ω1

∫ 1

0

(q(t) − p(t))2dt

︸                 ︷︷                 ︸

g(c̄)

+ω2

∫ 1

0

|κ̇(t)|dt

︸      ︷︷      ︸

h(c̄)

where κ̇ is the first derivative of the curvature function

of the unknown curve q. The parameters ω1 > 0 and

ω2 > 0 are used to control the relative influence of the

approximation term g(c̄) and of the curvature term h(c̄)

in the minimization process, respectively. The curvature

term h(c̄) extends the idea of the total variation (TV)

term that is used in TV regularization in image process-

ing.

Since the optimization problem (3) is highly nonlin-

ear and the objective function f (c̄) is C1-smooth in the

generic case, we use a simple gradient descent method

to solve it. Starting with the initial coefficients c̄(0) = c

of the given B-spline curve p, we iteratively compute

8



the coefficients c̄(k+1) by

c̄(k+1) = c̄(k) − λ(k) ▽ f (c̄(k)) (4)

where the step size λ(k) is generated in each iteration

step with the help of the backtracking line search strat-

egy (cf. [37]). We repeat the step (4) until

• ||c̄(k+1)−c̄(k)|| is smaller than some chosen tolerance,

• the L2 error (i.e., the approximation term of the ob-

jective function) is reduced within a user-defined

threshold, or

• until the number of iterations exceeds a user-

specified number.

The following example demonstrates the effect of our

fairing algorithm and compares the generated bound-

ary curves with the boundaries obtained by the E&H

method (cf. [19] and Appendix A).

Example 2. We consider the three different domains Ω

given in Figure 4, whose boundaries are given by a sim-

ple closed B-spline curve p of degree 4 with a uniform

knot sequence. For the first two domains, the bound-

ary curve consists of 84 control points, for the third do-

main of 164 control points. For all three domains, the

corresponding curvature plots show that the curvatures

oscillate strongly which means that the single boundary

curves have a high number of local curvature extrema.

In order to regularize the medial axis, we want to fair

the boundary curves with respect to the number of lo-

cal curvature extrema by using our total variation-based

method and compare the resulting curves in Figure 7 -

9 with the ones obtained by the E&H method. More

precisely, we use

(a) the total variation-based method,

(b) the total variation-based method combined with

the E&H method, and

(c) the E&H method.

For all methods (a-c), the user-defined parameters are

reported in Table 1.

First we apply the total variation-based fairing

method (a) to the given boundary curves p. The re-

sulting curves q possess curvature functions, having a

better behavior with respect to two properties: On the

one hand, for each curve the number of local curvature

extrema is much smaller. On the other hand, the am-

plitudes of the curvature functions have been reduced

significantly. The L2-norm approximation error, i.e.

ǫ =

(∫ 1

0

(q(t) − p(t))2dt

) 1
2

Fig. ω1 ω2 # iter. # pts ℓ δ # modif.

7 (a) 1600 1 100 400 - - -

7 (b) 1600 1 100 400 3 0.025 32000

7 (c) - - - - 3 0.16 32000

8 (a) 800 1 50 400 - - -

8 (b) 800 1 50 400 3 0.06 32000

8 (c) - - - - 3 0.206 32000

9 (a) 8000 1 50 1000 - - -

9 (b) 8000 1 50 1000 3 0.075 32000

9 (c) - - - - 3 0.144 32000

Table 1: Example 2 and 3. The selected parameters for fairing the

domain boundaries in Figure 7-9 by applying the total variation-based

method (a), the total variation-based method combined with the E&H

method (b) and the E&H method (c) to the corresponding initial do-

mains from Figure 4. If no value is specified, then the parameter is

not needed for the corresponding method.

for each curve is still relatively small, see Table 2.

But since the resulting curves (a) still possess a quite

high number of “small” local curvature extrema, we

continue the fairing process of these curves by means

of the E&H method with the parameters reported in Ta-

ble 1. This allows to reduce the number of these extrema

even further, while only slightly increasing the L2-norm

approximation error, compare Table 2. We obtain mod-

ified boundary curves (b) with curvature functions hav-

ing a reduced number of local curvature extrema and

having a nicer and more smoothed shape in compari-

son with the corresponding curves (a) and especially by

contrast with the original curves from Figure 4.

We compare these results (for methods (a) and (b))

with the ones obtained by fairing the boundaries only

with the help of the E&H method to generate smoothed

boundary curves (method (c)).

In order to obtain comparable results, we choose the

parameters of the algorithm for the different examples

in such a way that we obtain a similar L2-norm of the

approximation errors, see Table 1 and 2.

When using the E&H method (c), the curvature func-

tions of the resulting boundary curves exhibit much

stronger and higher amplitudes (2-3-times higher com-

pared to the methods (a) and (b)). Moreover, and

even more important for medial axis regularization, the

curves (c) possess higher numbers of local curvature ex-

trema compared to the curves (b).

The algorithms (a-c) were implemented in C++. All

occurring integrals are computed numerically by using

the trapezoidal rule with a variable number of sampling

points, see Table 1, and the gradients are obtained with

the help of numerical differentiation. The computing

times for the construction of the different examples in

Figures 7 - 9 are reported in Table 2. The computa-

tions were performed on a workstation running the Gen-

9



(a) TCV (b) TCV + E&H (c) E&H

Modified boundaries and derivations from the original curve (3-times amplified)

Curvature plots of the modified boundaries. Note the different scaling of the vertical axes! Compare with Figure 4 (second row, left).

1

1

1

1

1

1

Medial axes of the modified boundaries

Curvature plots of the biarc approximations. Note the different scaling of the vertical axes! Compare with Figure 4 (bottom row, left).

1

1

1

1

1

1

Figure 7: The “Square”: Modified boundary curves and regularized medial axes (Examples 2 and 3). The three different results were produced

by the methods (a-c). The L2-norm of the approximation error satisfies ǫ ≤ 0.06, where the bounding box of the domain is about 20 × 20. The

curvature plots of the modified boundaries and of the biarc approximations are also shown.
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domain comp. time in sec. approx. error ǫ

Fig. #ctrl pts bound. box (a) (b) (c) (a) (b) (c)

7 84 20 × 20 260.78 260.86 0.08 0.058 0.06 0.06

8 84 21 × 14 127.55 127.64 0.09 0.068 0.085 0.086

9 164 19 × 22 742.25 742.49 0.24 0.044 0.061 0.061

Table 2: Example 2 and 3. The computing times (in seconds) needed to generate the modified boundary curves in Figure 7 - 9 from the initial

domains in Figure 4 by using the total variation-based method (a), the total variation-based method combined with the E&H method (b) and

the E&H method (c) with the parameters reported in Table 1. In addition, the rightmost columns report the corresponding resulting L2-norm

approximation errors ǫ.

too Linux operating system (Intel Core i7-3770 CPU @

3.40GHz, 4 cores, 32GB RAM, 64bit). The deviation

of the modified boundary curves from the original ones

are shown in the first rows of Figures 7 - 9. Note that the

deviation has been amplified by a factor of 3 in order to

make it visible.

Summing up, the combination of TCV fairing with

the E&H method (b) leads to the best results with re-

spect to the number of local curvature extrema. If one

uses only TCV fairing (a), the global shape of the result-

ing curvature function becomes nice but some “small”

local curvature extrema remain. The E&H method can

easily eliminate those, while maintaining a good ap-

proximation, see Table 2.

However, using only a standard fairing algorithm (c)

– such as the E&H method – does not give satisfactory

results. The resulting curvature functions possess more

and larger oscillations. Clearly, the better performance

of TCV fairing comes at a price: the minimization of

the non-linear objective function by the gradient descent

method is much more costly than the simple quadratic

optimization of the E&H method.

4. Regularization of the medial axis

The fairing method from the previous section enables

us to regularize the computation of the medial axis of

planar domain Ω, whose boundary is described by one

(or several) simple closed B-spline curve p given by (1).

More precisely, we generate a modified boundary curve,

which possesses a reduced number of local curvature

maxima. This significantly simplifies the structure of

the medial axis of the domain, see Section 2.2. Recall

that we compute the medial axes using a modified ver-

sion of the Divide-and-Conquer-type algorithm of [1],

see Section 2.3.

On the basis of Example 2, we will demonstrate the

potential of our regularization method. Again, we will

compare the results obtained by the three different ap-

proaches (a-c).

Example 3. We consider again the three different do-

mains Ω given in Figure 4, whose boundaries are given

by a simple closed uniform B-spline curve of degree 4

with 84 or 164 control points, respectively. For all three

domains, the medial axes of the initial domains possess

a lot of small branches, which occur because of the high

number of local curvature maxima of the corresponding

boundary curves. Therefore we use the modified bound-

ary curves of these domains computed in Example 2 to

generate regularized medial axes of the initial domains

with the help of the algorithm medial-axis, see Fig-

ure 7 - 9.

For all three domains, the total variation-based

method (a) and the total variation-based method com-

bined with the E&H method (b) lead to regularized me-

dial axes of similar quality. Both methods perform sig-

nificantly better than using solely the E&H method (c).

Since the computations of the medial axes are based

on the spiral biarc approximations of the modified

boundary curves (cf. Section 2.3), we have also vi-

sualized the corresponding curvature plots of the used

biarc approximations. Due to the use of spiral biarcs,

these approximations preserve the curvature distribution

of the modified boundaries.

The computing times for biarc approximation and

medial axis computation as well as the number of leafs

of the resulting medial axes are reported in Table 3. The

calculations were performed on a workstation running

the SUSE Linux Enterprise Desktop 11 operating sys-

tem (Intel Xeon E3-1240 CPU @ 3.30GHz, 4 cores,

16GB RAM, 64bit). Note that we used the ParasolidTM

geometry kernel to perform the geometric operations.

The following example will demonstrate that our reg-

ularization method can also deal with multiply con-

nected domains, whose boundaries are described by

several simple closed B-spline curves p given by (1).

The idea is as follows. We first separately smooth the

single boundary curves of the multiply connected do-

main. Then we compute the medial axis by means of the

modified version of the algorithm from [1], described

in Section 2.3, by using the concept of generalized do-

11



(a) TCV (b) TCV + E&H (c) E&H

Modified boundaries and derivations from the original curve (3-times amplified)

Curvature plots of the modified boundaries. Note the different scaling of the vertical axes! Compare with Figure 4 (second row, middle).

1

-0.2

0.2

1

-0.2

0.2

1

-0.2

0.2

Medial axes of the modified boundaries

Curvature plots of the biarc approximations. Note the different scaling of the vertical axes! Compare with Figure 4 (bottom row, middle).

1

-0.2

0.2

1

-0.2

0.2

1

-0.2

0.2

Figure 8: The “Hat”: Modified boundary curves and regularized medial axes (Examples 2 and 3). The three different results were produced by the

methods (a-c). The L2-norm of the approximation error satisfies ǫ ≤ 0.086, where the bounding box of the domain is about 21 × 14. The curvature

plots of the modified boundaries and of the biarc approximations are also shown.
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Figure biarc approx. time in sec. # bound. curves medial axis time in sec. # leafs

init (a) (b) (c) init (a) (b) (c) init (a) (b) (c) init (a) (b) (c)

7 21.81 21.26 21.37 22.84 511 339 343 404 6.64 2.39 2.42 2.28 20 4 4 6

8 21.62 17.42 17.06 20.73 490 229 210 334 4.44 1.67 1.30 2.35 25 6 5 13

9 27.46 25.71 23.05 40.57 914 622 552 3731 5.06 4.26 3.82 20.06 20 7 8 13

Table 3: Example 2 and 3. The times (in seconds) needed for computing the biarc approximation of the boundary, the number of resulting boundary

curves and the computing times (in seconds) needed to generate the medial axis for the initial domains (“init”) from Figure 4 and of the domains

with modified boundaries from Figure 7 - 9, by using the total variation-based method (a), the total variation-based method combined with the

E&H method (b) and the E&H method (c). In addition, the rightmost columns report the number of leafs of the resulting medial axes.

mains from [35].

Example 4. We consider the multiply connected do-

main given in Figure 10(a), whose inner and outer

boundary of the domain are represented by simple

closed uniform B-spline curves of degree 4 with 164

points. The medial axis of the multiply connected do-

main possesses a large number of branches, which im-

plies that the two boundary curves have a high number

of local curvature extrema.

We separately fair the two boundary curves of the

domain to reduce the number of local curvature ex-

trema of each curve to obtain a regularized medial axis.

More precisely, we apply the same three fairing meth-

ods as in Example 2 and 3 to smooth the two single

boundary curves and compare the resulting medial axes,

see Figure 10(b-d). In order to obtain comparable re-

sults we generate boundary curves with a similar L2-

norm approximation error by using the different meth-

ods. Again, the total variation-based method (b) and the

total variation-based method combined with the E&H

method (c) lead to significantly better results than using

solely the E&H method (d).

In practice, our regularization method can be applied

to any domain, provided that the boundary curves are

C3 smooth. If the boundary is not described by a simple

closed B-spline curve by (1), or if the smoothness of the

boundary is too low, one may approximate the boundary

by a quartic B-spline curve with the help of least squares

fitting (cf. [38]).

In the following example we will regularize the me-

dial axes of two simply connected domains, which are

represented as point clouds. The used data has been pro-

vided by the authors of the recent paper [18], which de-

scribes an error-controlled method for medial axis reg-

ularization.

Example 5. We consider the two initial domains given

in Figure 9(a-b) from [18]. The two domains, i.e. the

example of the car and dolphin, consist of 1000 and

800 points, respectively, and possess medial axes with

a large number of small branches. As first step, we

use least squares fitting to generate closed uniform B-

spline curves of degree 4, which approximate the ini-

tial point clouds and which will be used later as initial

curves in the TCV fairing process. Figure 11 shows that

the resulting boundaries of the domains have already

quite regularized medial axes, since least squares fitting

produces fairly regular boundary curves. Then we con-

tinue the smoothing of the boundaries by applying the

total variation-based method combined with the E&H

method. By choosing appropriate parameters we obtain

regularized medial axes of similar quality compared to

the method in [18], see Figure 11.

For this example, we slightly modified the TCV

method in such a way that the approximation term g(c̄)

in the minimization problem (3) is replaced by the least

squares fitting term

g̃(c̄) =
∑

i

(q(τi) − pi)
2,

where pi are the initial points with the corresponding

parameters τi. The advantage of this modification is that

we still compare the approximation error of the resulting

curve q with the initial point cloud.

Moreover, we compare the resulting approximations

errors by using the TCV + E&H method with the er-

rors obtained by the method in [18]. Since in [18] the

approximation error is measured by the one-sided Haus-

dorff distance ǫ̃, i.e.

ǫ̃ = max
i
{ min{||pi − q(t)|| : t ∈ [0, 1]} },

we will also use this distance for error comparison in

this example, see Table 4. Although the TCV method

is controlled by another approximation error, namely

by the L2-norm approximation error, the resulting one-

sided Hausdorff distance approximation errors ǫ̃ are in

the same order of magnitude as for the results of the

method described in [18].

5. Conclusion

We presented a method for the regularization of the

medial axis of a domain. The boundary (or boundaries)
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(a) TCV (b) TCV + E&H (c) E&H

Modified boundaries and derivations from the original curve (3-times amplified)

Curvature plots of the modified boundaries. Note the different scaling of the vertical axes! Compare with Figure 4 (second row, right).

1

-1

1

1

-1

1

1

-1

1

Medial axes of the modified boundaries

Curvature plots of the biarc approximations. Note the different scaling of the vertical axes! Compare with Figure 4 (bottom row, right).

1

-1

1

1

-1

1

1
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1

Figure 9: The “Hand”: Modified boundary curves and regularized medial axes (Examples 2 and 3). The three different results were produced by the

methods (a-c). The L2-norm of the approximation error satisfies ǫ ≤ 0.061, where the bounding box of the domain is about 19 × 22. The curvature

plots of the modified boundaries and of the biarc approximations are also shown.
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(a) Initial domain (80 leafs) (b) TCV (13 leafs) (c) TCV + E&H (12 leafs) (d) E&H (20 leafs)

Figure 10: Example 4. Regularized medial axes of a multiply connected domain (a) by using the three different methods (b-d). The L2-norm of the

approximation error of the inner (outer) boundary curve satisfies ǫ ≤ 0.022 (0.049), where the bounding box of the domain is about 40 × 40.

Initial point cloud meth. [18] Fitted domain TCV+E&H

Domain # pts ǫ̃ # ctrl pts ǫ̃ ǫ̃

Car 1000 0.32% 254 0.13% 0.3%

Dolphin 800 0.15% 254 0.10% 0.15%

Table 4: Example 5. Comparison of the one-sided Hausdorff distance

approximation error ǫ̃, here normalized with respect to the diagonal

of the bounding box, by using the method from [18] and the TCV

+ E&H method for the computation of regularized medial axes of

similar quality for the domains from Figure 9(a-b) given in [18], see

Figure 11. In addition, we report the resulting approximation errors ǫ̃

of the initial domains for our method which are obtained by applying

least squares fitting to the initial point clouds.

of the domain is (are) given by a simple closed C3-

smooth B-spline curve. Our technique is based on the

new approach of TCV fairing applied to the boundary

curve. This method, which is derived from the concept

of total variation regularization in image processing (cf.

[29, 30]), significantly reduces the number of local cur-

vature extrema of the boundaries and it therefore pro-

duces a simplified medial axis.

The potential of our algorithm has been demonstrated

by several examples of modified boundaries and of gen-

erated regularized medial axes. These examples led us

to conclude that the new approach of TCV fairing gives

better results than traditional fairing techniques, such as

the E&H method [19] for fairing B-spline curves.

Finally we identify three directions for future re-

search. First, it would be interesting to explore meth-

ods that improve the computational performance of our

method by reducing the computing times. For instance,

it should be possible to achieve this by using more so-

phisticated optimization techniques, provided that the

objective function allows for this. Second, one may

wish to approach the problem from a more abstract

viewpoint, by considering all boundary curves within a

certain tolerance and asking for the one(s) that produce

the “simplest” medial axis (in an appropriate sense). Fi-

nally, the extension of the TCV fairing method to three-

dimensional objects could be of interest.
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Appendix A. Eck & Hadenfeld’s (E&H) method for

fairing B-spline curves

In order to make this paper self-contained, we recall

the E&H method [19] for fairing a B-spline curve of ar-

bitrary degree and adapt it to closed B-spline curve p

given by (1). The idea of the algorithm is to minimize

the integral of the squared ℓ-th derivative of the B-spline

curve. This is done iteratively by changing only one

control point in each iteration step and keeping the oth-

ers fixed. We give a short overview of this fairing pro-

cess. For more detail we refer to [19].

The algorithm starts with the initial B-spline curve p,

given by (1). After a certain number k of iterations we

arrive at the partially modified B-spline curve p̄, which

is represented by

p̄(t) =

m∑

i=0

Nd
i (t)c̄i, t ∈ [0, 1],

with the generated control points c̄i ∈ R
2, satisfying

again

c̄i = c̄i+m−d+1
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(a) Car (b) Dolphin

Medial axes of the domains obtained by applying least squares fitting to the initial shapes from Figure 9(a-b) presented in [18]

(36 leafs) (8 leafs)

Medial axes of the faired boundaries after using the TCV + E&H method

(11 leafs) (5 leafs)

Figure 11: Example 5. Medial axis regularization for the domains from Figure 9(a-b) presented in [18]. Compared to the method in [18], the TCV

+ E&H method provides results of similar quality having a similar one-sided Hausdorff distance approximation error ǫ̃, too, see Table 4.

for i ∈ {0, . . . , d − 1}. In the k + 1-th iteration step, we

compute a new curve

p̃(t) =

m∑

i=0

Nd
i (t)c̃i, t ∈ [0, 1],

with c̃i ∈ R
2, by fixing all control points of the curve p̄

from the k-th iteration step, i.e. c̃i = c̄i, except one

control point, say c̃ j, which is obtained by minimizing

the integral of the squared ℓ-th derivative of the B-spline

curve p̃, i.e.

c̃ j = arg min

∫ 1

0

(

dℓ

dtℓ
p̃(t)

)2

dt, (A.1)

subject to the constraint

max{||p̃(t) − p(t)|| : t ∈ [0, 1]} ≤ δ (A.2)

for some given tolerance δ. Note that if j ∈ {0, . . . , d−1}

or j ∈ {m − d + 1, . . . ,m}, then both control points

c̃ j and c̃ j+m−d+1 have to be changed, in order to keep

them equal. This is necessary to maintain the order

of continuity at the closing point p̃(0) = p̃(1). There-

fore we consider from now on only the construction of

the new control points c̃0, . . . , c̃m−d, since the d control

points c̃m−d+1, . . . , c̃m are determined by the first d con-

trol points c̃0, . . . , c̃d−1 or vice versa.

The minimization problem (A.1) leads to a linear

equation whose solution is

c̃ j =

j+d∑

i= j−d
i, j

γic̄i mod (m−d+1),

where the weighting parameter γi is given by

γi = −

∫ 1

0

(
dℓ

dtℓ
Nd

i mod (m−d+1)
(t)

) (
dℓ

dtℓ
Nd

j
(t)

)

dt

∫ 1

0

(
dℓ

dtℓ
Nd

j
(t)

)2
dt

.

If the the B-spline curve p̃ is based on a uniform knot

sequence, the parameters γi are independent of the in-

dex j of the chosen point c̃ j. E.g., we obtain for e.g.

d = 4 and ℓ = 3

γ−4 = γ4 =
1

50
, γ−3 = γ3 = −

1

25

and

γ−2 = γ2 = −
4

25
, γ−1 = γ1 =

17

25
,

which leads to an explicit formula for the point c̃ j.

To satisfy the side constraint (A.2), we will use the

simpler sufficient condition

||c̃ j − c j|| ≤ δ.
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Thereby, if ||c̃ j−c j|| > δ, then we compute a new point c̃∗
j

by

c̃∗j = c j + δ
c̃ j − c j

||c̃ j − c j||
.

So far we described how to modify one control point in

the k-th iteration step. Next, we will describe at which

point the curve should be modified to obtain the smallest

possible value of the integral of the squared ℓ-th deriva-

tive of the B-spline curve p̃, i.e.

∫ 1

0

(

dℓ

dtℓ
p̃(t)

)2

dt.

For this purpose we compute for each control point c̄ j

in the k-th iteration step a ranking number z j given by

z j = (c̄ j − c̃ j)
2

∫ 1

0

(

dℓ

dtl
Nd

j (t)

)2

dt

for j ∈ {0, . . . ,m − d}, where c̃ j is the corresponding

changed control point in the k+1-th iteration step. Then

the control point c̄ j with the highest ranking number z j

will be modified to get the control point c̃ j.

In case that the B-spline curve p̃ has a uniform knot

sequence, the integral

∫ 1

0

(

dℓ

dtl
Nd

j (t)

)2

dt

is constant for all j ∈ {0, . . . ,m−d} and the computation

of the ranking number z j simplifies to

z j = (c̄ j − c̃ j)
2.

The algorithm is repeated until all ranking numbers are

smaller than some given tolerance or a maximal number

of iterations is reached. Since it can happen that from

some point on the algorithm tries to change the same

control point all the time, one also specifies a maximal

number of iterations for the single control points. If this

number is reached for a control point, then this point

is no longer considered for modification by the fairing

algorithm.
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E. Pilgerstorfer, M. Rabl, Divide-and-conquer algorithms for

Voronoi diagrams revisited, Comput. Geom. Theory Appl. 43

(2010) 688–699.

[36] D. S. Meek, D. J. Walton, Spiral arc spline approximation to a

planar spiral, J. Comput. Appl. Math. 107 (1999) 21–30.

[37] J. Nocedal, S. J. Wright, Numerical optimization, Springer Se-

ries in Operations Research, Springer-Verlag, New York, 1999.

[38] J. Hoschek, D. Lasser, Fundamentals of computer aided geomet-

ric design, A K Peters Ltd., Wellesley, MA, 1993. Translated

from the 1992 German edition by Larry L. Schumaker.

18


