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Abstract

Given a grid in Rd, consisting of d bi-infinite sequences of hyperplanes (possibly with multiplici-
ties) orthogonal to the d axes of the coordinate system, we consider the spaces of tensor-product
spline functions of a given degree on a multi-cell domain. Such a domain consists of finite set
of cells which are defined by the grid. A piecewise polynomial function belongs to the spline
space if its polynomial pieces on adjacent cells have a contact according to the multiplicity of
the hyperplanes in the grid. We prove that the connected components of the associated set of
tensor-product B-splines, whose support intersects the multi-cell domain, form a basis of this
spline space. More precisely, if the intersection of the support of a tensor-product B-spline with
the multi-cell domain consists of several connected components, then each of these components
contributes one basis function. In order to establish the connection to earlier results, we also
present further details relating to the three-dimensional case with single knots only.

A hierarchical B-spline basis is defined by specifying nested hierarchies of spline spaces and
multi-cell domains. We adapt the techniques from [12] to the more general setting and prove the
completeness of this basis (in the sense that its span contains all piecewise polynomial functions
on the hierarchical grid with the smoothness specified by the grid and the degrees) under certain
assumptions on the domain hierarchy.

Finally, we introduce a decoupled version of the hierarchical spline basis that allows to relax
the assumptions on the domain hierarchy. In certain situations, such as quadratic tensor-product
splines, the decoupled basis provides the completeness property for any choice of the domain
hierarchy.

Keywords: Hierarchical bases, Tensor-product B-splines, Local refinement, Decoupled
hierarchical bases
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1. Introduction

Hierarchical tensor-product splines were introduced by Forsey and Bartels [11] as a tool
for adaptive surface modeling. About ten years later, Kraft [18] defined a basis and a quasi-
interpolation operator for these spline spaces. At the same time, these splines were used for
adaptive surface fitting [15].

Since the advent of isogeometric analysis (IGA), which was established in 2005 as a new
approach to bridge the gap between analysis and design in engineering applications [6], there is
a renewed interest in adaptive and hierarchical techniques for tensor-product splines.
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The early approaches to adaptive refinement in IGA were based mostly on T-splines [1, 10].
These originated more recently than hierarchical B-splines in geometric modeling [28]. It was
observed, however, that hierarchical B-splines possess a number of useful theoretical and practical
properties that make them well-suited for numerical simulation based on IGA [29]. It has been
shown that

• these adaptive splines can be equipped with a simple basis that provides the partition of
unity and improves the sparsity properties [13];

• this basis is strongly stable with respect to the L∞ norm [14];

• and these functions can be implemented efficiently using standard data structures [16].

There is a growing number of papers on hierarchical methods in IGA [5, 19, 26].
A new kind of splines has been introduced recently [9], known as LR-splines (LR stands

for “locally refined”). The use of this new approach in the application context, as well as its
comparison with existing local refinement methods, are still at a preliminary stage.

Simultaneously, adaptive and locally refined spline spaces were considered from an algebraic
viewpoint. The general goal is to determine the dimension of the spline space (which contains all
piecewise polynomial functions of a certain degree and smoothness) and to construct its basis,
given a certain partition of the domain into axis-aligned boxes. In the rich literature on this topic
[7, 8, 20, 21, 22, 23, 24, 27] several valuable contributions for various cases have been described.

Under certain conditions, the hierarchical spline basis spans the entire space of all piecewise
polynomial functions of the given degree and smoothness that are defined on the underlying grid
(which may possess T-joints) and is therefore complete. Such conditions were first studied in [12]
for the bivariate case of uniform degrees, dyadic refinement and maximal smoothness. Based on
the algebraic framework (homology techniques) described in [23], a number of recent manuscripts
and preprints presented several generalizations. We mention the recent article [2] that addresses
the three-dimensional case and the follow-up papers [4, 3].

The present paper introduces a different approach. It is based on the observation that the
completeness of the hierarchical spline space can be studied without using advanced results from
algebraic homology, but employing solely standard methods from the theory of tensor-product
spline functions. The simple approach presented in this paper allows sufficient conditions to be
derived for complete hierarchical spline spaces in any dimension, and for any smoothness (which
does not have to be the same for all grid hyperplanes) and any degree.

The remainder of this paper consists of three main sections and an appendix. First we analyze
dimensions and bases of tensor-product spline spaces on multi-cell domains in Section 2. The
third section is devoted to the completeness of the hierarchical B-spline basis in the most general
case. Finally, in Section 4 we introduce the decoupled hierarchical basis that allows to relax —
and in some situations even to eliminate — the constraints on the considered domain hierarchy.
The appendix analyzes the dimensions of tensor-product spline spaces in the trivariate case with
single knots.

2. Splines on multi-cell domains

This section derives a basis for tensor-product splines on multi-cell domains. After presenting
the necessary definitions, we will prove that this spline space is spanned by a basis consisting of
all connected components of the tensor-product B-splines whose support intersects the multi-cell
domain. More precisely, if the intersection of the support of a tensor-product B-spline with the
multi-cell domain consists of several connected components, then each of them contributes one
basis function.
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2.1. Tensor-product B-splines

Given a positive integer d that specifies the dimension of the space, we consider the d–
dimensional space Rd with coordinates x = (x1, . . . , xd). In addition, we consider d bi-infinite
strictly increasing sequences of real numbers

(gi,j)j∈Z , gi,j < gi,j+1,

for i = 1, . . . , d, which will be called the nodes. Using these sequences of nodes we define the grid
G to consist of grid hyperplanes

Gi,j = {x ∈ Rd | xi = gi,j}

with associated multiplicities mi,j , which do not need to be the same for all the hyperplanes in
the grid.

In addition, we choose a degree p = (p1, . . . , pd), where all pi are positive integers. We denote
the set of tensor-product B-splines defined on this grid by B. More precisely, these tensor-
product B-splines are products of d univariate B-splines with the variables xi that are defined
by the bi-infinite knot vectors

(. . . , gi,j−1, . . . , gi,j−1︸ ︷︷ ︸
mi,j−1 times

, gi,j , . . . , gi,j︸ ︷︷ ︸
mi,j times

, gi,j+1, . . . , gi,j+1︸ ︷︷ ︸
mi,j+1 times

, . . . ),

where each knot appears as often as specified by the multiplicity of the associated hyperplane.
These tensor-product B-splines are well-defined and continuous if the multiplicities satisfy

1 ≤ mi,j ≤ pi. (2.1)

In the sequel we will denote the tensor-product B-splines β ∈ B simply as B-splines.
We consider d indices j1, . . . , jd ∈ Z. The closed set

d

X
i=1

[gi,ji−1, gi,ji ], (2.2)

which is the Cartesian product of d closed intervals between adjacent nodes, is called a cell of
the grid. The set of all cells will be denoted by C and we use c ∈ C to denote an individual cell.

Consider a cell c ∈ C. We define the set of all B-splines whose support includes this cell,

Bc = {β ∈ B | c ⊂ supp β}, (2.3)

where the symbol supp denotes the support of a function, i.e.,

supp g = {x ∈ Rd | g(x) 6= 0}.

In the case of B-splines, this is an open set, provided that the multiplicity of each knot is at most
equal to the degree as assumed in (2.1).

Example 2.1. Figure 1 shows an example of a set Bc. We consider biquadratic B-splines on a
uniform grid with all multiplicities equal to 1. The cell c is shown in gray. The support of each
basis function consists of 3×3 cells; the basis functions that belong to the set Bc are represented
by the small circles in the centers of their supports, which coincide with their Greville points.
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Figure 1: The set Bc for biquadratic B-splines with single knots. The small circles correspond to Greville points
representing the functions in Bc with respect to the gray cell c.

Consider a polynomial f of multi-degree p, i.e., f is a polynomial with the variables xi, where
the degree with respect to xi is at most pi. We denote the linear space of all such polynomials
by Πp(Rd).

When restricting f and Πp(Rd) to this cell, we obtain the linear space

Πp(c) :=
{
f |c | f ∈ Πp(Rd)

}
.

The restriction f |c can be expressed as a linear combination of the tensor-product B-splines in
Bc,

f |c(x) =
∑
β∈Bc

λβc (f |c)β|c(x), x ∈ c, (2.4)

where λβc (f |c) is the coefficient of β ∈ Bc in the local representation of the polynomial f on the
cell c. Note that f is a polynomial defined on Rd, whereas f |c is defined on c only.

Example 2.2. Consider again the example of biquadratic splines in Figure 1. Each cell c ∈ C
is influenced by nine basis functions from Bc and each biquadratic polynomial on this cell can
be uniquely represented as a linear combination of these nine functions.

2.2. Contact of polynomial pieces

We denote the partial derivatives of a polynomial f by

∂ji f :=
∂jf

∂(xi)j
.

Given a polynomial f |c on a cell c, we define its partial derivatives by considering its canonical
extension to Rd,

∂ji (f |c) := (∂ji f)|c,
thereby avoiding the need to consider one-sided limits at the boundary of c.

Consider two cells c, c′ ∈ C. There exist indices ji, j
′
i ∈ Z such that

c =
d

X
i=1

[gi,ji , gi,ji+1] and c′ =
d

X
i=1

[gi,j′i , gi,j′i+1].
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The intersection of these cells is an axis-aligned box whose dimension is at most d. If the
intersection is non-empty, then it can be written as

c ∩ c′ =
d

X
i=1

[gi,ai , gi,bi ], (2.5)

where ai = max{ji, j′i} and bi = min{ji, j′i}+ 1. Note that the i–th interval (where i = 1, . . . , d)
in the Cartesian product degenerates to a single point if ji = j′i + 1 or j′i = ji + 1.

Definition 2.3. Consider two polynomials f, f ′ of degree p and two cells c, c′ ∈ C, thus f |c ∈
Πp(c) and f ′|c′ ∈ Πp(c′). We say that the polynomial f |c on the cell c and the polynomial f ′|c′
on the cell c′ have a contact on c ∩ c′ (and write f |c ∼ f ′|c′) if

∀x ∈ c ∩ c′ : (∂j11 · · · ∂jdd f |c)(x) = (∂j11 · · · ∂jdd f ′|c′)(x) (2.6)

is satisfied for all
ji = 0, . . . , pi −min{mi,ai ,mi,bi}, i = 1, . . . , d, (2.7)

where c∩ c′ has the form (2.5) (or is empty) and mi,ai and mi,bi are the multiplicities of the grid
hyperplanes Gi,ai and Gi,bi , respectively.

In particular, any two polynomials on disjoint cells have a contact, since c ∩ c′ is empty in this
case. The relation ∼, which acts on pairs of polynomials and cells, is symmetric and reflexive,
but not transitive.

The order of the contact depends on the given multiplicity of the grid hyperplanes: the higher
the multiplicity, the smaller the number of derivatives that have to agree.

Note that if ai < bi holds for some coordinate direction i in the representation (2.5) of the
(nonempty) intersection c∩c′ (namely, when ji = j′i), then the equation (2.6) is even satisfied for
all positive integers ji, since we can differentiate the equations obtained for the ranges of indices
ji specified in (2.7) with respect to xi.

From now on we will use the notation

β|c∩ c′ 6= 0

to express the fact that the B-spline β does not vanish identically on c ∩ c′, i.e.,

∃x ∈ c ∩ c′ : β(x) 6= 0.

The contact between two polynomials on different cells can be characterized easily with the
help of the B-spline coefficients.

Lemma 2.4 (Contact Characterisation Lemma – CCL). The two polynomials f |c and f ′|c′ that
were considered in Definition 2.3 have a contact on c ∩ c′ if and only if

∀β : β|c∩ c′ 6= 0⇒ λβc (f |c) = λβc′(f
′|c′). (2.8)

Proof. This can be proved by extending the univariate blossoming argument to the tensor-
product setting (see, e.g., [25, Section 7.1]; the extension would proceed analogously to the
similar generalization for multivariate Bézier surfaces, which is outlined in [25, Section 9.7]).
Indeed, the two polynomials have a contact if and only if the associated values of their blossoms
(which then correspond to the B-spline coefficients) agree.

Alternatively, one may prove this observation with the help of the tensor-product Bernstein-
Bézier (BB) representation of the two polynomials with respect to the associated cells. The
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values and derivatives that characterize the contact are uniquely determined by the two subsets
of the BB coefficients (determining sets) of both polynomials. The polynomials have a contact if
and only if the coefficients of the determining set of f |c can be generated by applying a certain
bijective linear mapping to the coefficients of the determining set of f ′|c′ . On the other hand, the
subset of the B-spline coefficients considered in (2.8) is linked to each of the coefficients of the
two determining sets by two other bijective linear mappings that can be found via knot insertion.
Due to the bijectivity of all mappings, choosing the same B-spline coefficients considered in (2.8)
for both polynomials is the only possibility to obtain a contact.

In order to keep this paper concise, we do not present the technical details of either proof.

Example 2.5. We consider the bivariate case with double horizontal knots and single vertical
knots in Figure 2. There are sixteen bicubic B-splines whose supports intersect each cell (a).
Considering two cells that are different from each other, there are four possibilities of a contact
between polynomials.

• The cells are disjoint and all polynomials have a contact (not shown).

• The cell share a vertical edge (b). All values and derivatives of order 0 or 1 with respect
to x1 and of any order with respect to x2 have the same value on the vertical edge.

• The cells share a horizontal edge (c). All values and derivatives of any order with respect
to x1 and of order 0, 1, or 2 with respect to x2 have the same value on the horizontal edge.

• The cells share a grid point (d). All values and derivatives of order 0 and 1 with respect
to x1 and of order 0, 1, or 2 with respect to x2 have the same value at the grid point.

2.3. Piecewise polynomials on multi-cell domains

We consider a finite subset M ⊂ C which we will call a multi-cell domain. More precisely,
the set M contains a finite number of cells of the form (2.2). Furthermore, we will use the
abbreviation

M =
⋃
M =

⋃
c∈M

c

for the subset of Rd occupied by the cells from M . The setM is a closed and bounded subset of
Rd. To simplify the notation it will be often also called multi-cell domain, whenever confusion
is improbable.

Definition 2.6. Given a multi-cell domain M ⊂ C we define the disconnected space (also called
the space of piecewise polynomials) by

P(M) = {s = (sc)c∈M | sc ∈ Πp(c)}.

Thus any piecewise polynomial s ∈ P(M) is a collection of polynomials sc, one for each cell
c ∈M . Each of these polynomials sc is actually the restriction of a globally defined polynomial
s̄c ∈ Πp(Rd) to the corresponding cell, i.e., sc = s̄c|c — see the end of Subsection 2.1. However,
we will not need to refer to the globally defined polynomials s̄c throughout the paper.

Note that these polynomials may take different values at the grid lines. Therefore, it is
generally impossible to define a continuous function ŝ on M such that ŝ|c = sc for all c ∈M .

Nevertheless, each sc can be represented in the B-spline basis as observed in (2.4):

sc(x) =
∑
β∈Bc

λβc (sc)β|c(x), x ∈ c, c ∈M.
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(a)

(b) (c) (d)

Figure 2: (a) The 16 bicubic B-splines in Bc related to the case of double horizontal and single vertical knots; (b)
– (d) three possibilities of a contact. The B-splines whose supports intersect the first and second cell are depicted
by solid symbols ( ,�) and by squares (�,�), respectively. The support of any B-spline represented by a solid
square (�) intersects both cells.

Definition 2.7. We consider a multi-cell domain M and the associated disconnected space
P(M). The spline space on M is defined by

S(M) = {s ∈ P(M) | ∀c, c′ ∈M : sc ∼ sc′}. (2.9)

For s ∈ S(M) we define s̃ :M→ R so that

s̃(x) = sc(x), if x ∈ c and c ∈M.

This function is well-defined (single-valued), since any two polynomial pieces sc and sc′ meet
at least continuously along the intersection c ∩ c′ of any two neighbouring cells. By using the
characteristic functions χc of the cells c ∈ M , we may express it in terms of the basis functions
as follows:

s̃(x) =
∑
c∈M

∑
β∈Bc

λβc (sc)β(x)χ?c(x), x ∈M, (2.10)

with the normalized characteristic functions

χ?c(x) =


χc(x)∑

k∈M χk(x)
, if x ∈M,

0, otherwise.

Note that the characteristic functions need to be normalized in order to obtain the correct values
also on grid hyperplanes.

Strictly speaking, the elements of S(M) are |M |–tuples of polynomials, where |M | is the
number of cells in M . In order to keep the notation simple, we will use the same notation for
the actual spline functions s̃.
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That is, we will consider the elements of S(M) simultaneously as |M |–tuples of polynomials
and as piecewise polynomial functions defined on M. Consequently, we will simply write s
instead of s̃, and we will denote the linear space of all piecewise polynomial functions on M with
the required contacts between the polynomial segments as S(M).

Definition 2.8. Consider a basis function β ∈ B. Its coefficient graph Γβ is defined as follows.

• The vertices of Γβ are the cells c ∈M such that c ⊂ supp β.

• Two vertices c and c′ are connected by an edge iff β|c∩ c′ 6= 0.

The set of connected components of this graph will be denoted by K(Γβ).

If there is no overlap of β with M then both the coefficient graph Γβ and the set K(Γβ) of
connected components are empty.

We use the notation
c εΓβ

to express the fact that the cell c is a vertex of the coefficient graph Γβ . Similarly, when consid-
ering a connected component Φ ∈ K(Γβ) — which is a subgraph of Γβ — all cells c satisfying
c εΦ are exactly the vertices of Φ.

Example 2.9. We consider again the biquadratic case. Figure 3 shows a multi-cell domain
consisting of nine cells (a), the supports of three basis functions β1, β2 and β3 (b), together
with their coefficient graphs (c). The coefficient graphs of β2 and β3 have only one connected
component, while the coefficient graph of β1 possesses two of them.

Proposition 2.10. Consider a piecewise polynomial s ∈ P(M). It is contained in the spline

space S(M) if and only if the coefficients satisfy λβc (sc) = λβc′(sc′) for all basis functions β ∈ B
and for all c and c′ belonging to the same connected component of Γβ.

Proof. Consider a piecewise polynomial s ∈ S(M) and a basis function β ∈ B. Assume there

exist c, c′ in the same connected component such that λβc (sc) 6= λβc′(sc′). Then there exist two

vertices k and k′, k∩k′ 6= ∅, in this connected component such that λβk(sk) 6= λβk′(sk′). According
to CCL (Lemma 2.4), sk and sk′ do not have a contact and therefore s does not belong to S(M).

On the other hand, if all coefficients λβc (sc) associated to any β ∈ B for all cells c belonging
to one connected component of Γβ take the same value, then all sc have a contact by CCL
(Lemma 2.4). Since the cells in these connected components cover M , we may conclude that
s ∈ S(M).

2.4. Spline bases on multi-cell domains

Definition 2.11. For every β ∈ B and every connected component Φ ∈ K(Γβ) we define the
function

βΦ(x) =
∑
c εΦ

β(x)χ?c(x).

The set of all these functions is denoted by

∆ =
⋃
β∈B

{βΦ | Φ ∈ K(Γβ)}.

Theorem 2.12. The set ∆ — when restricted to M — forms a locally linearly independent
basis of S(M).
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c1

c3 c4 c5

c2

c6 c7 c8

c9

(a) multi-cell domain

β1

β2

β3

(b) three examples of B-splines βi

c1 c2

c3 c4

c6 c7
c8

β1 β2 β3

c9

(c) coefficient graphs associated with βi, i = 1, 2, 3

Figure 3: A multi-cell domain with nine cells (a), the supports of three biquadratic B-splines (b) and the associated
coefficient graphs (c).

Proof. Consider s ∈ S(M). First, we prove that s can be obtained as a linear combination of
functions from ∆. Since, according to Definition 2.8, the vertices of Γβ are the cells c ∈M that
are contained in the support of β, equation (2.10) can be rewritten as follows:

s(x) =
∑
β∈B

∑
c εΓβ

λβc (sc)β(x)χ?c(x) =
∑
β∈B

∑
Φ∈K(Γβ)

∑
c εΦ

λβc (sc)β(x)χ?c(x), (2.11)

where x ∈ Rd. In virtue of Proposition 2.10, for each β ∈ B and for each Φ ∈ K(Γβ), all the

coefficients λβc (sc) have to be the same for all c εΦ. We will denote this coefficient by ΛβΦ(s).
Thus, we may rewrite (2.11) as

s(x) =
∑
β∈B

∑
Φ∈K(Γβ)

ΛβΦ(s)
∑
c εΦ

β(x)χ?c(x)︸ ︷︷ ︸
=βΦ∈∆

.

Second, we prove the local linear independence of the functions. Consider an open subset
X ⊂ M and a linear combination of functions βΦ ∈ ∆ that do not vanish on X, which is equal
to zero on X. For each βΦ we consider a cell c εΦ, that has a nonempty intersection with X.
Clearly, βΦ does not vanish on c. Moreover, the restrictions of all functions βΦ to this cell are
either zero or equal to the restrictions of mutually different tensor-product B-splines β ∈ B.
From the local linear independence of functions β ∈ B we then obtain that the coefficient of
βΦ in the linear combination is zero. Repeating this for all functions βΦ, we conclude that the
functions βΦ are locally linearly independent. This also implies the linear independence of ∆.
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Figure 4: The support of a bicubic B-spline that violates the assumption of Corollary 2.13 with respect to the
domain consisting of all the gray cells.

Corollary 2.13. If for each β the intersection of its support with the multi-cell domain M is
connected, then the functions in

BM = {β ∈ B | supp β ∩M 6= ∅},

when restricted to M, form a basis of S(M).

Proof. Indeed, if this condition is satisfied, then each coefficient graph in Theorem 2.12 has either
one connected component or it is empty.

Example 2.14. The condition concerning the connected sets in Corollary 2.13 means that there
is no situation like the one shown in Figure 4 for bicubic B-splines on a grid with single knots.

Appendix A analyzes the case of trivariate spline spaces with single knots, which has been
discussed in Berdinsky et al. [2]. We show that their result (which, however, is limited to a
special class of multi-cell domains) is a special case of Corollary 2.13.

3. Hierarchical splines

We now use the notation introduced in the previous section in a hierarchical setting to define
a hierarchical spline space and a certain hierarchical basis. Subsequently, we prove that this
hierarchical basis spans the entire hierarchical spline space.

3.1. Hierarchies of tensor-product spline spaces

In order to define a hierarchical tensor-product spline space, we need to introduce a hierarchy
of tensor-product spline spaces and a hierarchy of domains.

First, we consider the spline spaces. Given a maximal level N , we consider a sequence of grids
G`, ` = 0, . . . , N, with associated degrees p` = (p`1, . . . , p

`
d) where we assume that the degrees do

not decrease,

p` ≤ p`+1, that is p`i ≤ p`+1
i , i = 0, . . . , d, ` = 0, . . . , N − 1.

Each grid hyperplane G`i,j ∈ G` has an associated multiplicity m`
i,j that satisfies the assumption

(2.1) level by level.
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We assume that the grids are nested in the following sense: every grid hyperplane in G` is
also present in G`+1 and its multiplicity in the higher level is at least equal to the previous
multiplicity plus the increase of the degree in the corresponding coordinate direction.

Based on the sequence of grids and degrees, we now define on each grid G` the set of tensor-
product B-splines B` of degree p`. The spans of the B-splines define the spline spaces

V` = span B`, ` = 0, . . . , N.

Under the previous assumptions concerning non-decreasing degrees and nested grids, the linear
spaces spanned by the B-splines are nested, i.e.,

V` ⊆ V`+1, ` = 0, . . . , N − 1.

For each level `, the grid G` and the degrees p` allow to apply the theory from Section 2. Thus,
if we are given a multi-cell domain M ` with respect to the grid G`, we may define a spline space
S`(M `). Note that the restriction of V` to M` is contained in this spline space,

V`|M` ⊆ S`(M `).

The connected components of the B-splines from B` with respect to the multi-cell domain

M` =
⋃
c∈M`

c

form a basis of this space according to Theorem 2.12.
In addition, we consider a nested sequence of domains

Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN = ∅, (3.1)

which will be called the domain hierarchy. We assume that these domains satisfy the following.

Assumption 3.1. Each set
Ω0 \ Ω`+1, ` = 0 . . . N − 1,

can be represented as a multi-cell domain with respect to the grid G`. More precisely, we assume
that there exists a multi-cell domain M ` ⊆ C`, which is a finite set of cells of the grid G`,
satisfying

Ω0 \ Ω`+1 =M`.

For convenience, we define
M−1 = ∅.

The sets
M` = Ω0 \ Ω`+1

were denoted as rings in [12], because, conceptually, they represent the domain Ω0 with the
“hole” Ω`+1. We will also adopt this concept. However, the above assumption concerning the
shape of the rings is actually weaker than the one in [12], where each Ω` was assumed to be a
multi-cell domain of level max(0, `− 1).

Note that these rings are also nested,

Ω0 =MN−1 ⊇MN−2 ⊇ · · · ⊇ M0 ⊇M−1 = ∅.
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Figure 5: Hierarchical mesh consisting of cells from three levels.

(a) Ω0 (b) Ω1

(c) Ω2

Figure 6: Domains Ω0, Ω1 and Ω2 associated with the mesh in Figure 5. Grid lines from level 0, 1, 2 are depicted
as solid, dashed, and dotted lines, respectively

(a) M0 (b) M1

(c) M2

Figure 7: Rings associated with the mesh in Figure 5.
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Example 3.2. Figure 5 shows a hierarchical mesh. The corresponding domains are shown in
Figure 6 and the associated rings are depicted in Figure 7. As already mentioned, Assumption 3.1
does not require the boundary of each Ω` to be aligned with the knots lines associated to the
previous level ` − 1, as it was assumed in [12]. For instance, the small L-shaped subdomain at
level 2 on the bottom right corner of the mesh was disallowed in [12].

Based on the sequences of function spaces and domains, we are now able to define the hierar-
chical spline space, provided that the restriction of a function to each of the multi-cell domains
M` belongs to the corresponding spline space S`(M `):

Definition 3.3. The hierarchical spline space H is given by

H = {h : Ω0 → R | ∀` : h|M` ∈ S`(M `)}.

According to this definition, a function is contained in the hierarchical space if it is a piecewise
polynomial function on the hierarchical grid defined by the nested grids and domains, where the
individual polynomial segments meet with the smoothness specified by the degrees and the
multiplicities of the grid hyperplanes. Note that this is more general than just requiring that

h|M` ∈ V`|M` .

3.2. The basis of the hierarchical spline space

Recall that we have defined a tensor-product spline basis B` on each grid G`. Similarly
to (2.3) we consider the B-splines whose support intersects the ring M`:

B`M` := {β ∈ B` | supp β ∩M` 6= ∅}.

Based on the definition of the rings, we again use the selection procedure from [12], which slightly
generalizes the earlier method proposed by Kraft in [18] by also allowing for coinciding subdomain
boundaries.

Definition 3.4. The hierarchical basis K is defined as

K =

N−1⋃
`=0

K`

with
K` = {β ∈ B`M` | supp β ∩M`−1 = ∅}.

Thanks to the local linear independence of the bases K` ⊂ B`, it can be shown that the set K of
hierarchical B-splines is linearly independent, see [18] or [29].

Now we are able to formulate the main result of this paper.

Theorem 3.5. If the assumption of Corollary 2.13 is satisfied for each level `, i.e., if for any
` = 0, . . . , N − 1, and any β ∈ B` the set supp β ∩M` is connected, then the hierarchical spline
basis K from Definition 3.4 spans the entire space H.

Proof. The proof is rather similar to the proof of Theorem 20 in [12]. Nevertheless, in order to
make this paper self-contained, we repeat it here in a shorter form.

We consider a function h ∈ H. The proof consists of two steps. First, we show that there
exist N functions h` ∈ span B`M` , ` = 0, . . . , N − 1, such that

h`|M` =

(
h−

`−1∑
i=0

hi

)∣∣
M` . (3.2)
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This can be proved by induction with respect to `. In each step, the right hand side of (3.2) can
be shown to belong to S`(M `), hence Corollary 2.13 implies the existence of h`.

Second, it can be shown by analyzing the right-hand side of equation (3.2) that h`|M`−1 = 0.
Therefore, the local linear independence of the B-splines implies that h` ∈ span K`.

Finally, by rewriting (3.2) for ` = N − 1, we obtain

h|MN−1 =

N−1∑
i=0

hi|MN−1 ,

which concludes the proof, since MN−1 = Ω0, hi ∈ span Ki, and
⋃N−1
i=0 Ki = K.

The assumptions of Theorem 3.5 are satisfied if each subdomain Ω` is either sufficiently small
or sufficiently large with respect to the supports of the B-splines at the previous level. This
condition is slightly weaker than the assumptions of Theorem 20 in [12].

Example 3.6. Consider the case where all the degrees (at all levels and in all coordinate direc-
tions) are equal to p and all the multiplicities of hyperplanes are equal to 1. In this case, when
considering dyadic refinement only, a sufficient condition for the assumptions of Theorem 3.5 to
be satisfied is that there is a finite set I such that

Ω` =
⋃
i∈I

Ω`i , where
(
Ω`i
)◦ ∩ (Ω`j)◦ = ∅ for i, j ∈ I, i 6= j

(that is, the interiors of the sets Ω`i are mutually disjoint) and each Ω`i is such that either

• Ω0 \ Ω`i admits an offset1 at distance (p− 1)/2 with respect to the grid G`−1 or

• Ω`i is contained in a box consisting of (p− 1)× · · · × (p− 1) cells of the grid G`−1.

Figure 8 provides a bivariate example.

4. The decoupled hierarchical basis

We introduce a decoupling mechanism, which is inspired by the so-called truncation intro-
duced in [13]. It can be suitably exploited in order to relax the assumptions of Theorem 3.5.

We consider the representation of a B-spline β with respect to the next (i.e., finer) level in
the spline hierarchy. For each connected component of β we define a decoupled basis function.
This function collects the contributions of those functions of the next level whose supports have
an overlap with a particular connected component of the support of the original B-spline β,
restricted to the associated multi-cell domain M`.

More precisely, we consider the representation of a B-spline β ∈ B` with respect to the basis
B`+1 at the next level given by

β =
∑

γ∈B`+1

c`+1
γ (β)γ,

with certain coefficients c`+1
γ (β) ∈ R, which are determined by the knot insertion algorithm. The

function β possesses an associated coefficient graph Γ`β with respect to the multi-cell domain M `,

see Definition 2.8. We consider the connected components K(Γ`β) of the coefficient graph and
use each of them to define a decoupled function.

1The offset to a domain and its admissibility have been defined in [12] for the case d = 2 and they are defined
in Appendix A for d = 3. The latter definition extends to any dimension d.
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Ωℓ
0 Ωℓ

1

Figure 8: A domain Ω` = Ω`
0 ∩ Ω`

1 that satisfies the assumptions of Theorem 3.5 for p = 3 as specified in
Example 3.6. We show the interior of Ω0 \Ω` (dark gray cells), Ω`

0 and Ω`
1 (light gray cells), the offset of Ω0 \Ω`

0
at distance 1 (thick black line) and a box of 2× 2 cells containing Ω`

1 (hatched light gray cells). The dashed lines
represent the grid G`−1.

Definition 4.1. For each connected component Φ ∈ K(Γ`β) we define a decoupled basis function

δΦ(β) =
∑

γ∈B`+1: supp γ∩(
⋃

Φ)6=∅

c`+1
γ (β)γ, Φ ∈ K(Γ`β),

where
⋃

Φ =
⋃
c εΦ c denotes the union of the cells that are vertices of Φ. If the support of each

function γ ∈ B`+1 intersects at most one of the sets
⋃

Φ, then so do the functions δΦ(β). We
say that the decoupling is feasible if this condition is satisfied for all β ∈ B` and for all levels `.

If the decoupling is feasible, then the restriction of the decoupled basis function δΦ(β) to
the multi-cell domain M` is identical to the function βΦ that was defined in Definition 2.11.
Consequently, the decoupled functions inherit the properties of these functions. In particular,
Theorem 2.12 implies the following result.

Corollary 4.2. If the decoupling is feasible, then the functions from the set

D`
M` := {δΦ(β) |Φ ∈ K(Γ`β), β ∈ B`M`}, (4.1)

when restricted to M`, form a locally linearly independent basis of S`(M `).

Generally, the feasibility of the decoupling depends on the choice of the domains Ω`, ` =
0, . . . , N . For certain classes of spline spaces V`, ` = 0, . . . , N − 1, however, the decoupling is
always feasible. We introduce the following definition.

Definition 4.3. A sequence of nested spline spaces (V`)N−1
`=0 is said to possess the unconstrained

completeness property (UCP) if the decoupling is feasible at all levels and for any choice of the
domains Ω`.

UCP is automatically granted if the support of each function of level ` + 1 is contained in
2×2×· · ·×2 cells of the grid of level `. Indeed, if this condition is satisfied, then for any choice of
the multi-cell domain M `, the intersection of the support of a finer function with this multi-cell
domain is connected. Special instances of this situation will be presented in Examples 4.5 and
4.6 below.
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Corollary 4.4. The functions contained in

D =

N−1⋃
`=0

{δΦ(β) ∈ D`
M` | supp δΦ(β) ∩M`−1 = ∅} (4.2)

form a basis of the space H, which was introduced in Definition 3.3, provided that the decoupling
is feasible at all levels. In particular, if the sequence of nested spline spaces has the unconstrained
completeness property, then this is true for any choice of the domain hierarchy (3.1).

Proof. The result can be derived by generalizing the proof of Theorem 3.5. This can be done by
simply replacing B`M` by D`

M` throughout the original proof.

UCP should be quite useful when designing refinement algorithms that maintain the com-
pleteness property. Typically, the refinement is guided by an error estimator that selects the
cells that need to be refined. Without UCP, further cells have to be added in order to maintain
the completeness of the hierarchical space. This is no longer needed when using hierarchies with
UCP and the decoupled hierarchical basis D of the spline space.

A sufficient condition for UCP is the following. For any choice of Ω`+1 and for any basis
function β ∈ B` the support of any basis function γ ∈ B`+1 with supp γ ⊆ supp β intersectsM`

in a connected set. Finally, we present two examples of hierarchies with UCP.

Example 4.5. UCP is satisfied when considering only single knots at all levels and using a
refinement strategy that splits every cell of level ` in p`1 × . . .× p`d cells of level `+ 1.

Example 4.6. When considering dyadic refinement, where every cell of level ` is split into 2d

cells of level `+ 1, UCP is satisfied if the multiplicities are chosen such that the inequalities

3m`
i,j ≥ p`i + 1

hold for all levels, for i = 1, . . . , d and for j ∈ Z.

Both examples include quadratic tensor-product splines with dyadic refinement. Special cases
of both examples are shown in Figure 9. The B-splines β are decoupled into two basis functions
δΦ(β) and δΨ(β) associated to the connected components Φ,Ψ ∈ CC(Γβ). The finer subdomain
is the region covered by the finer grid, whereas the coarser subdomain contains the entire mesh.

5. Closure

We analyzed dimensions and bases of multivariate tensor-product spline functions on a multi-
cell domain. Based on these results, by a slight generalization of the techniques from [12], we
derived a simple sufficient condition for the completeness of a hierarchical spline space. More
precisely, this condition guarantees that any piecewise polynomial functions on the given hierar-
chical grid can be represented in the hierarchical tensor-product B-spline basis. In addition, we
proposed the new concept of the decoupled hierarchical basis that allows to relax — and in the
case of hierarchies with UCP even to eliminate — the conditions on the domain hierarchy that
are required to guarantee the completeness.

Future work will focus on formulas for the dimensions of hierarchical spline spaces, which
are currently only given implicitly by the number of active tensor-product B-splines, and on
applications of multivariate hierarchical B-splines, in particular in isogeometric analysis.
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supp δΦ(β)

supp δΨ(β)

supp β

supp δΨ(β)

supp δΦ(β)

supp β

Φ

Ψ

Φ

Ψ

Figure 9: Two bivariate spline hierarchies with UCP. Top left: bicubic splines with single knots and triadic
refinement. Top right: biquintic splines with double knots and dyadic refinement. Both pictures show the support
of a B-spline β (solid black line) and of two decoupled basis functions δΦ(β) and δΨ(β) (red and blue regions) that
are derived from the connected components Φ,Ψ of the coefficient graph of β. Bottom: the associated coefficient
graphs.

Appendix A. The trivariate case with uniform knots and maximal smoothness

We consider Corollary 2.13 for spline spaces on multi-cell domains in three-dimensional space
with maximal smoothness (i.e., all the multiplicities are equal to one). For simplicity, we consider
uniform knots only, but all results remain valid in the non-uniform case. We derive formulas that
give the number of B-splines, provided that the intersections of their supports with the multi-cell
domains are connected. We show that the results by Berdinsky et al. [2] are a special case of
this more general analysis.

Multi-cell domains and their properties have been studied in digital geometry [17]. However,
most of the existing results are limited to simple polyhedra, i.e., multi-cell domains without
kissing vertices and edge segments (see Subsection A.3 below), since these polyhedra are preferred
in the relevant applications.

A.1. Dilations, offsets, and types of edges and vertices

Each of the basis functions of tri-degree p = (p, p, p), where p is a positive integer, can be
identified with

• the centroid of the central cell of its support if p is even,

• the intersection of eight cells in the middle of the support if p is odd.

In order to derive the number of basis functions that have a support with a non-empty intersection
with M, we define the notion of dilation of a multi-cell domain. Moreover, we consider the so-
called combinatorial volume, which is related to the number of cells and grid points of a multi-cell
domain. The combinatorial volume of a multi-cell domain is then equal to the number of the
basis functions of the spline space. Recall that the notion of a multi-cell domain refers both to
a set M of cells and to the subset M of R3 that is occupied by them.
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Definition A.1. The dilation M(q) of a multi-cell domain M, defined for any even value of q,
is recursively obtained as

M(q) :=

{
M, if q = 0,

M(q−2) ∪N(M(q−2)), for q ≥ 2,

where N(M(q−2)) is the offset region of thickness 1 to M(q−2), i.e., the set of all the cells c ∈ C
that are contained in R3 \M(q−2) and that share a vertex, an edge or a face with M(q−2).

Clearly, the dilations of a multi-cell domain are again multi-cell domains. A related notion is
the following.

Definition A.2. The offset of the multi-cell domain M at distance q/2 is the set

F (q)(M) :=

{
x ∈ Rd | inf

r∈M
max
i=1,...,d

(|ri − xi|) =
q

2

}
, (A.1)

where r = (r1, . . . , rd) is a point that belongs to the multi-cell domain M. We assume d = 3.

The right-hand side of (A.1) is the set of points in Hausdorff distance q/2 (with respect to
maximum metric) fromM. Geometrically, it is a generalization of the notion of the offset curve
as defined in [12] to create a surface in three dimensions.

Note that the offset is defined for any nonnegative value of q, while the dilation is defined for
even values only.

Dilations and offsets are closely related. For even values of q, the boundary of the dilation
M(q) is a subset of the offset F (q)(M). This characterization can be extended to odd values of
q also, but we do not need it in this paper.

Definition A.3. The offset F (q)(M) is said to be admissible, or, equivalently, M is said to
admit an offset at distance q

2 , if either

• q = 0 holds or if

• F (q−1)(M) is admissible and all connected components of F (q)(M) are homeomorphic to
a closed surface in R3 (i.e., to an embedded 2–manifold in 3–space).

Example A.4. The multi-cell domain shown in Figure A.10 admits an offset at distance 1
2 but

not at distance 2
2 = 1. Indeed, F (2)(M) is not homeomorphic to a closed surface.

Finally, we introduce another notion, which will be used to count the basis functions that are
not identically zero on a multi-cell domain.

Definition A.5. The q-th combinatorial volume of a multi-cell domain M is defined as

ω(q)(M) :=

{
number of cells of M(q), if q is even;

number of grid points of M(q−1), if q is odd.

By grid points we mean the intersections of three grid hyperplanes.

A multi-cell domain can be characterized by various quantities. Its boundary consists of
planar patches that consist of several faces (each belonging to only one cell). These patches
meet in edges that consist of edge segments (each being incident to two or four faces). The edges
meet in vertices. We consider
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(a) domain (b) offset surface

Figure A.10: (a) Example of a multi-cell domain that is admissible for q = 1 but not for q = 2. (b) The
non-admissible offset surface at distance 2.

• the number of cells z ,

• the number of boundary faces f ,

• the number of convex edge segments ecvx, of non-convex edge segments encx and of kissing
edge segments eksg (see Table A.1) on the boundary,

Table A.1: The types of boundary edges of a multi-cell domain.

convex edge non-convex edge kissing edge
(cvx) (ncx) (ksg)

• the number of vertices of type i, where i = 1, . . . , 21 according to Table A.2, that will be
denoted by vi.

In addition, we use upper indices to denote the number of these quantities for the dilation

M(q). For instance, z(q), e
(q)
cvx and v

(q)
i denote the number of cells, convex edge segments, and

vertices of type i of the dilation M(q). Clearly, z = z(0) etc.
Finally, we introduce the vertex term

v(q) = (v
(q)
1 − 2v

(q)
3 − 6v

(q)
4 − 3v

(q)
5 − v(q)

6 − v(q)
7

− 2v
(q)
9 − 2v

(q)
10 + 4v

(q)
13 − v

(q)
14 + v

(q)
15 + 3v

(q)
16 + 2v

(q)
18 + 2v

(q)
19 + v

(q)
20 ) (A.2)

and the edge term

e(q) = e(q)
cvx − e(q)

ncx − 2e
(q)
ksg. (A.3)

Again, we shall omit the index (q) for q = 0, i.e., we write v = v(0), e = e(0) and f = f (0). Note
that if eK = v4 = v19 = 0 (see Subsection A.3) then v(q) is equal to T from Theorem 8.6 in [17].
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Table A.2: The types of vertices of a multi-cell domain, up to rotations and symmetries and ordered by the
number of incident cells. The configurations marked by ?, ◦ and + do not correspond to vertices, since they are
located within edges, within patches and in the interior of the multi-cell domain, respectively.

1 2? 3 4 5 6 7

8◦ 9 10 11 12? 13 14

15 16 17? 18 19 20 21+

A.2. The dimension of the spline space

We derive the number of B-splines whose support intersects a given multi-cell domain and
we specify it in terms of the quantities that characterise the domain M. Lemma A.6 gives the
formula for these quantities for the dilated domains M(q) including the combinatorial volume
ω(q)(M) when q is even, while Lemma A.7 allows us to compute the combinatorial volume when
q is odd. The dimension of the spline space is then described in Theorem A.8.

Lemma A.6. If the multi-cell domainM admits an offset at distance q/2, where q is even, then
the vertex term v(q), the edge term e(q), the number of faces f (q) and the number of cells z(q) of
the dilated multi-cell domain M(q) satisfy

v(q) = v, e(q) = e+
3q

2
v, f (q) = f + qe+

3q2

4
v, z(q) = z +

q

2
f +

q2

4
e+

q3

8
v. (A.4)

Moreover, the formula for z(q) is valid even if M admits an offset at distance q−1
2 only.

Proof. Formulas (A.4) can be verified by induction (with respect to even values of q) using
Table A.3. Given the dilation M(q) of a multi-cell domain M, the table specifies how the
number of each kind of feature (i.e., faces, edge segments of the three types, and vertices of the
21 types) of the dilation M(q+2) depends on the numbers of miscellaneous features in M(q),
provided that the offset at distance (q+ 2)/2 is admissible (except for the case of cells where we
need only offset at distance (q + 1)/2 to be admissible). This table can be derived by a careful
case-by-case analysis.

Lemma A.7. The number of grid points g(M) of a multi-cell domain M is equal to

g(M) = z +
f

2
+
e

4
+
v

8
.

Lemma A.7 can be proved by inspecting various cases similarly to Lemma A.6.
Based on the previous two lemmas and on Corollary 2.13, we are now able to formulate the

main result of this appendix.
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Table A.3: Numbers of cells, faces, convex/non-convex/kissing edge segments and vertices of the various types
of the dilation M(q+2) that are contributed by each cell, face, edge segment and vertex of M(q). The proof of
Lemma A.6 is based on this information.

dilation M(q+2)

cell face edge vertex

cvx ncx ksg 1 3 4 5 6 7 9 10 11 13 14 15 16 18 19 20

m
u

lt
i-

ce
ll

d
o
m

a
in
M

(q
)

ce
ll

1

fa
ce

1 1

ed
g
e cvx 2 2 1

ncx -2 -2 1

ksg -4 -4 2

v
er

te
x

1 1 3 3 1

3 -2 -6 -4 2 2

4 -6 -18 -6 12 6

5 -3 -9 -3 6 3

6 -1 -3 -2 1 1

7 -1 -3 -3 1 1

9 -2 -6 -3 3 1

10 -2 -6 -2 4 2

11 -1 -1 1 1

13 4 12 -12 4

14 -1 -3 -1 2 1

15 1 3 -3 1

16 3 9 -9 3

18 2 6 -6 2

19 2 6 -6 2

20 1 3 -3 1

Theorem A.8. Consider a multi-cell domain M that admits an offset at distance (p − 1)/2,
where p is a non-negative integer. Then the p–th combinatorial volume of M — and therefore
also the dimension of S(M) — is equal to

ω(p)(M) = z +
p

2
f +

p2

4
e+

p3

8
v, (A.5)

where z and f are the number of cells and boundary faces, respectively, while the vertex and edge
terms v = v0 and e = e0 have been defined in equations (A.2) and (A.3).

Proof. For even values of p we have that

ω(p)(M) = z(p)

and thus (A.5) follows from Lemma A.6.
For odd values of p, we obtain ω(p)(M) = g(M(p−1)). Using Lemma A.7, we obtain

g(M(p−1)) = z(p−1) +
1

2
f (p−1) +

1

4
e(p−1) +

1

8
v(p−1). (A.6)

Using Lemma A.6, equation (A.6) implies (A.5). This is where we need the assumption regarding
the admissibility of the offset at distance p−1

2 .
According to Corollary 2.13, the combinatorial volume is equal to the dimension of S(M),

since the combinatorial volume is equal to the cardinality of BM and the admissibility of the
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p
p′

M

M

supp β

s′

Figure A.11: If the coefficient graph of a basis function β has two connected components, then shrinking supp β
(single hatching) gives a cube s′ (double hatching) that touches the boundary of M (solid light gray) in at least
two disjoint sets of points. The center of s′ (black dot) belongs to a self–intersetion of a certain offset (thick solid
black line).

offset implies the assumption of that Corollary2. Indeed, if there is a basis function whose
coefficient graph has at least two connected components, then we may “shrink” its support to
a cube s′ constisting of p′ × p′ × p′ times cells, where p′ ≤ p − 1 is as small as possible, and so
that this cube still “touches” cells from two components (that is, it contains two points from two
different components but (s′)◦ ∩M◦ = ∅, see Figure A.11 for a bivariate analogy). The center

of s′ belongs a self-intersection of the offset at distance p′

2 and thus the offset at distance p−1
2 is

not admissible.

A.3. The case of topological manifolds with boundaries

The remainder of this appendix relates our result to the dimension formula of Berdinsky et
al. [2, Corollary 8]. Note that this paper also derives other dimension formulas that do not rely
on the admissibility of offsets but on other topological constraints [2, Corollary 7].

Lemma A.9. For any multi-cell domain M we have that

c+ f
p

2
+ (ecvx − encx − 2eksg)

p2

4
+ v

p3

8
=

= c(p+ 1)3 − fitl p(p+ 1)2 + (eitl − eksg)p2(p+ 1)+

+ (−v4 + v7 + v11 + v12 + 3v13 + v15 + 2v16 + v18 + v19 − v21)p3. (A.7)

where fitl and eitl are the number of internal faces and internal edges (faces and edges of cells
that are contained in the interior of M), respectively.

Proof. We compare the coefficients of the powers of p on both sides of the equation.

p0: We have c = c.

p1: We need to prove that
6c = 2fitl + f. (A.8)

2Clearly, the admissibility of the offsets is sufficient but not necessary for this assumption to be satisfied;
consider, e.g., uniform triquadratic splines on 3× 3× 3 cells with the central cell removed.
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This equation is satisfied since each cell has six faces and all internal faces belong to two cells.

p2: We need to prove that

3c− 2fitl + eitl − eksg =
1

4
(ecvx − encx − 2eksg). (A.9)

Consider the two identities

4f = 2ecvx + 2encx + 4eksg + 2eflt

4fitl = 2encx + 4eitl + eflt.

where eflt is the number of flat edges, i.e., edges within patches of the boundary of the multi-cell
domain (shared by two co-planar boundary faces). These two identities imply

−4fitl + 2f + 4eitl − 4eksg = ecvx − encx − 2eksg.

Dividing by four and using again (A.8) leads to (A.9).

p3: We need to prove that

8(c−fitl+eitl−eksg+(−v4+v7+v11+v12+3v13+v15+2v16+v18+v19−v21)) =

= (v1−2v3−6v4−3v5−v6−v7−2v9−2v10+4v13−v14+v15+3v16+2v18+2v19+v20). (A.10)

Each cell has eight vertices, thus

8c = v1 + 2v2 + 2v3 + 2v4 + 3v5 + 3v6 + 3v7 + 4v8 + 4v9

+ 4v10 + 4v11 + 4v12 + 4v13 + 5v14 + 5v15 + 5v16 + 6v17 + 6v18 + 6v19 + 7v20 + 8v21. (A.11)

Similarly, each face has four vertices, hence

4fitl = v2 + v5 + 2v6 + 4v8 + 3v9 + 3v10 + 2v11 + 2v12 + 5v14 + 4v15 + 3v16

+ 7v17 + 6v18 + 6v19 + 9v20 + 12v21.

Moreover, each edge has two vertices, thus

2eitl = v8 + v14 + 2v17 + v18 + 3v20 + 6v21 (A.12)

and
2eksg = v3 + v5 + 3v7 + 2v11 + 2v12 + 6v13 + v15 + 3v16 + v18. (A.13)

A suitable linear combination of (A.11)–(A.13) gives (A.10).

Corollary A.10. Consider a multi-cell domain M with eksg = 0, v4 = 0 and v19 = 0 that
admits an offset at distance p−1

2 . Then

V(p)(M) = c+ f
p

2
+ (ecvx − encx)

p2

4
+ (v1 − v6 − 2v9 − 2v10 − v14 + v20) =

= c(p+ 1)3 − fitlp(p+ 1)2 + eitlp
2(p+ 1)− v21p

3. (A.14)

Proof. Since eksg = 0, there are no vertices that are incident to a kissing edge, i.e.,

v3 = v5 = v7 = v11 = v12 = v13 = v15 = v16 = v18 = 0.

Substituting these values into (A.7) gives (A.14).

Equation (A.14) shows that the result of [2, Corollary 8] is a special case of Theorem A.8.
Note that a multi-cell domain with eksg = v4 = v19 = 0 is called a topological manifold with
boundary in [2].
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