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Abstract

We introduce a novel basis for multivariate hierarchical tensor-product spline
spaces. Our construction combines the truncation mechanism (Giannelli et al.,
2012) with the idea of decoupling basis functions (Mokrǐs et al., 2014). While the
first mechanism ensures the partition of unity property, which is essential for ge-
ometric modeling applications, the idea of decoupling allows us to obtain a richer
set of basis functions than previous approaches. Consequently, we can guaran-
tee the completeness property of the novel basis for large classes of multi-level
spline spaces. In particular, completeness is obtained for the multi-level spline
spaces defined on T-meshes for hierarchical splines of (multi-) degree p for exam-
ple (i) with single knots and p-adic refinement and (ii) with knots of multiplicity
m ≥ (p + 1)/3 and dyadic refinement (where each cell to be refined is subdivided
into 2d cells, with d being the number of variables) without any further restric-
tion on the mesh configuration. Both classes (i,ii) include multivariate quadratic
hierarchical tensor-splines with dyadic refinement.

Keywords: Hierarchical B-splines, box-mesh, T-mesh, dimension of splines,
completeness, truncation, decoupling

1. Introduction

A subdivision of a domain in d-dimensional space into axis-aligned boxes is
called a box-mesh, in particular a T-mesh for dimension d = 2. The analysis of the
dimensions and the construction of bases of multivariate (with focus on bivariate)
spline spaces on box meshes and T-meshes has been the topic of a substantial
number of publications.
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One of the earliest publications (Chui and Wang, 1983) included not only the
dimension formula for splines on simple cross-cut grid partitions but also a detailed
study on bivariate splines with rectangular grid partitions. More recently, Deng
et al. (2006) proposed a method based on Bézier nets to calculate the dimension of
a spline function space over a T-mesh, in particular in the case when the order of
smoothness is less than half the degree of the spline functions, which corresponds
to knot multiplicities satisfying m ≥ (p + 1)/2. We will refer to this class of
functions – that allows to decouple the degrees of freedom – as splines with reduced
smoothness.

The dimension of bivariate splines with reduced smoothness was reconsidered
by Huang et al. (2006a), who derived an equivalent dimension formula using the
smoothing cofactor method. A further extension was presented by Huang et al.
(2006b). The dimension of trivariate splines on hierarchical box meshes for the
case of reduced smoothness was investigated by Li et al. (2006b). Considering
again the bivariate case, Li et al. (2006a) used the method of smoothing cofactors
to derive a dimension formula for splines with reduced smoothness.

The splines of reduced smoothness have been used for surface modeling and
reconstruction by Li et al. (2007) and Deng et al. (2008), where they were called
PHT splines (Polynomial splines over Hierarchical T-meshes). See also Li et al.
(2009) for the bicubic splines on general T-meshes. The extension to surfaces of
arbitrary topology (i.e., including vertices of arbitrary valency) has been presented
by Li et al. (2010). Wang et al. (2011) described the generalization to the case
of piecewise rational functions and presented an application to numerical simula-
tion using the novel approach of isogeometric analysis (cf. Cottrell et al., 2009).
Isogeometric analysis with PHT splines was also studied by Nguyen-Thanh et al.
(2011). Schumaker and Wang (2012) studied the approximation power of polyno-
mial splines on T-meshes. This includes PHT splines as a special case. Also the
dimension formula from Deng et al. (2006) and Huang et al. (2006b) is confirmed
there.

In the general case (i.e., non-reduced smoothness), Li and Chen (2011) and
Berdinsky et al. (2012) observed that the dimension of the spline space may depend
on the geometry of the T-mesh. Mourrain (2014) presented a general approach
based on homological algebra to analyze the dimension of bivariate splines on T-
meshes. The resulting formula includes certain correction terms that are difficult
to evaluate in general. For a special class of meshes, which are called diagonalizable
T-meshes, Li (2012) provided a general dimension result that depends only on the
topology of the T-mesh but not on its geometry. Wu et al. (2013) studied another
special class of T-meshes and used Mourrain’s approach to obtain a dimension
formula. Wu et al. (2012) proposed a method for the construction of hierarchical
bases of a bivariate spline space with the highest order smoothness over a consistent
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hierarchical T-mesh. Deng et al. (2013) investigated the dimension of bivariate
biquadratic spline spaces over T-meshes.

In these publications, the analysis of the spline space was performed indepen-
dently on a specific construction of a basis (or, more generally, of a generating
system). There exist three additional approaches, which start from the construc-
tion of a basis (or a generating system). These approaches are T-splines (see Scott
et al. (2012) and the references cited therein), LR splines (Dokken et al., 2013) and
hierarchical B-splines. We are interested in the latter approach, in particular we
will consider the completeness question: Given a basis of a spline space, does the
space spanned by it include all piecewise polynomial functions of the given degree
and smoothness on the underlying T-mesh or box-mesh?

The construction of hierarchical splines was introduced by Forsey and Bartels
(1988). About ten years later, Kraft (1997) presented a construction of a basis for
this space. The completeness question for hierarchical B-splines was first investi-
gated by Giannelli and Jüttler (2013) for bivariate splines of maximal smoothness.
Meanwhile, these results have been extended to the trivariate case and to the case
of non-uniform degrees and lower smoothness (Berdinsky et al., 2013, 2014a). A
basis for bivariate spline spaces with maximal smoothness has been presented by
Berdinsky et al. (2014b).

We summarize the development and the dependencies between some of these
contributions in Figure 1. The arrows indicate the citations, where we omitted
arrows that can be replaced by compositions of other arrows in order to keep the
graph as simple as possible.

The present paper introduces a novel basis for multivariate hierarchical tensor-
product spline spaces. Our construction combines the truncation mechanism (Gi-
annelli et al., 2012) with the idea of decoupling the basis functions (Mokrǐs et al.,
2014). Since the truncation mechanism may produce linearly dependent systems
of functions, we use the novel framework for the truncation developed by Zore
and Jüttler (2014) that applies to generating systems also. Moreover, we employ
recent results on completeness obtained by Mokrǐs et al. (2014) and use them to
characterize the completeness of the new basis.

The truncation mechanism ensures the partition of unity property, which is
essential for geometric modeling applications. Using decoupling allows us to obtain
a richer set of basis functions. Consequently we can guarantee the completeness
property for large classes of multi-level spline spaces.

The remainder of this paper consists of five sections. First we introduce the
notation and recall the notion of the multi-level spline space on the box mesh
that is determined by a construction of hierarchical B-splines. Then we introduce
decoupled splines, which form a new generating system for the spline functions
on a multi-cell domain. Section 4 invokes the framework of Zore and Jüttler
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Figure 1: Selected papers and their dependencies (according to the citations).

(2014) in order to obtain the basis of truncated decoupled hierarchical B-splines
(TDHB-splines), which forms a nonnegative partition of unity. The following
section identifies conditions that guarantee the completeness of TDHB splines.
Finally, we conclude the paper.

2. Preliminaries

We consider hierarchies of tensor-product spline functions defined on the d–
dimensional space Rd with coordinates x = (x1, . . . , xd). Given a number of levels
N , we assume that a strictly increasing bi-infinite sequence of (grid) nodes(

g`i,j
)
j∈Z , g`i,j < g`i,j+1

is given for each coordinate xi, i = 1, . . . , d and for each level ` = 0, . . . , N . We
require that these sequences are nested, i.e.,

(
g`i,j
)
j∈Z is a subsequence of

(
g`+1
i,j

)
j∈Z.

These nodes define grid hyperplanes of level `,

{x ∈ Rd |xi = g`i,j} (i = 1, . . . , d; j ∈ Z)

that form the grid of level `. Figure 2 illustrates these notions by a bivariate
example.
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Figure 2: Nodes and grid hyperplanes for d = 2 and N = 2.

The grid nodes g`i,j and the grid hyperplanes defined by them have associated
multiplicities. In principle, these multiplicities could depend on the level `, the
index of the coordinate direction i and on the index j in the sequence of nodes.
In order to keep the notation simple, we shall assume that the multiplicities are
independent of j. Consequently, we denote them by m` = (m`

1, . . . ,m
`
d). However,

most of the results presented in the remainder of the paper can be generalized to
the case of non-uniform multiplicities.

The grid hyperplanes subdivide the d–dimensional space Rd into cells of level `,

c`j =

d

X
i=1

[g`i,ji−1, g
`
i,ji

],

where X denotes simply the Cartesian product and j = (j1, . . . , jd) ∈ Zd. Let C`
be the set of all cells of level `. Any union of finitely many cells from C` will be
called a multi-cell domain of level `.

Let Ω be a bounded open domain in Rd and consider open sets Ω`, ` =
0, . . . , N + 1 satisfying

Ω = Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN+1 = ∅.
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(a) mesh (b) ring ∆0 (c) ring ∆1 (d) ring ∆2

Figure 3: An example of a hierarchical mesh and the associated rings.

This nested sequence of open domains will be called the domain hierarchy. In
addition, we will consider the complementary hierarchy of the so-called rings

∆` = Ω0 \ Ω`+1 (` = 0, . . . , N),

which satisfy ∆` ⊆ ∆`+1. The following assumption will be essential:

(A1) Each ∆` is a multi-cell domain of level `, i.e., a union of cells of level k with
k ≤ `.

An example is shown in Figure 3.
In order to define a hierarchy of spline spaces, we consider a sequence of (multi-)

degrees p` = (p`1, . . . , p
`
d) and multiplicities m` = (m`

1, . . . ,m
`
d) that are assumed

to satisfy

(A2) 1 ≤ m`
i ≤ p`i , p`+1

i − p`i ≤ m`+1
i −m`

i , and p`i ≤ p`+1
i .

For each level ` and each coordinate direction xi we use the nodes g`i,j and
the associated multiplicities m`

i to define a bi-infinite knot sequence, simply by
repeating each node m`

i times. Further we denote with B`
i the basis of B-splines

with variable xi that are defined on these knot sequences. More precisely, each
tuple of p`i + 2 adjacent knots defines a B-spline, e.g., by the well-known B-spline
recurrence formula (see Prautzsch et al., 2002). The collection of these B-splines
forms the basis B`

i . The knot multiplicities do not exceed the degrees, hence all
B-splines are continuous.

For each level ` we denote with
⊗d

i=1B
`
i the set of tensor-product B-splines that

are obtained by multiplying d univariate B-splines, one from each B`
i . Moreover,

we collect the tensor-product B-splines that are not equal to the null function on
Ω,

{γ` ∈
d⊗
i=1

B`
i | γ`|Ω 6= 0}.
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In the remainder of the paper we will consider only the restrictions of these B-
splines to Ω and denote them simply by γ`i . They form the (tensor-product)
B-spline basis vector

G` = (γ`1, . . . , γ
`
n`)

T

and we denote its size by n` (note that ` is an upper index, not a power). The
elements of this vector span the space

V` = span G`|Ω.
The assumption (A2) concerning degrees and multiplicities together with the nest-
edness of the sequences of grid nodes imply that these spaces are nested, V` ⊆ V`+1.
Furthermore, there exist refinement matrices R` = (r`ij) such that

G` = R`+1G`+1 (` = 0, . . . , N). (1)

These matrices can be generated with the help of the knot insertion algorithm
for B-splines, see Prautzsch et al. (2002). Due to the linear independence and
the partition of unity property of tensor-product B-splines, these matrices are left
stochastic1, i.e., all their entries are nonnegative and the column vectors sum to
one. Indeed, Eq. (1) combined with

1 = 1`G` = 1`+1G`+1 (2)

implies 1`R`+1 = 1`+1, where 1k denotes the row vector of dimension nk with all
its elements being equal to 1.

Given an open set D ⊂ Rd, we denote with Πp(D) the linear space of multi-
variate polynomials of degree p on its closure D and with Cs(D) the linear space
of all functions with the property that all their partial derivatives up to order
s = (s1, . . . , sd) exist at all points of D and they can be continuously extended to
the closure D.

Definition 1. For each ring ∆` we define the spline space of level `,

S` = {s : ∆` → R | s ∈ Cp`−m`

(∆`) and ∀c ∈ C`, c ⊆ ∆` : s|c ∈ Πp`

(c)}.
Further, we define the multi-level spline space

S = {s : Ω→ R | ∀N`=0 : s|∆` ∈ S`}.
The remainder of this paper discusses the construction and some properties of

a basis for the multi-level spline space under certain assumptions concerning the
domain hierarchy.

1Here we extend the notion left stochastic to non-square matrices. Products of left stochastic
matrices are again left stochastic.
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3. Decoupled splines

We enrich the B-spline bases by introducing a decoupling mechanism. This
mechanism will allow us to split the B-splines in G` into several independent
components according to the connectivity of the intersection of their support with
the corresponding ring ∆`.

We consider the support of functions defined on Ω,

supp f = {x ∈ Ω | f(x) 6= 0}. (3)

Given a function γ`i ∈ G`, we consider its representation with respect to the
basis functions of the next level,

γ`i =
n`+1∑
j=1

r`+1
ij γ`+1

j = r`+1
i G`+1. (4)

The coefficient vector in this equation is the i-th row vector of the refinement
matrix R`+1 in Eq. (1). The decoupling graph Γ`i is defined as follows:

• The basis functions γ`+1
j with nonzero coefficients r`+1

ij 6= 0 are vertices of Γ`i .

• Two vertices γ`+1
j and γ`+1

j′ are connected by an edge if and only if

supp γ`+1
j ∩ supp γ`+1

j′ ∩∆` 6= ∅.

Further we denote by Ξ`
i the set of all connected components of Γ`i (which is a set

of graphs) and we use the symbol ε to denote the relation “is a vertex of”. For
example, γ εΦ means that γ is a vertex of the graph Φ.

Figure 4 shows a decoupling graph of a quintic B-spline with uniform knots. In
this example, the graph has 7 vertices, 7 edges and three connected components.
Uniform dyadic refinement splits the the quintic B-splines into 7 finer ones, thus
the graph has 7 vertices. The supports of the first four finer B-splines (green
dashed lines) mutually intersect each other within ∆0, hence the corresponding
vertices are connected by edges and form a connected component of the graph.
Similarly, the supports of the last two finer B-splines (blue and dashed) intersect
each other within ∆0, hence the corresponding vertices are connected by edges
and form another connected component of the graph. The remaining finer B-
spline (red) corresponds to an isolated vertex of the decoupling graph. See also
Example 3.

Definition 2. We define the decoupled B-splines δ`i,Φ of level ` by

δ`i,Φ =
∑

j=1,...,n`+1

γ`+1
j εΦ

r`+1
ij γ`+1

j (` = 0, . . . , N ; i = 1, . . . , n`; Φ ∈ Ξ`
i). (5)

8



W
1

W
0

0.2 0.4 0.6 0.8 1.0 1.2

-0.2

0.2

0.4

0.6

Φ Φ′ Φ′′

Figure 4: Top: Quintic B-spline (black) of level 0 and decoupled B-splines (green, red and blue)
derived from it by choosing Ω1 = (0.4, 1). The decoupled B-splines are sums of B-splines from
the finer level (dashed). Bottom: Associated decoupling graph.

A similar definition was presented in Mokrǐs et al. (2014). However, we did not
consider the isolated vertices of the decoupling graph there.

Each of the B-splines of level ` is split into one or more decoupled B-splines,
one for each connected component of the decoupling graph. Each decoupled B-
spline is a linear combination of B-splines of level `+ 1, with coefficients inherited
from the B-spline refinement equation. Note that the decoupled B-splines are not
necessarily different from each other. In particular, each B-spline γ`+1

j of level `+1

with supp γ`+1
j ∩ ∆` = ∅, which is therefore an isolated vertex of the decoupling

graphs, may be present as a decoupled B-spline several times.

Example 3. Figure 4 shows the decoupling graph and the decoupled B-splines
which are obtained from a single quintic B-spline of degree 5 with uniform knots
(. . . ,−0.2, 0, 0.2, . . .) and dyadic refinement. Choosing the domain Ω1 = (0.4, 1)
leads to three decoupled B-splines.

In order to describe the relation between B-splines and decoupled B-splines in
detail, we collect the decoupled B-splines of level ` in a column vector

Ĝ` = (γ̂`1, . . . , γ̂
`
n̂`)

T
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of dimension

n̂` =
n`∑
i=1

|Ξ`
i |.

Here |Ξ`
i | denotes the number of elements of the set Ξ`

i , i.e., the number of con-
nected components of the decoupling graph Γ`i .

Each of the functions δ`i,Φ from Definition 2 defines exactly one element of the

vector Ĝ`,
γ̂`k(i,Φ) = δ`i,Φ,

where the index k = k(i,Φ) is determined by the index i of the original B-spline γ`i
and by the connected component Φ of the decoupling graph. A suitable ordering
of Ĝ` will be suggested in the next section.

Example 4. It is possible that the decoupled B-splines Ĝ` are linearly dependent.
As an example, we consider bi-quartic B-splines with single knots on a uniform
grid and dyadic refinement. Figure 5 shows two functions (top left and top right;
both represented by their supports). The refined grid has been omitted. For
both functions, the decoupling graph consists of two connected components that
possess edges and a number of isolated vertices (see Figure 6). The supports of
the decoupled functions obtained from the first two components are shown in the
center of the top row and in the bottom row, left and right. The isolated vertices
of both graphs produce 16 decoupled B-splines, which are the same (though scaled
differently) for both functions; the union of their supports is shown in the center
of the bottom row. Consequently, Ĝ` is linearly dependent.

The refinement equation between B-splines and decoupled B-splines,

G` = D`Ĝ`, (6)

can be formulated with the help of a left stochastic matrix D`,

1`D` = 1̂`, (7)

where 1` and 1̂` denote the row vectors of dimensions n` and n̂`, respectively, with
all elements equal to 1. Indeed, since any B-spline is split into a sum of decoupled
B-splines, all entries of this matrix are zero except for one entry per column, which
is equal to 1.

The refinement equation between the decoupled B-splines and the B-splines of
the next finer level takes the form

Ĝ` = X`+1G`+1. (8)
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Figure 5: Decoupling bi-quartic B-splines with single knots and dyadic refinement. The ring ∆`

is shown in gray. The hatched regions are supports of functions from G` and Ĝ`, the arrows
show the decoupling. The two functions in the top left and top right are decoupled into 2 larger
functions and 16 B-splines (corresponding to isolated vertices of the coefficient graph) each.

where X`+1 is a left stochastic matrix. Equations (2), (6) and (7) give

1 = 1`G` = 1`D`Ĝ` = 1̂`Ĝ` = 1̂`X`+1G`+1 = 1`+1G`+1,

hence we conclude by comparing the coefficients that 1̂`X`+1 = 1`+1, as the el-
ements of G`+1 are linearly independent. In fact, the entries of each row of the
refinement matrix in Eq. (1) are distributed into several rows of the matrix X`+1,
one for each connected component of the decoupling graph.

The next lemma summarizes several properties of decoupled B-splines.

Lemma 5. We consider the decoupled B-splines Ĝ` of level `.

(i) The sum of the decoupled B-splines derived from a B-spline is the B-spline
itself, ∑

Φ∈Ξ`
i

δ`i,Φ = γ`i .

In particular, if supp γ`i ⊆ ∆`, then γ`i decouples into exactly one function
δ`i,Φ = γ`i .

(ii) If Φ 6= Φ′, then
supp δi,Φ ∩ supp δi,Φ′ ∩∆` = ∅.
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Figure 6: The decoupling graphs of the functions from Figure 5.

(iii) The decoupled B-splines possess the property of local linear independence on
∆`. More precisely, for any open set D ⊂ ∆`,

0|D =
n̂`∑
j=1

ξj γ̂
`
j |D ⇒ ∀ j = 0, . . . , n̂` : ξj = 0 ∨ supp γ̂`j ∩D = ∅.

Proof. The first two properties follow directly from Definition 2. In order to prove
the third observation, we note that the decoupled B-splines form a decomposition
of each B-spline into several functions with disjoint supports on ∆`. Since the
B-splines possess the property of local linear independence, this is also true for the
decoupled B-splines on ∆`.

Note that the local linear independence of Ĝ` on ∆` does not imply its linear
independence on Ω, cf. Example 4.

Proposition 6. The decoupled B-splines form a nonnegative partition of unity,

1 =
n̂`∑
i=0

γ̂`i and ∀x ∈ Ω : γ̂`i (x) ≥ 0

Proof. Since the matrix X`+1 is left stochastic, we get

1̂`X`+1 = 1`+1.

The B-splines of level `+ 1 form a nonnegative partition of unity,

1`+1G`+1 = 1.

The proof can be completed by combining both observations.
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Proposition 7. The vectors of decoupled B-splines satisfy the refinement equations

Ĝ` = R̂`+1Ĝ`+1 (` = 0, . . . , N − 1),

where all matrices R̂`+1 are left stochastic.

Proof. Equations (6) and (8) imply

R̂`+1 = X`+1D`+1.

The product of two left stochastic matrices is again left stochastic.

Example 8. In case of biquadratic splines with dyadic refinement and single
knots each basis function from G` has a support consisting of 3 × 3 cells. The
possible shapes of the supports of decoupled functions are shown in Figure 7 (up
to rotations and symmetries). An example of a mesh with all these basis functions
is shown in Figure 8.

4. (Truncated) Hierarchical decoupled splines

We define hierarchical and truncated hierarchical decoupled splines. Our con-
struction generalizes the results of Kraft (1997) and Giannelli et al. (2012). How-
ever, since the systems of decoupled B-splines are not guaranteed to be linearly
independent, we use the approach that was developed in Zore and Jüttler (2014).

This approach is based on the observation that we may split each of the vectors
Ĝ` of decoupled B-splines into three sub-vectors Ĝ`

A, Ĝ`
B and Ĝ`

C ,

Ĝ` =

 γ`1
...
γ`
n̂`

 =

Ĝ`
A

Ĝ`
B

Ĝ`
C

 (9)

such that

γ`i is an element of Ĝ`
A ⇔ supp γ`i * Ω`,

γ`i is an element of Ĝ`
C ⇔ supp γ`i ⊆ Ω`+1,

γ`i is an element of Ĝ`
B otherwise.

More precisely, we assume that the order of the decoupled B-splines within the
vectors Ĝ` has been chosen so that this splitting into sub-vectors becomes feasible.

Clearly, the three sub-vectors have mutually different entries, since the domains
Ω` are assumed to be nested. Also, it should be noted that not all sub-vectors are
present at all levels. For instance, both Ĝ0

A and ĜN
C are void.
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Figure 7: Possible shapes of supports of decoupled biquadratic spline functions, up to rotations
and symmetries, depending on the local shape of the mesh in the support. Here we assume that
there are no intersections with the boundary of the domain Ω. The larger cells belong to level `,
whereas the smaller ones to level ` + 1. The dotted lines indicate the size of the support before
decoupling, whereas the dashed lines may or may not be present as long as the mesh does not
reduce to a case with a smaller support. Note that due to (3) the supports near to domain
boundary are possibly trimmed, see Figure 8.

Figure 8: Mesh with biquadratic decoupled B-splines. The support of a basis function (provided
that it is sufficiently far away from the boundary of Ω) consists of 3× 3 cells. The function may
split into up to 4 decoupled functions. In the example, the functions either split into two functions
(pairs of red and blue supports with purple overlap) or remain unchanged (green supports). The
shape of the support of the upper right function (orange) is caused by the intersection with the
domain boundary.

The elements of the two sub-vectors Ĝ`
A and Ĝ`

B are linearly independent. This
is due to the fact that Ĝ` possesses the property of local linear independence on
∆` (see Lemma 5 (iii)) and these two subvectors contain exactly the decoupled
B-splines that do not vanish on ∆`.

The refinement equation from Proposition 7 can now be formulated with a
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matrix consisting of 3× 3 blocks,

Ĝ` =

Ĝ`
A

Ĝ`
B

Ĝ`
C

 =

R`+1
AA R`+1

AB R`+1
AC

R`+1
BA R`+1

BB R`+1
BC

0 R`+1
CB R`+1

CC

Ĝ`+1
A

Ĝ`+1
B

Ĝ`+1
C

 = R`+1Ĝ`+1. (10)

The lower left block-matrix is a null matrix 0, since R`+1 has nonnegative entries,
the decoupled B-splines are nonnegative, and supp Ĝ`

C ⊆ Ω`+1.

Definition 9. We define the decoupled hierarchical B-splines

K = (Ĝ`
B)N`=0

and the truncated decoupled hierarchical B-splines

T =
(
T̂`
)N
`=0

,

where

T̂` = R`+1
BA

(
N∏

k=`+2

Rk
AA

)
ĜN
A (` = 0, . . . , N − 1)

and T̂N = ĜN
B .

The following results have been derived in the general setting, see Zore and
Jüttler (2014):

• The two systems of functions K and T have the same number of elements
and they span the same space.

• When restricted to ∆`, the functions in Ĝ`
B and T̂` are identical,

Ĝ`
B|∆` = T̂`|∆` .

• Both K and T are linearly independent. This follows directly from the
fact that the decoupled B-splines Ĝ` possess the property of local linear
independence on ∆`, see Lemma 5 (iii).

• The truncated decoupled hierarchical B-splines form a nonnegative partition
of unity,

N∑
`=0

n̂`
B∑

i=1

τ̂ `i = 1 and all τ̂ `i ≥ 0 on Ω,

where T̂` = (τ̂ `1 , . . . , τ̂
`
n̂`
B

)T and n̂`B is the size of Ĝ`
B. This fact is implied by

Proposition 6.
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Figure 9: Functions obtained by applying truncation (top) and decoupling with truncation (bot-
tom) to the quintic B-spline from Example 3 for a domain hierarchy with three levels. Using
only truncation leads to a single truncated function (solid blue), while decoupling and truncation
gives two functions (thick blue and thick green).

Example 10. We continue Example 3 and compare the effects of truncation and
decoupling in Figure 9. First we apply only truncation, thus we obtain only one
function. The upper picture shows the functions obtained after truncation with
respect to level 1 (blue, dashed) and after truncation with respect to both levels
1 and 2 (blue, solid). The bottom picture shows the corresponding decoupled
functions.

5. Completeness of (T)DHB-splines

We identify conditions that guarantee the completeness of (truncated) decou-
pled hierarchical B-splines, i.e., conditions that allow to represent any piecewise
polynomial function of the given degree and smoothness on the hierarchical grid
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determined by the hierarchies of spaces and domains. First we recall a result from
Mokrǐs et al. (2014):

Proposition 11. Consider the sets supp δ ∩∆`, where δ is any element of Ĝ`
A or

Ĝ`
B. If all these sets are connected, then the elements of the two vectors Ĝ`

A and
Ĝ`
B form a basis of the spline space S`.

Proof. Consider the decoupled basis functions that are derived from a given B-
spline γ. When restricted to ∆`, these functions have mutually disjoint supports.
On each connected component of supp γ ∩∆`, exactly one of them is equal to the
B-spline γ, while the remaining functions vanish identically. These properties are
implied by Lemma 5 (i) and (ii). Consequently, each of the decoupled B-splines
from Ĝ`

A or Ĝ`
B, restricted to ∆`, is equal to exactly one of the functions that form

the basis described in (Mokrǐs et al., 2014, Theorem 2.12).

Note that a ring ∆` may contain kissing edges, kissing vertices, etc. If such
a kissing feature is contained in the support of a decoupled function, then the
intersection of the support with ∆` is connected across that feature, since ∆` is a
closed set.

Now we formulate the main result of the paper.

Theorem 12. If the assumptions of Proposition 11 are satisfied for all ` =
0, . . . , N , then each of the systems K and T forms a basis of S. Moreover, T
is a nonnegative partition of unity.

Proof. The proof is fairly similar to the proof of Theorem 20 in Giannelli and
Jüttler (2013). Nevertheless, since there are a few subtle differences and in order
to make this paper self-contained, we repeat it here in a compact form.

We consider a function s ∈ S. We will show that there exist N + 1 functions

s` ∈ span

(
Ĝ`
A

Ĝ`
B

)
(` = 0, . . . , N) (11)

such that

s`|∆` =

(
s−

`−1∑
i=0

si

)∣∣
∆` , (12)

using induction with respect to `.
For ` = 0 this follows directly from Proposition 11 and from the definition

of S. According to the latter, s ∈ S implies s|∆0 ∈ S0. Recall that Ĝ0
A is void.

Now, in order to proceed from ` − 1 to `, we first prove that the right-hand side
of Equation (12) belongs to S`. Once again, according to the definition of S,
s ∈ S implies s|∆` ∈ S`. Consequently, Proposition 11 guarantees that s|∆` can be
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represented by a linear combination of functions from Ĝ`
A and Ĝ`

B. In addition,
since

sk ∈ span

(
Ĝk
A

Ĝk
B

)
(k = 0, . . . , `− 1)

there exist row vectors ck such that

sk = ckĜk = ckR̂k+1Ĝk+1 = · · · = ck
N∏

j=k+1

R̂jĜ`.

Here we used the refinement equations (7) in order to express each sk with respect
to the decoupled B-splines of level `. The definition of the sub-vectors in (9) now
implies that

sk|∆` ∈ span

(
Ĝ`
A

Ĝ`
B

)
|∆` (k = 0, . . . , `− 1).

Thus, we can find s` satisfying (11) and (12). This completes the induction step.
Analyzing the right-hand side of equation (12) confirms that s`|∆`−1 = 0.

Therefore, the local linear independence of the decoupled B-splines (Lemma 5 (ii))
and the definition of the sub-vectors in (9) imply that the coefficients with respect
to Ĝ`

A are zero, and thus s` ∈ span Ĝ`
B.

Finally, if we rewrite (12) for ` = N , we obtain

s = s|∆N =
N∑
`=0

s`|∆N ,

which proves that K = (Ĝ`
B)N`=0 spans S. Both K and T are known to be linearly

independent and to span the same space, see Section 4. Moreover T is known to
be a nonnegative partition of unity.

One of the motivations for introducing the decoupled basis is to relax the
assumptions on the rings ∆` that are sufficient to guarantee the completeness of
K and T . More precisely, we obtain the following result.

Theorem 13. A sufficient condition for the assumption of Proposition 11 to be
satisfied is that none of the basis functions from the finer level (i.e., from G`+1)
intersects ∆` in more than one connected set.

Proof. The proof follows immediately from the fact that the support of each de-
coupled B-spline from Ĝ`

A ∪ Ĝ`
B is the union of supports of B-splines from the

next level that are vertices of one connected component of the decoupling graph
obtained for one B-spline of level `, see Lemma 5 (i).
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Figure 10: Bicubic B-splines from G0
B and G1

B . Left: dots are placed in the Greville points

corresponding to functions from G0
B and the labels specify the number of functions from Ĝ0

B the
particular function decouples into. Right: functions from G1

B .

Now we are going to discuss several cases where this assumption is satisfied.

Corollary 14. Suppose that the degrees are independent of the level, p` = p, and
all knots possess multiplicity 1. When using p-adic refinement (i.e., each cell of
level ` is split into p1 × · · · × pd cells of level ` + 1), the basis T spans the entire
space S and this basis forms a nonnegative partition of unity.

Proof. Under this assumption, the support of each function from G`+1 is contained
in (p1 + 1)× · · · × (pd + 1) cells of level `+ 1. This guarantees that its intersection
with ∆` is always connected and the claim follows from Theorem 13. Alternatively,
we may notice that the support of each function from Ĝ` is contained in 2×· · ·×2
cells of level ` and refer directly to Theorem 12.

An example is shown in Figure 10.
The following corollary relaxes the assumption 2m` ≥ p` + 1, 1 = (1, . . . , 1)T ,

characterizing the case of reduced smoothness that is considered frequently in the
literature, e.g., by Deng et al. (2006) or Schumaker and Wang (2012).

Corollary 15. If the cells in level ` are refined by splitting them into 2d cells of
level `+ 1 (dyadic refinement) and the multiplicities satisfy

3m` ≥ p` + 1,

then T is a basis of S and it forms a nonnegative partition of unity.

Proof. Under this assumption concerning knot multiplicities, the support of each
function from G`+1 is contained in 3×· · ·× 3 cells of level `+ 1. This implies that
its intersection with ∆` is always connected and we may again use Theorem 13.
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Figure 11: Bivariate B-splines with p` = (5, 4) and m` = (2, 1). Left: dots depict the Greville
points functions from G0

B ; those that decouple into more than one function have a label indicating
the number of decoupled functions derived from them. Right: B-splines from G1

B , which are also
present in T .

See Figure 11 for an example.

Remark 16. Note that both results are valid for any dimension, but they apply
only to box-meshes that are obtained by p-adic / dyadic refinement. More general
configurations have also been studied in the literature, mostly in the bivariate case.
We mention the recent results on bivariate splines on more general T-meshes (but
with slightly lower smoothness) by Schumaker and Wang (2012). This analysis also
includes results concerning the approximation power and the stability properties.

Finally we consider the case of maximum smoothness and uniform degrees.

Corollary 17. Consider the case d = 2 or d = 3 with dyadic refinement, uniform
degrees p` = (p, . . . , p) and uniform knots of multiplicity 1 at all levels. If the
offsets for all distances up to p−1

4
with respect to the grid size of level ` (that is, the

offsets for all distances up to p−1
2

with respect to the gridsize of the finer mesh) of
each ring ∆` do not have any self-intersections, then T is a basis of S and forms
a nonnegative partition of unity.

Here we consider the offset with respect to the maximum norm. We refer to
Mokrǐs et al. (2014) for the precise definition. Figure 12 shows an example for
d = 2.

Remark 18. Multivariate quadratic C1–smooth splines on meshes with dyadic
refinement (where each box is refined into 2d smaller boxes) are covered by all
three corollaries. The offset condition from Corollary 17 is then automatically
fulfilled.
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Figure 12: Multi-level mesh with bi-quartic basis functions. The dashed lines represent the
offsets at distance 3/4. From left to right: TDHB-splines from Ĝ0

B , Ĝ
1
B , Ĝ

2
B . Note that the

offset condition would not be satisfied for larger degrees.

Interestingly, not all the edges (or, more generally, interfaces between adjacent
edges) are necessarily being used by some of the basis functions. Figure 13 shows
an example of a T-mesh with “passive” edges.

2

2

2

2

Figure 13: Biquadratic splines. Thick dots correspond to Greville points from G0
B , the smaller

dots to functions from G1
B . If a number is present at a dot, it specifies the number of functions

that this function decouples into (note that the functions from the finest level do not get de-
coupled). The dotted lines represent the “passive” edges, i.e., the edges that could be omitted
without changing the dimension of the spline space.

6. Conclusions and future work

We presented the construction of truncated decoupled hierarchical B-splines. It
generalizes the classical hierarchical construction and it keeps some of the desirable
properties of B-splines (e.g., linear independence, nonnegative partition of unity)
while simultaneously providing a richer set of basis functions.
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Further work may include investigation of approximation properties of this
basis, derivation of an explicit dimension formula and practical applications in
Isogeometric Analysis and Geometric Modeling.
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