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Abstract

Motivated by the discretization problem in isogeometric analysis, we consider the challenge of segmenting a contractible
boundary-represented solid into a small number of topological hexahedra. A satisfactory segmentation of a solid must
eliminate non-convex edges because they prevent regular parameterizations. Our method works by searching a sufficiently
connected edge graph of the solid for a cycle of vertices, called a cutting loop, which can be used to decompose the solid
into two new solids with fewer non-convex edges. This can require the addition of auxiliary vertices to the edge graph.
We provide theoretical justification for our approach by characterizing the cutting loops that can be used to segment the
solid, and proving that the algorithm terminates. We select the cutting loop using a cost function. For this cost function
we propose terms which help to select geometrically and combinatorially favorable cutting loops. We demonstrate the
effects of these terms using a suite of examples.
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1. Introduction

Isogeometric analysis (IGA) is an approach to the so-
lution of partial differential equations in which the func-
tions used to approximate solutions are the same as those
used to parameterize the geometry [6, 9]. IGA aims to
bridge the gap between CAD and analysis communities
and their technologies, and in particular, to automate as
much as possible the process of translating between CAD
and analysis objects.

In the boundary representation (BRep), a solid object
is represented by a structure consisting of vertices, edges
and faces. The faces are trimmed surfaces describing the
boundary of the solid. In order to prepare a boundary-
represented solid for IGA, it is necessary firstly to decom-
pose a solid into blocks that are topological hexahedra, i.e.,
sufficiently smooth (say, continuously differentiable) em-
beddings of a cube, and secondly to construct a suitable
parameterization for each block.

There is much existing work addressing the parame-
terization question under appropriate conditions. A solid
is parameterized by a cube using B-splines in [16, 19] and
using T-splines in [23, 24]. In [22], 3D models are pa-
rameterized by polycubes. T-spline surfaces or solids are
constructed from given quad- or hex-meshes in [18]. The
methods of [13] can be used to parameterize one solid by
another using harmonic mappings. Swept volumes are pa-
rameterized in [1].
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There is a rich theory for the segmentation of polyhedra
into convex polyhedra [2–4]. Techniques have also been
developed for parameterizing multiple patches of complex,
arbitrary solids [20], relying on a predefined segmentation.
In [14, 15] a technique for segmentation and parameter-
ization is developed for triangulated solids, allowing for
interior features. The method of [17], also for triangu-
lated solids, uses T-splines and allows for solids of arbi-
trary genus.

The authors of [10] initiated the development of a tech-
nique to produce an IGA-suitable decomposition of a boundary-
represented solid into topological hexahedra. The goal is
to produce a small number of topological hexahedra. The
method was constrained to solids with only convex edges,
that is, for any edge of the solid, the incident faces meet at
a convex interior angle at every point of the edge. The ex-
istence of a non-convex edge creates significant restrictions
on the decomposition. A satisfactory segmentation must
cut the solid at this edge, because a single differentiable
trivariate patch can only have convex edges. Isogeomet-
ric segmentation of solids containing non-convex edges has
not previously been considered.

The present paper continues research on IGA-suitable
segmentation of a solid into topological hexahedra, by ex-
tending the approach of [10] to apply to solids with non-
convex edges. We recursively decompose the edge graph of
the solid into smaller subgraphs, by searching for a cutting
loop in the edge graph. At each step of the decomposition
we make sure that the subgraphs have less non-convex
edges than the previous graph. Eventually the solid is de-
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Figure 1: Early steps in the segmentation of a solid with non-convex
edges. See Figure 11 for a complete segmentation into hexahedra
and triangular prisms.

composed into new solids with only convex edges. Then,
as in [10], these solids can be further decomposed into
hexahedra. In Figure 1 we show the first few steps of our
segmentation of a model with non-convex edges.

Non-convex edges make the search for a cutting loop
more complex. They impose additional geometric con-
straints on valid cutting loops. Sometimes it is necessary
to add new vertices to the edge graph of the solid. We pro-
vide a proof that a cutting loop can be found through any
given non-convex edge. We provide a method of choosing
among multiple cutting loops, which is a combination of
geometric and topological criteria, and depends on choices
for several parameters. Our cost function is more complex
than that of [10], and we show how our new additions are
important for finding reasonable decompositions.

In Section 2 we provide our assumptions about the
solid and give some definitions and a way to test for a
non-convex edge. We recall the Isogeometric Segmentation
Problem as stated in [10]. Section 3 covers our approach
to solids containing non-convex edges. We give a geomet-
ric criterion for the validity of a cutting loop. We provide
our algorithm for splitting the edge graph of a solid that
contains at least one non-convex edge.

In Section 4 we prove that there always exists a valid
cutting loop through a given non-convex edge. As a con-
sequence, combining our algorithm with that from [10] we
are capable of reducing a solid to topological hexahedra.

Section 5 describes our cost function for selecting among
multiple cutting loops. In Section 6 we study several exam-
ples, showing how the geometric part of our cost measures
the deviation from planarity, and applying several sets of
parameters to several examples to explore how the choice
of parameters affects the final number of topological hex-
ahedra in the decomposition. In Section 7 we summarize
our findings and discuss the outlook.

2. Preliminaries

In this section we describe our assumptions about the
input solid and state the Isogeometric Segmentation Prob-
lem.

2.1. Assumptions

We consider a solid object S given by its boundary rep-
resentation (BRep). We briefly recall from [10] that the
solid object is defined as a collection of vertices, edges
and faces. We assume that the edges are represented
by NURBS curves, and that the faces are represented
as trimmed NURBS patches. Thorough descriptions of
NURBS, trimmed NURBS surfaces, and BRep are pre-
sented in, e.g., [5].

The edge graph G(S) of the solid is obtained by restrict-
ing the consideration to only the vertices and the edges of
the solid.

Consider an edge e, and its two neighboring faces f1
and f2. The normal plane at a point p of e intersects f1
and f2 in two planar curve segments. It also contains the
two outward normal vectors n1 and n2 of f1 and f2 at p
respectively. Let t1 and t2 be the two tangent vectors of
the two planar curve segments in f1 and f2 respectively
(oriented such that they point away from the edge), see
Fig. 2. Recall again from [10] that the edge is said to

t1 t2

n1
n2

n1 + n2

t1 + t2

p
e

f1

f2

Figure 2: Determination of a convex point p of an edge e of a solid.
The plane normal to e (indicated by the dashed segments) contains
the two vectors t1 and t2 tangent to the two faces f1 and f2 at p, and
their two outward normals n1 and n2. The convex cone generated
by t1 and n1 intersects that generated by t2 and n2 only at p.

be convex at p if n1 and t1 do not (trivially or strictly)
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separate n2 and t2, i.e., the convex cone generated by t1
and n1 only intersects the convex cone generated by t2
and n2 at p. The definition is illustrated in Fig. 2. The
following proposition provides an alternative easy-to-check
definition.

Proposition 1. The edge e is convex at p if and only if

〈n1 + n2, t1 + t2〉 < 0. (1)

Proof. If t1 and t2 are collinear, the conclusion is affirmed
as either n1 +n2 or t1 +t2 will vanish. Otherwise, the two
vectors n1 +n2 and t1 +t2 are collinear. It is obvious that
n1 and n2 do not separate t1 and t2 only if (1) holds.

An edge of (the edge graph of) the solid is called a con-
vex edge if every point on the edge is convex. Otherwise,
it is called a non-convex edge.

In this work, we consider the class of solids that satisfy
the following assumptions.

(A1) Each solid is contractible. That is, it is topologi-
cally equivalent to (or more precisely homotopic to)
a point.

(A2) Each pair of neighboring edges of a solid meet each
other at an interior angle that is not 0 or 2π. Fur-
thermore, at any point of any edge, the two incident
faces meet at an angle that is not 0 or 2π.1

(A3) The edge graph of each solid is 3-vertex-connected.
That is, the edge graph has at least 4 vertices and it
remains connected under the removal of any 2 ver-
tices.2

Within this class of solids, we consider the following
volume segmentation problems.

2.2. Volume segmentation problems

First we recall the Isogeometric Segmentation Problem
stated in [10].

Problem 1. Given a solid object S (represented as a CAD
model), find a collection of mutually disjoint topological
hexahedra Hi (i = 1, . . . , n) whose union represents S.
The shape of the topological hexahedra need not to be
uniform, and the hexahedra are not required to meet face-
to-face, thereby allowing T-joints. However, the number
n of topological hexahedra should be relatively small.

In order to partially tackle Problem 1, the authors of
[10] considered the following problem.

1We do permit two faces meeting at an angle of π. This includes
faces meeting in a G1 smooth way.

2From [10, Lemma 2], assuming no face contains the same vertex
twice, the edge graph is 3-connected if and only if there are no two
vertices which share two faces but are not neighbors in at least one
of those faces.

Problem 2. Solve Problem 1 where the solid object S
is associated with an edge graph that has no non-convex
edges and satisfies Assumptions (A1) and (A3).

We herein consider the following problem.

Problem 3. Consider a solid object S which satisfies the
assumptions (A1-3). Partition S (represented as a CAD
model) into a collection of solid objects Si, i = 1, . . . , n,
each of which belongs to the class of solids defined by As-
sumptions (A1-3) and has no non-convex edges.

Problem 2 and 3 can be viewed as two steps of a total
process for solving Problem 1 for the class of solids defined
via Assumptions (A1-3).

3. Approach: the solid splitting algorithm

In order to tackle Problem 3, we extend the solid split-
ting algorithm developed in [10] to the case where the solid
has non-convex edges. In detail, we split the solid into two
new solids whose edge graphs each have a smaller number
of non-convex edges than the original solid. We repeat this
splitting step until the edge graphs of the resulting solids
have no non-convex edges.

In order to present the extended algorithm, we shall
generalize the concepts of auxiliary edges, cutting loops,
and cutting faces in the paper [10] to the more general
setting.

3.1. Definitions

Definition 1. An auxiliary vertex is an additional vertex
in the edge graph that is an inner point of an existing edge.

An auxiliary edge is an additional edge in the edge
graph that connects two non-adjacent (existing or auxil-
iary) vertices on a face.

A cutting loop is a simple closed loop of at least three
(existing or auxiliary) edges of the edge graph such that
every pair of non-neighboring vertices of the loop do not
share a face, and no two consecutive edges are on the same
face.

A cutting surface associated to a cutting loop is a
multi-sided surface patch that admits the edges of the
cutting loop as its boundary. It is a newly created sur-
face patch inside the solid. The surface patch is said to be
well-defined if it is differentiable and it separates the solid
into two smaller solids.

An example of a cutting loop with auxiliary vertices
and auxiliary edges is provided in Figure 3.

We note that in comparison with [10], a cutting loop
defined in Definition 1 is, according to [10], already capable
of splitting the 3-vertex-connected edge graph of the solid
into 3-vertex-connected edge graphs. More importantly,
a cutting loop can possess auxiliary vertices. Figure 3
shows an example of why auxiliary vertices can be neces-
sary. Valid cutting loops through any of the non-convex
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Figure 3: Left: A solid with an edge graph that has three non-convex
edges: AD, BD, and CD. Any edge loop that contains any of the
non-convex edges and possesses only existing vertices can not qualify
as a cutting loop. Right: The cutting loop ADFE that contains the
non-convex edge AD. Note that F is an auxiliary vertex; DF and
FE are auxiliary edges.

edges can only be constructed with the use of auxiliary
vertices.

We again generalize the concept of valid cutting loop
in [10].

Definition 2. A cutting loop is said to be valid for the
edge graph G of a given solid if: (D1) there exists an asso-
ciated well-defined cutting surface splitting the given solid
into two smaller solids that again satisfy Assumptions (A1-
3); (D2) all edges of the cutting loop become convex edges
in the two smaller solids.

In the following part of this section, we shall charac-
terize a valid cutting loop in terms of the way it behaves
around the vertices. Consider a vertex v of a cutting loop
L. The closure of the set of all unit vectors pointing from
v into the interior of the solid forms a filled spherical poly-
gon P (See Figure 4); that is, the boundary ∂P is a simple
curve in the unit sphere S2 comprised of great arcs. By
great arcs we mean arcs of great circles.

v z1

z2

P

Figure 4: Left: an example solid with a potential cutting loop and
a selected vertex v of the loop. Right: the set of unit vectors at
v pointing into the solid define a spherical polygon P . The edges
of the cutting loop define an arc with endpoints on the boundary
of P . Proposition 2 characterizes a valid cutting loop by the angles
between the arc and the boundary of P .

The following definition will be used in Proposition 2 to
characterize valid cutting loops using vertex-wise criteria.

Definition 3. A cutting loop is said to be valid at a vertex
v if there exists a great arc ending at the two unit tangent
vectors z1 and z2 of the two edges of the cutting loop
incident to v (oriented such that they point away from v)
satisfying the following two conditions:

(C1) its interior is entirely contained in the interior of P ,

(C2) it splits interior angles of the spherical polygon P at
z1 and z2 into angles which are strictly between 0
and π.

In Figure 4, v is a valid vertex of the (green) cutting
loop.

3.2. Criteria for a valid cutting loop

The following proposition converts the criteria of the
validity of a cutting loop into the vertex-wise criteria of
Definition 3.

Proposition 2. The cutting loop L is valid if and only if
it is valid at every vertex.

We prove necessary and sufficient conditions separately.
Intuitively, we can treat the ball shown in Figure 4 as an
infinitesimal neighborhood of the vertex v. To prove ne-
cessity, assume that the cutting loop L is valid; therefore
a surface exists with boundary L that cuts the solid in
two; intuitively, it must also cut an infinitesimal neigh-
bourhood of v in two; this implies (C1). The surface must
also cut non-convex edges into convex ones. Examining
this condition at v gives (C2).

To prove the sufficient condition we must choose an
appropriate tangent plane at every point along the loop.
Conditions (C1) and (C2) enable us to choose it at the
corners; then it boils down to interpolating the tangent
plane along the edges.

Proof. Necessary condition. Assume that the cutting loop
is valid and consider a well-defined cutting surface associ-
ated with L. Let T be the tangent plane of the cutting
surface at a vertex v of the cutting loop. Note that z1 and
z2 are not identical due to Assumption (A2). The two
vectors z1 and z2 belong to the plane T and divide T into
two disjoint sets: the convex cone generated by z1 and z2
and its complement in T if z1 and z2 are not collinear; or
the two half-planes defined by z1 and z2 otherwise. As the
two new solids satisfy Assumption (A1) and the cutting
surface is differentiable, one of the two disjoint sets only
contain vectors pointing from v to the interior of the solid.
Note that as the two new solids satisfy Assumption (A2),
the two disjoint sets do not contain the unit vectors in the
tangent planes of the solid’s surfaces at v except the two
vectors z1 and z2.

The tangent plane T intersects the unit sphere centered
at v along two disjoint great arcs ending at z1 and z2. As
P is the set of all unit vectors pointing from v into the
interior of the solid, one of the two disjoint great arcs must

4



be completely contained in the interior of P except its two
end points, and thereby (C1) is proven.

To facilitate the proof for (C2), we assume that each
auxiliary edge of the cutting loop splits a face of the orig-
inal solid into two faces. The two neighboring spherical
edges of zi in ∂P correspond to the two tangent planes
of the two faces incident to the edge tangent to zi. The
interior angle at zi of P is the angle between the two faces
measured at v. As the edges in the cutting loop become
convex in the new subdivided solids, the split angles should
be strictly between 0 and π.
Sufficient condition. Assume that for any vertex v of the
cutting loop, there exists a great arc A ending at z1 and z2
which lies in the interior of P except its end points. Thus,
the plane that contains the great arc will subdivide the
spherical polygon P , and thereby a neighborhood of v in
the interior of the solid, into two connected components.

Now consider three consecutive edges u∗u, uv, vv∗ of
the cutting loop, and suppose the edge uv is parameterized
by the curve e : [0, 1]→ R3. We aim to define a continuous
unit vector field U(t) satisfying the following properties:

• for t ∈ [0, 1], the vector U(t) is normal to e′(t), and
forms a convex nonzero angle with each of the faces
f1, f2;

• for t ∈ (0, 1), U(t) points into the interior of the
solid.

• U(0) is in the plane spanned by e′(0) and the tangent
vector at u pointing back along the edge u∗u;

• U(1) is in the plane spanned by e′(1) and the tangent
vector at v pointing along the edge vv∗.

Let z1 and z2 be the two tangent vectors at v pointing
along the edges vu and vv∗ respectively. Let γ be a great
arc satisfying conditions (C1) and (C2). Set U(1) to be
the unit tangent vector pointing along γ at z1. Set U(0)
analogously at u. It follows from Condition (C2) that each
of U(0) and U(1) makes a convex angle with each of the
faces f1 and f2.

Define unit vector fields t1(t) and t2(t) along e as fol-
lows (cf. the vectors t1 and t2 defined at a single point
of the edge in Section 2.1). At each point e(t), the nor-
mal plane to e′(t) intersects the faces f1 and f2 in a curve;
let t1(t) and t2(t) be the unit tangent vector at e(t) of
this curve. Now, if e is convex at a point e(t), define
q1(t) := t1(t),q2(t) := t2(t). Otherwise, define q1(t) :=
−t2(t),q2(t) := −t1(t). The construction is shown in Fig-
ure 5. The vectors q1(t),q2(t) divide the normal plane of
e at e(t) into two connected components. One of these
components is the (convex) subset of the plane consisting
of those vectors that point into the solid and meet both
f1, f2 at convex angles. The vector fields t1(t), t2(t) vary
continuously along e, and the choice of q1(t),q2(t) can
only switch at points where t1(t), t2(t) point in opposite
directions. Therefore q1,q2 are continuous. Now, U(0) di-
vides the angle between q1(0) and q2(0) into some ratio,

u∗

u

v

v∗

f1

f2
e(t)

t1(t)t2(t)

q1(t) q2(t)

Figure 5: Choosing the inward field U(t). In this example the edge
e is concave at the point e(t). At each point e(t) of the edge, the
vector U(t) can be chosen anywhere in the arc between q1 and q2

say a(0) : 1 − a(0). Similarly, the vector U(1) divides the
angle between q1(1) and q2(1) into a ratio a(1) : 1− a(1).
Define a function a : [0, 1] 7→ R by interpolating the values
a(0), a(1) linearly, and then choose U(t) to be the unit vec-
tor which divides the angle between q1(t) and q2(t) into
the ratio a(t) : 1− a(t). Thus U(t) is defined continuously
and satisfies the above conditions.

In this way, a vector field is defined along each edge of
the cutting loop. In general, the vector fields cannot be
joined up continuously at the vertices of the loop. How-
ever, the planes spanned by e′(t), U(t) define a field of
planes along the curves which can be joined up continu-
ously all the way around the loop.

Choose a surface σ contained in the interior of the solid
such that (i) σ is a contractible, continuously differentiable
surface; (ii) the boundary of σ is the cutting loop; (iii) if
edge of the cutting loop is parameterized by a curve e, the
tangent plane to σ at each point e(t) is the plane spanned
by e′(t), U(t).

Cutting the solid with the plane σ creates two solids
satisfying Assumption (A2), since all the angles between
edges are either angles in the original solid, or angles in
the new cutting loop; these are all between 0 and 2π since
the original solid satisfies Assumption (A2). Additionally,
since the vector field U(t) forms a nonzero angle with both
faces, no faces in the resulting solids meet tangentially. Fi-
nally, Assumption (A3) holds by applying [10, Proposition
5] with our definition of a cutting loop.

We note that Conditions (C1) and (C2) always hold
for solids without non-convex edges, thus the concept of
validity of a cutting loop in view of Definition 2 is a gen-
eralization of that in [10]. However, Proposition 2 also
shows that it involves not only combinatorial properties
of the solid and the cutting loop (as it does in the con-
text of [10]) but also the geometric properties of the solid
and the cutting loop. Moreover, the condition (C1) is the
spherical visibility problem in computational geometry. If
all spherical vertices lie in the interior of one hemisphere
then it reduces to the visibility problem in a plane, which
has been well studied [7].
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The approach discussed in the earlier part of this sec-
tion is formulated in the solid splitting algorithm SplitSolid-
NC. It depends on a sub-algorithm ChooseCuttingLoop-
NC for determining a valid cutting loop, which will be
described in Section 5.

Algorithm SplitSolid-NC is recursive, segmenting solids
until they reach base solids, which have predefined segmen-
tations into hexahedra. The base solids are:

• tetrahedra which can each be segmented into 4 hexa-
hedra by choosing an internal point and cutting with
four surfaces (See [10, Figure 3]);

• hexahedra;

• prisms on n-sided polygons (n 6= 4) which can be
segmented into 3 hexahedra if n = 3. For n > 4,
we segment the base polygon into quads and extend
that to a segmentation of the prism into hexahedra.
If n is even this gives n/2− 1 hexahedra. If n is odd
we can insert a new vertex on one edge of the base
polygon before segmenting it into quads. This gives
(n− 1)/2 hexahedra.

Assumptions (A1) and (A3) are automatically satis-
fied for topological hexahedra. Assumption (A2) and the
requirement of convex edges can be ensured by choosing
the surfaces of the cuts so that they meet only at convex
angles.

Algorithm SplitSolid-NC: Splitting the edge graph of
the solid

1: procedure SplitSolid-NC(graph G)
2: if G is a base solid then
3: return the predefined decomposition of G
4: else
5: if G contains at least one non-convex edge then
6: Let L be the set of all valid cutting loops

that contain at least one non-convex edge
7: else
8: Let L be the set of all valid cutting loops
9: end if

10: ChooseCuttingLoop-NC(L)
11: decompose G into subgraphs G1 and G2
12: return SplitSolid-NC(G1) and SplitSolid-

NC(G2)
13: end if
14: end procedure

Due to the apparent importance of the validity of a
cutting loop for the feasibility and the termination of the
algorithm SplitSolid-NC, it is crucial to consider the exis-
tence of a valid cutting loop. This will be carried out in
the following Section 4.

4. Existence of a valid cutting loop

We show that it is always possible to find a cutting
loop through a given non-convex edge.

Theorem 1. For any solid with an edge graph which sat-
isfies the assumptions (A1-3), there always exists a valid
cutting loop that passes through a given non-convex edge.

Theorem 1 would not be possible without the use of
auxiliary vertices (See Figure 3). On the other hand, the
criterion for validity at a vertex (Definition 3) holds auto-
matically for two auxiliary edges meeting at an auxiliary
vertex. So, given a non-convex edge e between vertices
u,v, the goal of the proof is to build up a cutting loop
which, apart from u,v, e, uses only auxiliary vertices and
edges. The idea of the proof can be seen in Figure 6 (left).

Proof. Consider a non-convex edge uv that is incident to
two vertices u and v. We will show that a valid cutting
loop can be constructed following the two steps described
below.
Step 1: First find two auxiliary vertices u∗ and v∗ such
that the cutting loop will be valid at u and v.

Let u0, . . . ,um, where u0 = u, be all vertices of the
faces that contain u but do not contain v. We order the ui
so that each ui is on the same edge as ui+1, i = 0 . . . ,m−
1, and the edge loop with consecutive vertices u0, . . . ,um
form a counterclockwise path along the boundary of the
union of the faces containing u or v when viewed from
outside of the contractible solid, see Fig. 6 (left).

u

u1

uik

uik+1

u∗

um ≡ q0

v

v1

v`

v∗
v`+1

vn ≡ p0

qj

pi

w1

wl

wN

ûm−1

u

ûm
û1

ûik+1

v̂

ûik

ûik+2

ŵ

Aε

Figure 6: Left: Construction of a valid cutting loop (comprised of
edges in green) that passes through a given non-convex edge uv.
Right: The spherical polygon at a vertex u of a solid whose spherical
vertices are the unit tangent vectors of the incident edges to u.

We consider the subsequence ui1 , . . . ,uiu of those ver-
tices which are adjacent to u. We order them so that
i1 = 1 < . . . < iu = m.

In order to analyze the validity of a cutting loop passing
through u, we again consider the filled spherical polygon
Pu at u which is the closure of the collection of the unit
vectors pointing from u into the interior of the solid. The
spherical vertices of Pu are the unit tangent vectors v̂, ûik
of the edges uv, uuik at u (which point away from u)
respectively, see Fig. 6 (right).

Consider the great circle A which bisects the interior
angle α at v̂ of Pu. Note that α < 2π due to Assumption
(A2). Rotate A around the line between v̂ and its antipole
an angle ε to obtain a great circle Aε so that Aε splits
the interior angle between A and û1û2. If ε ∈ [0, π − α

2 )
then Aε splits the interior angle at v̂ into two angles in
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(0, π). There must exist ε ∈ [0, π − α
2 ) and a spherical

edge ûik ûik+1
such that the intersection of Aε and the

interior of Pu contains a great arc incident to v̂ and an
interior point ŵ of the spherical arc ûik ûik+1

, see Fig. 6
(right).

Let u∗ be an auxiliary vertex of the edge uikuik+1 at
which the two tangent planes of the two faces incident
to the edge are distinct. On the face containing u and
uikuik+1, connect u and u∗ by an auxiliary edge uu∗,
which is tangent to ŵ at u and is not tangent to uikuik+1

at u∗. As Conditions (C1) and (C2) of Proposition 2 are
satisfied, any cutting loop which passes through uv and
uu∗ is valid at u.

For vertex v, we define vertices v0, . . . ,vn in a com-
pletely similar way to the vertices u0, . . . ,um. As a result,
there exists an auxiliary vertex v∗ of an edge v`v`+1 and
an auxiliary edge vv∗ so that any cutting loop passing
though uv and vv∗ is valid at v.
Step 2: Find auxiliary vertices that connect u∗ and v∗ to
complete a valid cutting loop.

Let pi, i = 0, . . . , np + 1 be the vertices of the face
containing uv and u1 so that pi is adjacent to pi+1, and
p0 = vn, and pnp+1 = u1; see Fig. 6 (left). Similarly, qj ,
j = 0, . . . , nq + 1 be the vertices of the face containing uv
and um so that qj is adjacent to qj+1, and q0 = um, and
qnq+1 = v1.

Let G1 denote the sub-graph which is obtained from
the given graph by deleting u and v. Because of Assump-
tion (A3), G1 is connected. Compared to the original edge
graph, G1 has a new face f∗ with vertices {u1, . . . ,um,
q1, . . . ,qnq ,v1, . . . ,vn,p1, . . . ,pnp}.

If u∗ and v∗ belong to a face which is different from f∗,
then we simply connect them by an auxiliary edge on the
face to form a valid cutting loop. Otherwise, when walk-
ing along the path: uik , . . . ,u1,pnp , . . . ,p1,vn,v`+1, each
time we meet an edge which connects one of the vertices
of the path to another vertex not in the path, we collect
an auxiliary vertex of that edge. The auxiliary vertex is
chosen so that the tangent planes of the two faces incident
to the edge are not identical. In the order of the collection,
let the auxiliary vertices be denoted by w1, . . . ,wN .

If there is a pair of non-adjacent auxiliary vertices wi

and wj which are on a face different from f∗, we skip the
vertices lying between wi and wj and connect the two
vertices by an auxiliary edge. Therefore, we can assume
that this is not the case. Argued in a similar way, we can
assume that any wi is on a different face with u∗ or with
v∗, not counting f∗.

As all auxiliary vertices wi are in G1, none of them
share a face with u or v in the original edge graph. Hence,
the edge loop with vertices: v,u,u∗,w1, . . . ,wN ,v

∗ is a
cutting loop. By choosing auxiliary edges between auxil-
iary vertices so that they are not tangent to the edges of
the auxiliary vertices, the cutting loop is valid.

Corollary 1. Consider a solid that satisfies Assumptions
(A1-3). Algorithm SplitSolid-NC can segment the solid

into a collection of topological hexahedra satisfying As-
sumptions (A1-3), but without non-convex edges.

Proof. Let S be the solid that is not topologically equiv-
alent to a tetrahedron. Theorem 1 implies that after no
more steps than the number of non-convex edges of S, us-
ing Algorithm SplitSolid-NC, S can be segmented into
new solids so that none of them contain any non-convex
edges. For these solids, Algorithm SplitSolid-NC per-
forms the same as Algorithm SplitSolid of [10], but with
a modified cost function. Therefore by [10, Corollary 7],
each of them will be decomposed into a collection of topo-
logical hexahedra without non-convex edges. Since each
step of Algorithm SplitSolid-NC preserves Assumptions
(A1-3) we conclude that the resulting topological hexahe-
dra satisfy Assumptions (A1-3).

The construction in the proof of Theorem 1 provides a
valid cutting loop, but it requires many auxiliary vertices.
This means that cutting along it will result in new solids
with many vertices. The construction also ignores the diffi-
culty of constructing a cutting surface for the given cutting
loop. One can do much better in practice, as described in
the following section.

5. Selection of cutting loops

In order to perform the solid splitting algorithm SplitSolid-
NC, we shall present a strategy to choose a valid cutting
loop from the set LN of all valid cutting loops containing
at most N edges. Similar to [10], we assign to each cutting
loop λ ∈ LN a positive value C(λ), which from now on we
will refer to as a cost, and choose the one with the small-
est cost (note that in [10], a cutting loop with the highest
cost is chosen). We extend the strategy proposed in [10]
by considering more complex combinatorial and geometric
criteria. For a valid cutting loop λ, we regard C(λ) as a
total cost with the following component costs.
• CE(λ): related to the number of edges of λ. For a

given vector α = (α3, . . . , αN ), we define

CE(λ) = α|λ|. (2)

where |λ| denotes the number of edges in λ.
• CA(λ): related to the splitting properties of an aux-

iliary edge of λ. For a sequence β = (β4
4 , β

4
0 , β

0
0 , β

0
1 , β

1
1),

first we define a cost for each auxiliary edge e of λ as fol-
lows: Let n1 and n2 be the number of edges of the two
new faces split by e:

cβ(e) =


β4
4 if n1 = 4 and n2 = 4,

β4
0 if n1 = 4 and n2 is even,

βn1 mod 2
n2 mod 2 otherwise

(3)

The considered cost is then defined as

CA(λ) =
∑

auxiliary edge e of λ

cβ(e). (4)
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• CT (λ): related to the numbers nn(λ), nc(λ), and
na(λ) of non-convex, convex, and auxiliary edges in λ re-
spectively. For a vector γ = (γn, γc, γa), we define the
component cost as

CT (λ) = nn(λ)γn + nc(λ)γc + na(λ)γa. (5)

• CP (λ), η = (ηb, ηGB): related to the planarity of
an associated cutting surface of λ. Defining a cost that
measures the planarity of a potential cutting surface is
more complicated than the previous costs. In order to
do this, we define two terms described below; in the fol-
lowing section an example shows the necessity of both
terms. We first consider the planarity of the cutting loop
λ(t), t ∈ [0, lλ] where lλ is the length of the curve; herein
we assume that λ is a simple, closed, and unit speed curve.
In order to quantify this property, we let Pλ be the plane
of regression of the curve λ in the sense of least squares.
We define

pb(λ) =
1

lλ

∫ lλ

0

dP
(
λ(t)

)
dt. (6)

where dP
(
λ(t)

)
denotes the distance from the point λ(t)

to the plane P. Note that this is not scaling invariant (it
could be made scaling invariant by using 1

l2λ
as the scaling

factor) because we want to emphasize the importance of
planarity for large cutting surfaces.

We further consider the planarity of an associated cut-
ting surface to λ which is orthogonal to a prescribed con-
tinuous unit normal vector field N(t) along the curve λ(t).
The vectors N(t), λ′ can be used to define the geodesic
curvature κg(t) (see for example [12, section 49]). Let

pGB(λ) =
∣∣ 2π − ∫ lλ

0

κg(t) dt −
∑

turning angles θ

θ
∣∣. (7)

Now we define

CP (λ) = ηb pb(λ) + ηGB pGB(λ). (8)

The Gauss-Bonnet theorem implies that for a planar cut-
ting surface, the costs pb and pGB vanish. The converse
may not always be true. However, we will show in the next
section that looking for loops with small values of pb and
pGB makes it easier to construct cutting surfaces.

For the present purpose, in computing pb(λ) and pGB(λ)
we treat edges as straight lines. More complicated schemes
will be considered in a follow-up paper.

Once the parameter vectors α, β, γ, and η are given by
the user, we sort all valid cutting loops λ in LN according
to their associated total cost

C(λ) = CE(λ) + CA(λ) + CT (λ) + CP (λ).

We choose the cutting loop with the smallest total cost.
Similar to [10], if more than one have the smallest to-
tal cost, we arbitrarily choose one of them. This selection
strategy is summarized by the algorithm ChooseCuttingLoop-
NC.

Algorithm ChooseCuttingLoop-NC: Selection of the
cutting loop

1: procedure ChooseCuttingLoop-NC(set LN of
valid cutting loops that have at most N edges)

2: compute for each cutting loop λ the value C with
given parameter vectors α, β, γ, and η.

3: choose a cutting loop λmax that realizes the small-
est value C

4: return λmax
5: end procedure

The algorithm ChooseCuttingLoop-NC depends on
the construction of the set LN of valid cutting loops having
at most N edges. The loopless paths between two speci-
fied vertices can be efficiently listed in order of increasing
length by Yen’s algorithm [21]. A straightforward way to
generate LN is by iterating over possible choices of a start-
ing edge and applying Yen’s algorithm to generate loops
containing that edge. Invalid loops can then be filtered
out.

6. Examples

In this section, after covering some of the experimen-
tal settings, we show several examples of cutting loops to
demonstrate the costs pb and pGB . We then apply our
algorithm to the example solids in Figure 7, investigating
the effect of parameter choices on the resulting number of
topological hexahedra.

Solid 1 Solid 2 Solid 3

Solid 4 Solid 5

Figure 7: The example solids we use for our comparison of parameter
choices. Solid 1: A slotted cube. Solid 2: A vase. Solid 3: The
building “JKU Science Park 2”. Solid 4: A chair, divided into two
along its plane of symmetry. Solid 5: The half-chair of Solid 4, with
the bottom moved up.
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6.1. Experimental settings

The examples presented in this section are produced in
accordance with the following settings.

• Choice of auxiliary vertices. In general, auxiliary
vertices could be placed anywhere along an edge. For
the purpose of our experiments, all auxiliary vertices
are placed at midpoints.

• Base solids. Once a solid is segmented into solids
with only convex edges, those pieces are further seg-
mented into three types of base solids: topological
hexahedra, tetrahedra and prisms. Predefined seg-
mentations can be applied to tetrahedra and prisms
to reduce them to hexahedra. In [10], topological
pyramids are also considered base solids, but we ex-
clude them here as they would be automatically seg-
mented into tetrahedra by the present method.

• We only consider cutting loops with at most 8 edges.

• For a solid with only convex edges, we do not per-
mit auxiliary vertices. We also only consider cut-
ting loops which contain at least one edge that is
already in the edge graph of the solid (that is, a non-
auxiliary edge). This helps to speed up the search
for valid cutting loops, and in our experience, such a
cutting loop was always found. (As stated in Algo-
rithm SplitSolid-NC, for a solid with at least one
non-convex edge, we only consider cutting loops that
contain at least one non-convex edge.)

6.2. Effect of the planarity cost

We will show that in several examples, the planarity
cost helps to find a nearly optimal cutting loop.

In Figure 8 we show a “vase” shape formed by cutting
a small cube out of the top of a larger one. We compare
several potential cutting loops, measuring the value of pb
and pGB .

Loop (a) is ideal because it can be interpolated with a
plane. The planarity costs pb and pGB are both equal to
zero. Loop (b) is contained entirely in a plane, and pb = 0.
but it is not possible to cut it with a plane because the
surface needs to be inside the solid. Therefore any surface
cutting through this loop must be highly curved. The
large value of pGB for Loop (b) reflects this. For Loop (c),
pGB = 0 but the loop is not contained in a plane, showing
that pGB is not sufficient to describe the deviation from
planarity. Loops (d) and (e) are more twisted than the
first 3 and have nonzero values for both pb and pGB .

6.3. Effects on the number of resulting
topological hexahedra

In order to examine the effects of the combinatorial and
geometric criteria discussed in Section 5 on the number of
resulting hexahedra, we perform several segmentations on
five example solids in which we vary the parameters asso-
ciated with the combinatorial and geometric criteria, see

(a)

pb = 0
pGB = 0

(b)

pb = 0
pGB = 4π ≈ 12.566

(c)

pb ≈ 0.665
pGB = 0

(d)

pb ≈ 0.693
pGB ≈ 0.041

(e)

pb ≈ 1.025
pGB ≈ 2.094

Figure 8: Some cutting loops together with the values of pb, which
measures the deviation of the curve from a plane, and pGB , which
measures the total geodesic curvature. In (b), pb is zero and in (c),
pGB is zero, showing that neither of these values tells the whole story
by itself.

Fig. 7. All examples in this section use the same parameter
vectors: α = (100, 0, 10, 10, 20, 20), and γ = (−1, 9, 20).
The remaining parameter vectors are listed in Table 1.
We note that as the two component costs CE and CT are
examined in [10], we keep α and γ as constant parameter
vectors in the current study.

β = (β4
4 , β

4
0 , β

0
0 , β

0
1 , β

1
1) η = (ηb, ηGB)

Seg. 1 (0, 0, 0, 0, 0) (0, 0)
Seg. 2 (0, 0.5, 5, 20, 25) (0, 0)
Seg. 3 (0, 0, 0, 0, 0) (100, 1000)
Seg. 4 (0, 0.5, 5, 20, 25) (100, 1000)

Table 1: Four different choices of the parameters of the strategy for
selecting a cutting loop presented in Section 5.

Solid 1 Solid 2 Solid 3 Solid 4 Solid 5
Seg. 1 9 57 22 42 42
Seg. 2 15 51 30 28 28
Seg. 3 14 36 22 41 41
Seg. 4 7 16 19 31 42

Table 2: The numbers of the resulting topological hexahedra for
the five example solids considered in this section obtained from the
corresponding segmentations associated with the parameter vectors
in Table 1.

In Table 2, we report the numbers of resulting topo-
logical hexahedra obtained by performing segmentations
of the example solids with each set of parameters listed
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in Table 1. In the first three cases (for Solids 1–3) the
segmentation with the smallest number of hexahedra is
obtained in the presence of both of the component cost
CA, which is related to the splitting properties of the aux-
iliary edges of a cutting loop, and the planarity cost CP .
This may be because of the following facts:

• the cost CA encourages the creation of new four-sided
faces when a face is segmented into two by an auxil-
iary edge,

• the planarity cost can help to find a cutting loop
which fits better with the global structure of a solid.

As a demonstration for the latter point, it is shown in
Fig. 8 that the cutting loop in figure (a), which admits the
vanishing planarity costs pb and pGB , splits the solid into
two new solids both of which have simpler structures; each
of the cutting loops (b)–(e), with non-vanishing planarity
costs, splits the solid into two solids at least one of which
has an even more complex structure.

Each of Figures 9, 10 and 11 shows the resulting base
solids obtained from the segmentation using the parameter
vectors “Segmentation 4” in Table 1.

We expect that solids which do not have (approximate)
symmetries might not be segmented into a smaller num-
ber of topological hexahedra using the planarity cost CP
than using the purely combinatorial cost CA. To examine
this situation, we consider the segmentation of a “chair”,
see Figure 12. As the full chair is symmetric, only a half
of it is considered. Such a half chair does not possesses
approximate symmetries as desired. We observe that the
resulting number of hexahedra in Table 2 is slightly higher
for Segmentation 4 than for Segmentation 2, which does
not consider CP . Moving the vertices of the bottom of the
chair slightly (See Figure 7, Solid 5) results in a signifi-
cantly worse outcome for Segmentation 4. In this case, a
trade-off must be made between having a small number of
hexahedra, and more planar loops which are easier to cut.

Not all of the examples have been segmented in a ge-
ometrically intuitive way, and in the case of Solid 4, both
the number and the degree of distortion of the base solids
are not optimal. As in [10], our segmentations are only lo-
cally optimal, since the best cutting loop is chosen one step
at a time. Optimizing over the set of complete segmenta-
tions would improve the outcome, but the computation
time would increase enormously. An alternative way to
improve the segmentations is to allow more general types
of cutting loops; some possibilities are discussed in Sec-
tion 7. Nevertheless, adaptive splines such as THB-splines
[8, 11] can provide high quality parameterizations of the
distorted volumes.

7. Conclusions

We have developed a method of segmenting the edge
graph of a contractible solid given by a boundary represen-
tation. In comparison to previously known methods, our

Original solid

(1 hex)��
��

��*
Step

1

?

Step 1

Step 2
-




















� (A prism: 3 hexes)

C
C
C
C
C
CW

Step 3

�
�
�

�
�
�

�
�	

(1 hex)

(A prism: 2 hexes)

Figure 9: Solid 1 : Isogeometric segmentation of a “slotted cube”,
obtained using the parameters “Seg. 4” listed in Table 1. A loop of
edges in green indicates a cutting loop which helps to subdivide the
solid. The segmentation is terminated in 3 steps, and results in 4
base solids.

approach focuses on segmentation into a small number of
topological hexahedra. We have extended the method of
[10] by treating both convex and non-convex edges.

We only considered segmentation of the edge graph, al-
though our algorithm makes use of geometric and combina-
torial data. In a follow-up paper we will discuss strategies
for constructing the new surfaces that are needed to pro-
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(two congruent solids)
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(four congruent solids)

�
���

���
���

?

(four congruent hexes) (four congruent prisms: × 3 hexes)

Figure 10: Solid 2 : Isogeometric segmentation of a “vase”, obtained
using the parameters “Seg. 4” listed in Table 1. The original solid is
segmented into 8 base solids. In practice, since the vase has symme-
tries, we would expect it to be segmented into quarters first. How-
ever, running the algorithm with the full vase helps to demonstrate
the effects of the choice of parameters.

duce boundary representations of the resulting solids. This
includes constructing curves that realize auxiliary edges.

There are several possible directions for extending the
present research. A limitation of our algorithm is that
it always makes cuts using new surfaces, when it may be
possible to extend existing surfaces into the solid. The
reader may be able to find a segmentation of Solid 4 into
4 nicely shaped topological hexahedra, by extending ex-
isting surfaces. A second limitation is the restriction that
non-convex edges must always be eliminated first. A seg-
mentation of Solid 1 into 5 topological hexahedra can be
constructed by abandoning this restriction.

Finally, we have not considered solids which do not
have a 3-vertex-connected edge graph (e.g. cylinders) or

which are not contractible. It seems possible to treat
these cases with a pre-processing step that creates aux-
iliary edges and surfaces.
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G. Barner. Adaptive cad model (re-)construction with thb–
splines. Graphical Models, 2014, to appear.

[12] E. Kreyszig. Differential geometry. Dover Publications Inc.,
New York, 1991. Reprint of the 1963 edition.

[13] X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin. Harmonic
volumetric mapping for solid modeling applications. In In Proc.
ACM symp. on Solid and physical modeling, pages 109–120,
2007.

[14] T. Martin and E. Cohen. Volumetric parameterization of com-
plex objects by respecting multiple materials. Computers &
Graphics, 34(3):187–197, 2010. Shape Modelling International
(SMI) Conference 2010.

[15] T. Martin, E. Cohen, and R. M. Kirby. Volumetric parameteri-
zation and trivariate B-spline fitting using harmonic functions.
Comput. Aided Geom. Design, 26(6):648–664, 2009.
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Figure 11: Solid 3 : Isogeometric segmentation of a building named “JKU Science Park 2”, obtained using the parameters “Seg. 4” listed in
Table 1. The segmentation results in 19 topological hexahedra. Note that the solid is not symmetric, the front block is slightly bent to the
right in the current view.
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Figure 12: Solid 4 : Isogeometric segmentation of a symmetric half of a “chair”, obtained using the set of parameters “Seg. 4” listed in Table 1.
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