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Abstract

We propose the triangulation axis as an alternative
skeletal structure for a simple polygon P . This axis
is a straight-line tree that can be interpreted as an
anisotropic medial axis of P , where inscribed disks
are line segments or triangles. The underlying trian-
gulation that specifies the anisotropy can be varied, to
adapt the axis so as to reflect predominant geometri-
cal and topological features of P . Triangulation axes
typically have much fewer edges and branchings than
the Euclidean medial axis or the straight skeleton
of P . Still, they retain important properties, as for
example the reconstructability of P from its skeleton.
Triangulation axes can be computed from their defin-
ing triangulations in O(n) time. We investigate the
effect of using several optimal triangulations for P . In
particular, careful edge flipping in the constrained De-
launay triangulation leads, in O(n log n) overall time,
to an axis competitive to ‘high quality axes’ requiring
Θ(n3) time for optimization via dynamic program-
ming.

Keywords: Polygon; medial axis; anisotropic dis-
tance; triangulation; edge flipping

1 Introduction

Let P be a simply connected and closed polygon in
the plane. A circular disk D ⊂ P is called maxi-

mal (for P ) if there is no other disk D′ ⊂ P with
D′ ⊃ D. The (Euclidean) medial axis of P is the set
of centers of all maximal disks for P . This tree-like
skeletal structure has proved a very useful descriptor
of shape. Applications in diverse areas exist, and var-
ious construction algorithms have been proposed; see
e.g., [2, 6, 8] and references therein.

The medial axis is a unique structure, as is the so-
called straight skeleton [3, 8] of P , which is composed
of angular bisectors of P and can serve as a piecewise-
linear alternative to the medial axis. In certain appli-
cations, however, it is desirable to have some flexibil-
ity in designing a skeletal structure, be it for keeping
its size small so as to reflect only the essential parts
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Figure 1: A triangulation axis of a simple polygon.

of P , or for the sake of stability with respect to slight
boundary changes of P . Several attempts have been
made to adapt and prune the medial axis and the
straight skeleton accordingly; see Attali et al. [6] and
Siddiqi and Pizer [16], and Tanase and Veltkamp [17],
respectively.

In the present note we propose a different idea,
namely, of putting some anisotropy on the polygon P .
Distances are measured differently at different lo-
cations within P , by varying the shape of the in-
scribed disks. (Anisotropic Voronoi diagrams where
distances are measured individually from each defin-
ing point site have been introduced in Labelle and
Shewchuk [14].) We divide the polygon P into trian-
gles, and allot to each triangle a continuous family of
unit disks, resulting from appropriately defined con-
vex distance functions. (Voronoi diagrams for con-

vex distance functions have been considered first in
Chew and Drysdale [11].) The resulting skeleton is
a straight-line tree resembling (but not equaling) the
dual graph of the chosen triangulation of P . It al-
ways consists of fewer edges than the medial axis
or the straight skeleton. When using the various
known types of triangulation (e.g., constrained De-
launay [15, 10], minimum weight [13]), and also other
triangulations optimal in different respects, we gain
the needed flexibility, with the ultimate aim of defin-
ing a simple, stable, and characteristic skeletal axis
structure for P .

In particular, we show that the constrained De-
launay triangulation of P , when post-processed by
a small number of edge flips based on visibility
within P , leads to satisfactory results: The empty-
circle property ensures some closeness to the medial
axis, and flipping has the effect of pruning away unim-
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portant features. Several O(n log n) construction al-
gorithms are available for this triangulation [8], so the
new skeleton is fast and easier to compute than the
medial axis or the straight skeleton.

A preliminary version of this work appeared in [4].

2 Triangulation axis

A triangulation T of a simple polygon P is a parti-
tion of P into triangles whose vertices are all from P .
Let P have n vertices. We will assume n ≥ 4 through-
out, so that T contains at least one diagonal of P . To
define what we will call the triangulation axis, MT (P ),
of P and T , the triangles which constitute T are cate-
gorized into three types: ear triangles, link triangles,
and branch triangles – having one, two, or three sides
that are diagonals of P , respectively; see Figure 2.

Depending on its type, a triangle ∆ contributes a
specific part to MT (P ). If ∆ is an ear triangle, then
its axis part is the line segment that connects the mid-
point of its unique bounding diagonal d of P to the
vertex of ∆ opposite to d. If ∆ is a link triangle, then
it contributes to MT (P ) the line segment connecting
the midpoints of the two bounding diagonals of P .
Finally, if ∆ is a branch triangle, then the three line
segments that connect its side midpoints to the cen-
troid1 of ∆ are taken. See Figure 2 again, where the
individual axis parts are drawn in bold lines.

(a) (b) (c)

Figure 2: Triangle types: (a) ear triangle, (b) link trian-
gle, and (c) branch triangle. Diagonals of P are drawn in
dashed style, and triangulation axis parts in bold style.

The triangulation axis MT (P ) is now defined as the
geometric graph that has the aforementioned line seg-
ments as its edges and their endpoints as its vertices.
MT (P ) is a (straight-line) tree, as can be shown by
an easy induction argument.

A particular triangulation axis of a polygon is de-
picted in Figure 1. Observe that link triangles (which
typically constitute the majority in T ) give rise to
homothetic copies of P ’s boundary parts in the axis.

Indeed, MT (P ) can be interpreted as an anisotropic

medial axis of P . When suitable convex unit disks are
used, the centroids of all possible maximal inscribed
disks for P (as defined in Section 1) will delineate the

1Instead of the centroid, a different suitable point in ∆ might

be chosen; see Section 6.

(a) (b) (c)

Figure 3: Maximal disks for the anisotropic convex dis-
tance function within (a) an ear triangle, (b) a link tri-
angle, and (c) a branch triangle. White dots mark the
centers (centroids) of the shown disks.

triangulation axis. This is made explicit in Figure 3.
Maximal disks for ear triangles and link triangles are
just line segments of varying slopes. These line seg-
ments are parallel to the unique bounding diagonal
for an ear triangle, see (a), and fan out from a ver-
tex for a link triangle, see (b). Maximal disks for a
branch triangle are of triangular shape, see (c), based
on a particular side of the branch triangle and hav-
ing one vertex on the respective median line. Note
that maximal disks (and thus the anisotropy they ex-
ert) change continuously when their centers are moved
along MT (P ).

Triangulation axes are quite natural skeletal struc-
tures for polygons, though as far as is known to the
authors, they did not receive much attention in the lit-
erature. We found recent mention of a triangulation
axis in Wang [18] for GIS applications, who refers to
Ai and van Oosterom [1] for earlier use. No system-
atic study of MT (P ) has been provided though, and
only the constrained Delaunay triangulation [10] of P

has been used for T . In the following sections, we will
elaborate on some structural and algorithmic proper-
ties of triangulation axes, and give some experimental
results that reflect the behavior of this structure in
dependency of the underlying polygon triangulation.

3 Basic properties

A nice feature of triangulation axes is their small com-
binatorial size.

Lemma 1 Any triangulation axis of a simple poly-
gon P with n vertices has between n − 2 and 2n − 6
edges.

Proof. Each triangulation T of P has the same num-
ber of triangles, n−2. Ear triangles and link triangles
yield 1 edge of MT (P ) each, whereas branch triangles
contribute 3 edges. The number of edges of MT (P )
thus is n−2+2b, with b counting the branch triangles
of T . Moreover, we have 0 ≤ b ≤ n

2
− 2, the upper

bound stemming from the fact that T has b + 2 ear
triangles, so that (b + 2) + b ≤ n − 2. The claimed
bounds follow by simple arithmetic. �
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In comparison, the medial axis of P consists of
2(n + r) − 3 edges [16], r of which are parabolically
curved (one for each of the r reflex vertices of P ), and
the straight skeleton of P consists of 2n − 3 straight
edges [3].

A desired property of skeletal axes is the ability
of restoring the polygon P from its axis. Both the
medial axis and the straight skeleton share this prop-
erty; see [16] and [3], respectively. However, distances
from the axis edges to the boundary of P have to be
stored, in addition. (For the medial axis, this amounts
to store the radii of certain maximal disks; the aug-
mented structure is commonly called the medial axis

transform of a polygon.)

Triangulation axes are even more well-behaved in
this respect. Storing an additional bit for certain
edges is sufficient to guarantee a unique reconstruc-
tion of P , except in the special case where the axis
does not branch at all (and is just a path). In that
case, the distance to a single non-ear vertex of P has
to be remembered in addition.

Lemma 2 Given any of its triangulation axes (which
is not a path), a simple polygon P can be recon-
structed in O(n) time, provided at most n − 4 extra
bits are stored.

Proof. We reconstruct P (more precisely, its under-
lying triangulation) triangle by triangle. Note first
that triangle types can be recognized from the axis
parts they yield. Actually, any branch triangle ∆
is reconstructable uniquely, because ∆ is just a ro-
tated copy of the triangle formed by the midpoints
of ∆’s sides, in doubled size. As we have assumed
that the axis contains branchings, there exists at least
one branch triangle. If the neighbored triangle is an
ear triangle, its reconstruction is trivial, too. In the
case of a link triangle, we have two choices of follow-
ing P ’s boundary in a way parallel to the respective
axis edge; see Figure 4. Storing a ‘left/right’ bit is
sufficient in that case. In total, at most n − 4 bits
are needed, because any triangulation of P has n− 2
triangles, and at least 2 among them have to be ear
triangles. �

x

x

y

y

fixed

Figure 4: Two possible link triangles to continue.

fixed

Figure 5: The empty-circle property does not help for
restoring a polygon from its constrained Delaunay trian-
gulation axis. For both polygons (shown in full lines and
dashed lines, respectively) this axis is the same.

By contrast, the medial axis of P has n+r−2 inner
vertices, for each we need to store the radius of the
maximal disk centered there.

Without extra information, the polygon reconstruc-
tion from a triangulation axis is ambiguous, in gen-
eral. This is even true when the triangulation is
known to be constrained Delaunay in advance; see
Figure 5. This particular triangulation of P is defined
to consist of all diagonals uv of P with the following
property [15, 10]: There exists some circle passing
through u and v but enclosing no vertex w of P such
that uw and vw are both diagonals of P .

The next lemma indicates that triangulation axes
tend to describe the topology of a polygon more com-
pactly than the medial axis.

Lemma 3 For no triangulation T , MT (P ) has more
branchings than the medial axis of P .

Proof. Both axes are trees whose leaves have to be
vertices of P . Each convex vertex v of P is a leaf of
the medial axis, whereas v is a leaf of MT (P ) only if
T contains an ear triangle at v. Reflex vertices of P

cannot be leaves in either axis. It remains to observe
that the number of branchings in any tree is exactly
2 less than the number of its leaves. �

4 Choice of triangulation

The geometry and topology of the triangulation axis
MT (P ) strongly depend on the choice of the underly-
ing triangulation T . We will discuss some prominent
representatives for T and some of their variations in
the sequel.

The constrained Delaunay triangulation of P seems
a good choice at first glance, as it tends to avoid edges
at flat convex vertices of P , by its empty circle prop-
erty. However (and similar to the notorious problem
with the medial axis of P ), still various small and
unimportant features are reflected by this ‘Delaunay
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Figure 6: Constrained Delaunay triangulation. Figure 7: Minimum weight triangulation.

Figure 8: Minimum axis length.
Figure 9: Minimum weight triangulation where branch
triangles are expensive.

axis’ of P ; see Figure 6. Also, it lacks optimiza-
tion properties like maximizing angles or minimizing
lengths, as can be shown by examples. An advan-
tage is the low construction time of O(n log n); see
e.g., [10].

The minimum-weight triangulation of P , which is
defined to minimize the sum of edge lengths [13], ap-
pears a promising candidate as well: A ‘short’ trian-
gulation might have edges nicely aligned within P .
Unfortunately, small length implies many branch tri-
angles, as these triangles are capable of covering much
polygon area, leaving less area (and thus edge length)
for the most frequent type of axis edges, the link
edges; see Figure 7. However, weighting each branch
triangle by k times its perimeter, for some large con-
stant k (rather than using k = 1 for all triangles,
which gives the minimum-weight triangulation) yields
quite satisfactory results; see Figure 9. Note that the
type of each triangle can be read off from the ver-
tices of P it uses. The runtime of Θ(n3) that results
from dynamic programming [13] is a clear disadvan-
tage of these (and the following) types of triangula-
tion, though.

The weight of a triangle can also be chosen as the
length of the axis part it yields. This minimum length

triangulation axis, see Figure 8, looks comparable to
the axis in Figure 9, which was slightly better, how-
ever, as no inadequate paths close to leaves do occur
that stem from keeping the axis shortest possible. An-

other possibility is to minimize the number of branch
triangles (by granting them weight 1, with the remain-
ing triangles getting weight 0). The resulting axis also
minimizes the number of leaves, hence maximizes the
number of links. The optimal solution is highly am-
biguous, though, and its ability of describing the poly-
gon turned out to be inferior to the former choices for
most instances. (Still, a good candidate is given by
the modified minimum-weight triangulation, with the
weight k of branch triangles being sufficiently large.)

The axes in Figure 8 and 9 nicely resemble the pre-
dominant features of the polygon’s medial axis. Even
if P is poorly sampled at narrow passages, the ‘inter-
esting parts’ of MT (P ) are geometrically not too far
apart from the latter structure; see also Figure 10. In
particular, MT (P ) behaves better in such cases than

Figure 10: Medial axis deviation (dotted curve) from the
triangulation axis (bold lines) within a link triangle.
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Figure 11: Triangulation axis (bold edges) and pruned
Voronoi diagram (dashed edges).

an approximation by the (pruned) Voronoi diagram
of P ’s vertices (a widely used linearization of the me-
dial axis [16]), because such skeletons may exit and
re-enter the polygon at several places, as Figure 11
illustrates.

The straight skeleton of P , in turn, is also no ade-
quate linearization in general, because its inner nodes
might get arbitrarily close to the boundary of P (in-
stead of being ‘centered’) in the presence of sharp re-
flex polygon vertices; see Figure 12. This is due to
the high speed of such vertices in the shrinking pro-
cess which defines the straight skeleton [3]. A possible
way out might be to weight the speed of the polygon
edges individually to milden this undesirable effect,
that is, to use a weighted straight skeleton [7] of P .

(a) (b)

Figure 12: (a) Two straight skeleton nodes get close to
the polygon boundary. This cannot happen for the medial
axis (b) which by definition stays centered.

5 Edge flipping

Triangulation axes can be modified (and improved)
gradually by flipping edges in their defining triangu-
lation T of the input polygon P .

Let e be an edge of T but not of P , and assume that
the two triangles of T adjacent to e form a convex
quadrilateral Q. Flipping the edge e means replac-
ing e by the other possible diagonal of Q. Note that
the structure resulting from the flip is still a triangula-
tion of P . It is well known that any two triangulations

of P can be transformed into each other by a sequence
of edge flips; see e.g. [12].

Our goal is to start with the constrained Delau-
nay triangulation of P (which has a low construction
time, O(n log n)), and to automatically prune away
unwanted pieces of the Delaunay axis by well-chosen
edge flips. A different pruning approach, based on
removing certain axis parts without adapting its re-
maining edges is proposed in Wang [18].

Consult Figure 13. If the bottommost branch of
the axis is considered unimportant (e.g., because of
its short length) then it can be possibly removed, by
destroying the shaded branch triangle and flipping in
certain link triangles.

More precisely, define a fibre of the axis MT (P ) as
the unique path from a leaf u of MT (P ) to the first
branching point reached (if it exists). Let ∆ be the
respective branch triangle, and consider the vertex v

of ∆ lying opposite to u. If the part of P that corre-
sponds to this fibre is entirely visible from v, then this
part can be re-triangulated by repeatedly flipping in
edges incident to v. Thereby ∆ gets destroyed and no
new branch triangles are created. That is, the fibre
gets removed from the triangulation axis.

(a) (b)

v v

uu

Figure 13: (a) The axis contains an unwanted branch.
(b) Pruning the axis by flipping edges in the triangulation.

This ‘clean up’ step is now applied recursively, by
establishing a hierarchy among the branch triangles ∆
in T . Let us define the level of ∆ as the minimum
number k of branchings on a path in MT (P ) from a
leaf to ∆. Clearly, if ∆ gives rise to a fibre then its
level is 0. Observe further that we have k = O(log n);
a maximum value of k is attained if T is a balanced
binary tree. Pruning now proceeds in rounds, where
in round i for i ≥ 1 all branch triangles of level i − 1
in T are considered. For each of them one fibre – if
it exists in the axis for the current triangulation, and
falls short of some length threshold – is pruned away
by flipping.

Each round takes only O(n) flips, because each cre-
ated edge stays permanent in its level, and the total
number of flips is therefore bounded by O(n log n).
An overall runtime of O(n log n) is achieved, including
the construction of the initial (constrained Delaunay)
triangulation of P .
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Figure 14: Delaunay axis. Figure 15: Recursively pruned Delaunay axis.

As a length threshold for a fibre, the local feature

size [5] of its opposite vertex v (see Figure 13) can
be taken. The local feature size of a point x on P ’s
boundary is the distance from x to the closest point
on the medial axis of P . For v, this distance can
be (roughly) estimated by the side lengths of the re-
spective branch triangle. Note that the choice of the
length criterion does not affect the O(n log n) time
bound for the axis construction.

The local feature size seems an appropriate indica-
tor for ‘unimportant’ fibres, because it locally reflects
the width of the polygon P . Informally speaking, if
a fibre is not much longer than the local distance to
the medial axis, then its contribution is not likely to
be significant. On the other hand, long fibres which
fulfill the visibility condition above are still likely to
represent a significant branch of P , and thus should
not be pruned away by flipping.

This simple heuristic is surprisingly effective. Fig-
ure 1 in Section 1, which has been computed in this
way, shows an axis of quality comparable to the Θ(n3)
time optimal triangulation approaches in Figures 8
and 9. The many ‘spurious’ elements appearing in the
unpruned constrained Delaunay axis (Figure 6) have
been removed. The same improvement can be seen
when comparing Figures 14 and 15. In particular, a
stable skeleton has been constructed, whose topology
will not change under small alterations of the shape
boundary.

6 Discussion

We have introduced the triangulation axis of a poly-
gon to computational geometry, with the intention to
demonstrate its potential of being a simple, stable,
and characteristic skeletal structure.

Several questions are raised by the investigations
in the present note. The main issue, of course, is to
find a fast and provably good method of adapting the
underlying triangulation to the shape of the polygon.
We have undertaken first steps towards this goal in
Section 5.

A convergence result with respect to the medial
axis would be desirable, if extraneaous vertices on P ’s
boundary are allowed. Does a carefully pruned Delau-
nay axis of P , or a slight variant thereof, converge to
the medial axis if boundary sampling gets arbitrar-
ily fine (except within branch triangles, where we can
replace axis parts accordingly)?

As a minor issue, choosing a reference point other
than the centroid for a branch triangle ∆ may im-
prove the geometric quality of the triangulation axis.
In principle, any point in ∆ can be taken that changes
continuously with ∆ and that, when ∆ is ‘squeezed’
to a line segment, converges to its midpoint. All prop-
erties described in Sections 2 and 3 then stay valid.
Anisotropic convex distance functions still can be de-

(a) (b)

Figure 16: (a) Incenter of ∇ versus centroid of ∆.
(b) Axis vertex of degree 4 that results from using Steiner
points.
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fined, and the reconstruction of the polygon is the
same. In fact, the incenter (center of the inradius) of
the triangle ∇ spanned by ∆’s side midpoints gives
slightly better results than the centroid. This point
stays closer to the side midpoints, see Figure 16(a),
which causes the resulting axis to ‘wiggle’ less. Tak-
ing the Steiner point [9] of ∇, which by definition
minimizes the length of the axis part within ∆, is an
option as well. Note that this point may coincide with
a side midpoint of ∆, and give rise to an axis vertex
of degree 4 if two branch triangles are adjacent; see
Figure 16(b). We have used the better one of these
branch points for each individual ∆ in our computer-
generated examples (Figures 1, 6-9, 14, and 15).

Let us mention at this place that taking just the
dual graph of a polygon triangulation, which contains
a single dual edge for each diagonal used, is a less con-
venient candidate for a skeleton. If not placed care-
fully, this graph might be far from being centered,
and even may leave the polygon when drawn with
straight-line edges.

The concept of triangulation axis is not restricted
to simple polygons, but extends to polygonal re-
gions with holes. The question arises whether there
exists a meaningful generalization to three dimen-
sions. A carefully defined triangulation axis of an
interior-triangulated polytope might lead to a use-
ful one-dimensional skeletal structure. (Computing
the 1-skeleton of the 3D medial axis, or a lineariza-
tion thereof, is quite elaborate [16].) The main obsta-
cles faced are the existence of tetrahedrizations hav-
ing size Θ(n2), and the occurrence of cycles in their
dual graph. On the other hand, flipping still works
for tetrahedral partitions.
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