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Abstract

We describe a construction of LR-spaces whose bases are composed of locally linearly
independent B-splines which also form a partition of unity. The construction conforms to
given refinement requirements associated to subdomains. In contrast to the original LR-
paper (Dokken et al., 2013) and similarly to the hierarchical B-spline framework (Forsey
and Bartels, 1988) the construction of the mesh is based on a priori choice of a sequence
of nested tensor B-spline spaces.
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1. Introduction

In the last decade the use of spline spaces has spread from the field of applied geometry,
in particular Computer Aided Design (CAD), to that of numerical analysis of Partial
Differential Equations (PDE). This is largely due to the influence of the seminal paper
by Hughes et al. (2005). The use of B-spline generated spaces in Galerkin methods was
attempted before by Höllig (2003), but Hughes et al. (2005) recognized it as a possible
way to remove the compatibility layer that is in between the CAD tools and the Finite
Element Method (FEM). The compatibility layer contains the mesh generation process and,
in some cases, can be more computationally expensive than the simulation itself (Hughes
et al., 2005). The method that reduces the compatibility layer proposed by Hughes et al.
(2005) is called IsoGeometric Analysis (IGA) and is based on the isoparametric approach:
the solution fields of the PDE are in the same B-spline or NURBS space used for the
parametrization of the geometry.

IGA sprouted new research in numerical methods due to the availability of basis func-
tions with higher smoothness and with strong algebraic properties that allow for new
numerical schemes like compatible discretizations. It had the same effect in the applied
geometry field: the numerical simulation of PDEs requires high quality parametrizations
of the domain while in CAD it is common to parametrize only the boundary and to allow
both for small gaps and singularities.

Both CAD and IGA applications require the use of function spaces that allow for local
changes in spatial resolution. This is necessary to obtain a good approximation with
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fewer degrees of freedom. The standard tensor-product B-spline spaces do not allow for
local changes in spatial resolution and thus different generalizations providing adaptive
refinement were proposed in the last 25 years. Forsey and Bartels (1988) introduced the
hierarchical-splines, later studied by Kraft (1997) and more recently by Giannelli et al.
(2012) and Mokrǐs et al. (2014); Sederberg et al. (2003, 2004) introduced T-splines of
which an Analysis Suitable subset (AST) was described by Beirão da Veiga et al. (2012);
Deng et al. (2008) introduced PHT-splines and Dokken et al. (2013) introduced LR-splines
whose local linear independence was studied by Bressan (2013). Each of these approaches
has their own strengths and weaknesses determined by the focus with which they were
developed. In this article we try to combine the LR-splines framework with the hierarchical
approach.

Our aim is to obtain a space that has strong properties such as local linear independence
and that can be efficiently implemented. Johannessen et al. (2014) applied LR-spline
spaces to IGA and explored different refinement techniques. In contrast to their work, we
study refinement strategies that are based on theoretical guarantees. In detail we present
a method to construct a box mesh M on a domain Ω whose element size is small in
a neighborhood of some given regions and for which the associated LR-spline collection
LR(M) is a basis composed of locally linearly independent functions. This implies that
the basis is also a partition of unity.

In Section 2 we recall LR-spline definitions and results. Compared to the paper of
Dokken et al. (2013) we only target the bi-variate case and we can therefore use a simpler
notation. In particular we focus on the equivalence for the LR-spline collection to be a
partition of unity, to be a set of locally linearly independent B-splines, and the non-nested
support property (N2S for short).

In Section 3 we describe a subset of the domain Ω in which it is possible to add vertical
segments while preserving the N2S property. We describe another subset that behaves
similarly for the addition of horizontal segments.

In Section 4 we define a hierarchical approach to the construction of box meshes. Then
we provide sufficient conditions under which the associated LR-spline space has the N2S
property.

In Section 5 we study the completeness of the hierarchically constructed LR-space, that
is, whether it equals the piecewise polynomial space that is associated to the mesh.

Section 6 describes our construction of LR meshes that guarantees both the N2S prop-
erty (and thus local linear independence of the basis functions) and completeness. We
comment on the locality of the refinement and show some examples in the case of dyadic
refinement.

Section 7 compares the proposed space with the truncated hierarchical B-spline space
(THB) on the same Bézier mesh.

2. Notation and LR-spline properties

We use Pd to denote the space of polynomials of degree less than or equal to d. The
space of bivariate polynomials of degree dx in the x variable and degree dy in the y variable
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is denoted using a vector d = (dx, dy) for the degree:

Pd = Pdx ⊗ Pdy .

For our purpose the degree d = (dx, dy) can be considered fixed at the beginning and it
will be omitted in the notation.

A knot vector Θ is a monotone non-decreasing sequence of real numbers

θ1 ≤ . . . ≤ θn.

The number of repetitions of a knot z in a knot vector Θ is called the multiplicity of z in
Θ and denoted with:

µΘ(z) = #{j : θj = z}. (1)

We say that two knot vectors θ1 ≤ . . . ≤ θn and ξ1 ≤ . . . ≤ ξm are compatible on the
overlap1 if they can be seen as two parts of a larger knot vector ζ1 ≤ . . . ≤ ζm+n. More
precisely if there exists ζ1 ≤ . . . ≤ ζm+n, and two indexes s, t such that{

θi = ζs+i, i = 1, . . . , n;

ξi = ζt+i, i = 1, . . . ,m.
(2)

Note that if θn ≤ ξ1 or if ξm ≤ θ1 than the two knot vectors are compatible.
The B-spline of degree d defined by the knot vector Θ = (θ1, . . . , θd+2) (with θ1 < θd+2)

is denoted with B[Θ]. Bi-variate B-splines R2 → R are the product of two univariate
B-splines and are defined by a pair of knot vectors Θ = (Θx,Θy)

B[Θ](x, y) = B[Θx](x)B[Θy](y).

The definition of the LR-spline spaces is based on knot insertion. More precisely, two
new knot vectors Θ+ and Θ− are defined by inserting θ̄ ∈]θ1, θk+2[ into a given knot vector
Θ = (θ1, . . . , θk+2). The new knot vectors Θ+ and Θ− contain the knots θ̄, θ1, . . . , θk+1 and
θ̄, θ2, . . . , θk+2 in non-decreasing order, respectively.

There is a linear relation involving the B-splines B[Θ], B[Θ+] and B[Θ−]. In the
bivariate setting, given B[Θx,Θy] and θ̄ in [θx,i, θx,i+1[ it holds

B[Θ] = α+B[Θ+
x ,Θy] + α−B[Θ−x ,Θy]. (3)

where

α+ =

{
1 i = dx,

θ̄−θx,1
θx,dx+1−θx,1

otherwise,
α− =

{
1 i = 1,
θx,dx+2−θ̄
θx,dx+2−θx,2

otherwise.

We say that B[Θ+
x ,Θy] and B[Θ−x ,Θy] are obtained from B[Θx,Θy] by the insertion of θ̄.

The insertion of knots in Θy works similarly. Based on the knot insertion is the notion of
nested B-splines.

1In the context of T-splines this property is called overlap (Beirão da Veiga et al., 2012). We prefer the
name compatible because two separate knot vectors with θn < ξ1 or ξm < θ1 are compatible, but it would
be counter-intuitive to call them overlapping.

3



Definition 1. Let S be a space of functions. A B-spline B is nested in a B-spline B′

relatively to S and it is written B ≺S B′ if there exists a sequence of B-splines B′ =
B1, . . . , Bn = B such that:

• Bi ∈ S, for i = 1, . . . , n;

• Bi+1 is obtained from Bi by the insertion of a knot, i = 1, . . . , n− 1.

Note that sequences of length 1 are allowed by this definition, i.e. B ≺S B ⇐⇒ B ∈ S.
If S is the space of all functions R2 → R, then it will be omitted and we will use ≺ instead
of ≺S.

Note that ≺S is a partial order relation on B-splines. As such it is possible to describe
≺S using a directed acyclic graph. Minimal and maximal elements of S with respect of ≺S
correspond to sinks and sources of the graph. Comparable pairs, i.e. pairs B1, B2 such that
B1 ≺ B2 or B2 ≺ B1, corresponds to pairs of elements that are connected by an oriented
path in the graph.

It is important to note that B ≺S B′ implies B ≺ B′, but not vice versa. In particular
if B is a maximal or a minimal element in S with respect to ≺ then it is also a maximal
or minimal element for ≺S. The minimal elements for ≺S in S are called minimal support
B-splines in S.

The definition of LR-spline spaces is based on ≺S where S is an appropriate piecewise
polynomial space over box elements. A box η is a Cartesian product of two closed intervals:
[a, b]× [e, f ]. A box in R2 can be:

• a vertex if a = b and e = f ;

• a horizontal segment if a < b and e = f ;

• a vertical segment if a = b and e < f ;

• a rectangle if a < b and e < f .

By convention the interior of a horizontal or vertical segment γ = [a, b]× [e, f ] is

γ◦ = γ \ {(a, e), (b, f)}. (4)

The interior of a rectangle γ = [a, b]× [e, f ] is its topological interior γ◦ =]a, b[×]e, f [ and
the interior of a vertex is the empty set.

A box mesh R on a rectangle Ω is a finite collection of rectangles such that:

•
⋃
η∈R η = Ω;

• ∀η1 6= η2 ∈ R, η1
◦ ∩ η2

◦ = ∅.
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For each box mesh we define the sets of vertical and horizontal edges,

Ev(R) = {γ = η1 ∩ η2 : η1, η2 ∈ R and γ is a vertical segment}
Eh(R) = {γ = η1 ∩ η2 : η1, η2 ∈ R and γ is a horizontal segment}.

Their union is the set of all edges

E(R) = Ev(R) ∪ Eh(R).

Definition 2. A box mesh with multiplicity M on Ω is a pair (R, σ) where R is a box
mesh and σ : E(R)→ N is a function representing the multiplicity of the edges. The spline
space of degree d associated to a box mesh with multiplicity is

S(M) =


f : Ω→ R : ∀η ∈ R, f |η ∈ Pd,

∀γ ∈ Ev(M), ∂dx−σ(γ)
x f is continuous on γ◦,

∀γ ∈ Eh(M), ∂dy−σ(γ)
y f is continuous on γ◦

 .

We say that a B-spline B : R2 → R is in S(M) when suppB ⊆ Ω and B|Ω ∈ S(M). When
the component of M are not specified we will refer to E(R) by E(M).

Throughout this paper we will assume that the multiplicity of horizontal and vertical
edges does not exceed dy + 1 and dx + 1, respectively.

Box meshes with multiplicity can be refined by adding mesh-lines to them. Given a
meshM = (R, σ) and a segment γ we defineM+ γ as the mesh M̃ = (R̃, σ̃) obtained by
dividing all rectangles split by γ into two. More precisely

R̃ =
{
C : ∃η ∈ R : C is a connected component of η \ γ

}
(5)

and for α ∈ E(R̃)

σ̃(α) =


σ(β) α 6⊆ γ ∧ ∃β ∈ E(M) : α ⊆ β

σ(β) + 1 α ⊆ γ ∧ ∃β ∈ E(M) : α ⊆ β

1 α ⊆ γ ∧ @β ∈ E(M) : α ⊆ β.

(6)

An LR mesh is a box mesh with multiplicity that can be constructed by a sequence of
additions starting from a tensor mesh.

For all meshesM the space S(M) contains the Bernstein polynomials on Ω. Moreover
they are always maximal elements in S(M) for both ≺ and ≺S(M).

Definition 3. The LR-spline collection LR(M) is the set of the minimal support B-
spline that are comparable with respect to ≺S(M) to at least one Bernstein polynomial.
The LR-spline space is

LR(M) = spanLR(M).
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With this definition the LR-spline collection can be constructed using a recursive al-
gorithm that, starting from the set of Bernstein polynomials, replaces at each step a non
minimal support B-spline with two B-splines obtained by knot insertion. This iterative
construction is described in detail by Dokken et al. (2013). The set of minimal support B-
splines can indeed be larger than LR, see for an example Figure 2 of (Bressan, 2013). The
question of completeness of the LR-space, i.e. if LR(M) is S(M) is not trivial. Dokken
et al. (2013) described sufficient conditions for the equality, these are the base of our
discussion on completeness.

Linear independence of the B-splines in LR(M) is also a not fully resolved issue.
Dokken et al. (2013) provided an algorithm that allows to check for linear relation effi-
ciently, but in the literature there is no (non-trivial) construction that guarantees linear
independence. The construction we describe is based on the theoretical results from Bres-
san (2013) where it is proved that local linear independence is equivalent to the fact that
all B-splines in LR(M) are minimal elements with respect to ≺, see Theorem 4 below for
details.

Recall that a finite system of functions is linearly independent on a set A if the fact
that a linear combination of these functions is equal to zero on the set A implies that the
coefficients of all functions with a support intersecting A vanish. This property is preserved
by taking the union of two sets: If the system of functions is linearly independent on two
open set A and A′ then it is also linearly independent on A ∪A′. A system of functions is
said to be locally linearly independent if it is linearly independent on any open set A.

Theorem 4. Let M be a box mesh with multiplicity, then the following are equivalent:

1. ∀B1, B2 ∈ LR(M) : B1 ≺ B2 ⇒ B1 = B2;

2. ∀f ∈ Pd, f =
∑
B∈LR

B[f ](B)B where B[f ](B) is the blossom of f evaluated at the

internal knots of B (Ramshaw, 1989);

3. LR(M) is a partition of unity;

4. the functions in LR(M) are locally linearly independent;

5. ∀η ∈ R, #{B ∈ LR(M) : suppB ⊇ η◦} = (dx + 1)(dy + 1).

Proof. For the equivalence of the statements 1, 2, 3 and 5 we refer to Bressan (2013). We
prove the equivalence of the fourth statement with statement no. 5. On the one hand, if
the latter one is not satisfied, then there exists a rectangle η, which is contained in the
support of at least (dx + 1)(dy + 1) + 1 B-spline functions. Since LR(M)|η◦ = Pd they are
not linearly independent on the open set η◦, hence the condition in the fourth statement is
violated. On the other hand, assume the latter statement is satisfied. Since Pd ⊂ LR(M),
we conclude that the functions in LR(M) are linearly independent on any set that is
contained in any rectangle η ∈ R and possesses a non-empty interior. This observation
extends to any open set since linear independence of functions on sets is preserved when
taking unions of sets and the intersections of an open set with the rectangles η ∈ R are
either empty or have a non-empty interior.
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The property described in the first statement of this theorem will be called the non-
nested support (N2S) property. The support can actually be nested in the physical space
(this requires that some mesh edges have multiplicity > 1), but they cannot be nested in
the “index space”. Box meshes with multiplicity for which LR has the N2S property will
be called N2S meshes.

The functions involved in the linear dependency relation from Dokken et al. (2013,
Example 6.4) violate the N2S property. All the B-splines in (Dokken et al., 2013, Equa-
tion (40)) are in LR(M), but all the functions on the right-hand-side of the equality are
nested (≺) in the function on the left-hand-side.

In the following sections we will avoid specifying the mesh when there is no ambiguity:
we will use the shorter notation S instead of S(M), similarly E for E(M) etc.

3. Addition of segments

In this section we describe the set Rx of horizontaly refinable rectangles. Our result
is that if M is a N2S mesh and γ is a vertical segment “well contained” in

⋃
Rx then

M + γ is a N2S mesh2. Similarly we define the set Ry of vertically refinable rectangles.
Here “well contained” means that only the vertices of γ can be in ∂

⋃
Rx or equivalently

that γ◦ ⊂ (
⋃
Rx)

◦. We also provide additional conditions that guarantee that the N2S
property is preserved for the limit case: when the intersection of γ with the boundary of⋃
Rx is a union of segments (and similarly for horizontal γ).

Definition 5. Consider a rectangle η = [a, b]× [e, f ] ∈ R and let

sη = max{σ(γ) : γ ∈ Eh ∧ γ ⊆ [a, b]× {e}}
tη = max{σ(γ) : γ ∈ Eh ∧ γ ⊆ [a, b]× {f}}

Ξη =
(
e, . . . , e︸ ︷︷ ︸
sη times

, f, . . . , f︸ ︷︷ ︸
tη times

)
.

See Figure 1 for a graphical representation. We say that η ∈ R is horizontally refinable if
for all B[Θx,Θy] ∈ LR(M) with suppB[Θx,Θy] ⊇ η it holds that Θy is compatible with
Ξη. The set of horizontally refinable rectangles is Rx. The set Ry of vertically refinable
rectangles is defined similarly.

Note that from the definition it follows that for all η = [a, b]× [e, f ] ∈ Rx and α ∈ Eh
contained in [a, b]×{e} it holds that σ(α) = sη. Similarly if α ⊆ [a, b]×{f} then σ(α) = tη

Figure 2 shows the region covered by the rectangles in Rx and in Ry for a simple mesh.
Note that

⋃
Rx does not contain the regions near the endpoints of horizontal mesh lines

and similarly
⋃
Ry does not contain the regions near the endpoints of vertical mesh lines.

Lemma 6. Let M be an N2S mesh. If γ is a vertical edge such that γ◦ ⊆ (
⋃
Rx(M))◦

then M + γ is an N2S-mesh and
⋃
Rx(M + γ) ⊇

⋃
Rx(M). Moreover all the B-splines

2We use the convention that
⋃
A =

⋃
a∈A a.
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η

(b, f)

(a, e)

sη = 3,

tη = 2,

Ξη = (e, e, e, f, f).

Figure 1: An element η with the associated sη, tη and Ξη.

in LR(M + γ) either are in LR(M) or are obtained from B-splines in LR(M) by the
insertion of the abscissa of γ in the horizontal knot vector. Similarly if γ is a horizontal
segment.

Note that the addition of a vertical γ (satisfying the hypothesis) cannot reduce the
region covered by

⋃
Rx. This means that once

⋃
Rx is computed it is possible to add

many vertical segments well contained in it while preserving the N2S property. Conversely
nothing is said about the behavior of

⋃
Ry and thus it should be recomputed after each

addition of a vertical segment. Similarly for horizontal segments.

Proof. We prove the Lemma only for the addition of a vertical segment γ = {a} × [e, f ].
Consider a B-spline B = B[Θx,Θy] ∈ LR(M) whose support is cut by γ in two connected
components. This means that B is not a minimal support B-spline with respect to the
mesh M + γ = (R̃, σ̃) and thus there are two B-splines that are obtained from B by
inserting a, the abscissa of γ, into Θx. Let B′ be one of the two B-splines obtained from
B. First we prove by contradiction that B′ is a minimal support B-spline for S(M + γ)
and then that there is no ϕ in LR(M + γ) such that B′ ≺ ϕ. Let Θ′x be the horizontal
knot vector of B′.

Assume that B′ is not a minimal support B-spline for S(M + γ). Then there exists
ϕ ∈ S(M + γ) that is obtained from B′ by knot insertion. Consider first the case of
a horizontal knot insertion so that ϕ = B[Θ′′x,Θy] and let θ̄ be the knot that has been
inserted in Θ′x. Let A be the set of the vertical edges in Ev(M+ γ) that are contained in
({θ̄} × R) ∩ suppB. The existence of ϕ implies

∀α ∈ A, σ̃(α) ≥ µΘ′′x(θ̄) > µΘ′x(θ̄). (7)

From the definition of M+ γ it follows

∀α ∈ A, µΘ′x(θ̄) = µΘx(θ̄) + c (8)

where c = 1 if θ̄ = a and 0 otherwise. From the fact that B is in LR(M) it follows (with
the same c)

∃α ∈ A : σ̃(α) = σ(α) + c. (9)

Equations (7), (8) and (9) are in contradiction.

8



Figure 2: Example of Rx and Ry for d = (2, 2). The region covered by
⋃
Rx is filled with the red

chessboard pattern; that covered by
⋃
Ry is filled with the blue chess pattern. Their intersection is filled

by the blue and red chessboard pattern and appears as purple.

Consider now the insertion of a vertical knot θ̄ and ϕ = B[Θ′x,Θ
′
y]. Let A be set of

horizontal edges in Eh(M + γ) contained in (R × {θ̄}) ∩ suppB. Since B ∈ LR(M) and
γ◦ ⊆ (

⋃
Rx(M))◦ it follows that for all α ∈ A such that α ∩ γ 6= ∅ it holds

σ̃(α) = µΘy(θ̄). (10)

On the other hand for α ⊂ suppB′ it must also hold

σ̃(α) ≥ µΘ′y(θ̄) > µΘy(θ̄). (11)

Equations (10) and (11) are in contradiction because there must be at least an α that is
contained in suppB′ and intersects γ. We can now conclude that B′ is in LR(M+γ). Thus
the B-spline in LR(M+γ) whose support intersect

⋃
Rx(M) have the same vertical knot

vector of a B-spline in LR(M) and thus we can conclude that
⋃
Rx(M+γ) ⊇

⋃
Rx(M).

Assume the existence of ϕ ∈ LR(M + γ) such that B′ ≺ ϕ. Then there exists ϕ′ =
B[Ξx,Ξy] ∈ LR(M) such that B′ ≺ ϕ ≺ ϕ′. Let a1 < · · · < an be the ordinates of
the horizontal edges contained in suppB and intersecting γ. Let αi = [a, bi] × {ai} be
the edge intersecting γ in the left endpoint at ordinate ai. From the hypothesis that
γ◦ ⊂ (

⋃
Rx(M))◦ we conclude that αi ⊂

⋃
Rx(M) and thus that Ξy is compatible with(

a1, . . . , a1︸ ︷︷ ︸
σ(α1) times

, . . . , an, . . . , an︸ ︷︷ ︸
σ(αn) times

)
.
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Figure 3: In the meshes above the region covered by
⋃
Rx is filled with the blue chessboard pattern. The

addition of the thick red segments to the mesh preserve the N2S property. Those drawn on the left mesh
satisfy the hypothesis of Lemma 6, those on the right mesh satisfy the hypothesis of Lemma 7. Degree is
(2, 2).

Moreover from B′ ≺ ϕ′ it follows that Ξy = Θy. Since B′ ≺ ϕ ≺ ϕ′ and all have the same
vertical knot vector we conclude that ϕ = B′. This proves thatM+ γ is a N2S mesh.

In Lemma 6 we addressed the preservation of the N2S property for the addition of
edges that are well contained in Rx or Ry. This does not cover the limit case, when
the added edges intersect the boundary of the refinable region. The problem is that by
adding a segment on the boundary of Rx it is possible to obtain a new B-spline B whose
support does not intersect (

⋃
Rx)

◦. On these B-splines we have no control and they
can be further refined and destroy the N2S property. We provide sufficient condition for
this case in Lemma 7. In Figure 3 there are some examples of vertical segments whose
addition preserve the N2S property because they satisfy the hypothesis of Lemma 6 (left)
or Lemma 7 (right).

Lemma 7. Let γ = {a}×[e, f ] be a vertical segment contained in
⋃
Rx(M). Let η1, . . . , ηm

be the maximal (with respect to inclusion) vertical segments contained in γ ∩ ∂
⋃
Rx(M).

Finally let ρ1, . . . , ρn be the horizontal edges in Eh(M) that intersect one of the ηi and
are not contained in

⋃
Rx(M) (see the picture below where

⋃
Rx(M) is filled with the

chessboard pattern). If for each ρi there exists ρ̂i ∈ Eh(M) prolonging ρi and contained in⋃
Rx(M) such that

σ(ρ̂i) ≥ σ(ρi)

thenM+γ is an N2S-mesh,
⋃
Rx(M+γ) ⊇

⋃
Rx(M) and all B-splines in LR(M+γ)\

LR(M) are obtained from a B-splines in LR(M) \ LR(M+ γ) by inserting the abscissa
of γ in the horizontal knot vector. Similarly if γ is a horizontal segment.
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η1

η2ρ1

ρ2 ρ̂2

γ

Proof. The proof follows the pattern of the proof of Lemma 6. First we prove that if
B = B[Θx,Θy] ∈ LR(M) is split by the insertion of γ then any obtained B-spline B′ =
B[Θ′x,Θy] is in LR(M+ γ).

Assuming that there is ϕ = B[Θ′′x,Θy] in S(M + γ) obtained from B′ by inserting an
horizontal knot we reach the same contradiction as in Lemma 6. Now assume the existence
of ϕ = B[Θ′x,Θ

′
y] in S(M+ γ) obtained from B′ by inserting θ̄ in Θy. Let A be the set of

the edges in Eh(M+ γ) contained in R× {θ̄} ∩ suppB′. Then for all α in A it holds

σ̃(α) = σ(α) ≥ µΘ′y(θ̄) > µΘy(θ̄). (12)

Let α̂ be an edge in A that intersect γ. If it is possible to choose α̂ ⊂
⋃
Rx then we reach a

contradiction as in Lemma 6. Otherwise there must be an index i such that α̂ = ρi. Then
by the additional hypothesis it follows

σ̃(α̂) = σ(ρi) ≤ σ(ρ̂i) = µΘy(θ̄). (13)

Equations (12) and (13) contradict. Thus B′ is in LR(M + γ) and as in Lemma 6 we
conclude that

⋃
Rx(M+ γ) ⊇

⋃
Rx(M).

Let ϕ ∈ LR(M+ γ) be such that B′ ≺ ϕ. Then there exists ϕ′ = B[Ξx,Ξy] ∈ LR(M)
with B′ ≺ ϕ ≺ ϕ′.

Let a1 < · · · < an be the ordinates of the horizontal edges contained in suppB and
intersecting γ. Let αi = [a, bi] × {ai} be the edge intersecting γ in the left endpoint at
ordinate ai. Note that if αi is not contained in

⋃
Rx(M) then it must be one of the ρj.

Call it ρji . Let

α̂i =

{
αi if αi ⊂

⋃
Rx(M),

ρ̂ji otherwise.
(14)

Thus suppϕ′ contains all of the α̂i and since they are contained in
⋃
Rx(M) its knot

vector Ξy is compatible with (
a1, . . . , a1︸ ︷︷ ︸
σ(α̂1) times

, . . . , an, . . . , an︸ ︷︷ ︸
σ(α̂n) times

)
.

This and the fact that B′ ≺ ϕ′ imply Ξy = Θy. Since B′ ≺ ϕ ≺ ϕ′ and all have the same
vertical knot vector we conclude that ϕ = B′. This proves thatM+ γ is a N2S mesh.
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When proving both Lemma 6 and Lemma 7 we derived the following partial result to
which we will refer later.

Corollary 8. If γ satisfies the hypothesis of Lemma 6 or Lemma 7 then the B-splines
obtained from B-splines in LR(M)\LR(M+γ) by the insertion of the knot corresponding
to γ (either into Θx or Θy depending on the direction of γ) belong to LR(M+ γ).

This means that, differently from the case of general LR splines, the addition of a
segment does not trigger a chain of refinements, but only causes the refinement of the
directly affected functions in LR(M).

4. Hierarchical box meshes

In this section we introduce a hierarchical construction of box meshes. By hierarchical
we mean that it starts from a sequence of box meshes associated with nested tensor-product
B-spline spaces (tensor meshes). After the definition we describe sufficient conditions for
the N2S property.

4.1. Definition

Let V0 ⊂ . . . ⊂ Vm be a sequence of nested tensor-product B-spline spaces having
the same degree d and defined on the same domain Ω. Let B` be the canonical basis of
the space V`. Each space V` is defined by a pair of knot vectors Θ` = (Θ`

x,Θ
`
y) whose

components are
Θ`
x = (θ`x,1, . . . , θ

`
x,n`x

),

Θ`
y = (θ`y,1, . . . , θ

`
y,n`y

).

In this construction we assume that at each step only one of the two components is refined:
either Θ`

x or Θ`
y. We say that the refinement at step ` is horizontal if Θ`

x 6= Θ`−1
x and

Θ`
y = Θ`−1

y . Similarly we say that it is vertical if Θ`
x = Θ`−1

x and Θ`
y 6= Θ`−1

y .
Let Ω0 = Ω ⊇ . . . ⊇ Ωm be a corresponding sequence of nested domains such that for

each level ` the domain Ω` is a union of Bézier elements for V`. That means

Ω` =
⋃

(s,t)∈I`
[θ`x,s, θ

`
x,s+1]× [θ`y,t, θ

`
y,t+1]

where I` is a subset of {(i, j) : i = 1, . . . , n`x − 1, j = 1, . . . , n`y − 1}. Let R` be the set of
the elements from level ` contained in Ω`, that means

R` =
{
η = [θ`x,s, θ

`
x,s+1]× [θ`y,t, θ

`
y,t+1] : (s, t) ∈ I`, η◦ 6= ∅

}
.

Definition 9. Given a sequence of levels 0, . . . ,m as above, the associated hierarchical LR
mesh is H = (R, σ) with

R =
m⋃
`=0

{
η = β \ Ω`+1 : β ∈ R`, η 6= ∅

}
(15)
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mesh of V0 mesh of V1 and Ω1

η

mesh H

Figure 4: A sample hierarchical mesh with two levels. The element with label η is not an element of any
tensor mesh associated to the levels.

and σ defined in terms of the knot multiplicities as follows

σ(α) =

{
µΘ`x

(a) if α = {a} × [e, f ] ∈ Ev

µΘ`y
(e) if α = [a, b]× {e} ∈ Eh

(16)

where ` is the biggest index such that Ω` ⊃ α.

Note that all the elements of R are rectangles because at each step only one direction
is refined. Note also that the elements in R are not necessarily Bezier elements for one of
the spaces V0, . . . ,Vm, see Figure 4 for a counterexample.

Hierarchical LR meshes can be constructed by iteratively adding segments to a tensor
mesh. This justifies the name. Let M0 be the box mesh corresponding to V0. There are
many possible choices of sequences of segments γ1, . . . , γN such that(

. . .
(
(M0 + γ1) + γ2

)
+ . . .

)
+ γN = H.

For our purposes it is convenient to define a canonical sequence that we will use in induction
proofs. Let T `, ` = 0, . . . ,m be the hierarchical box meshes associated to the levels 0, . . . , `.
Thus T 0 is the mesh associated to V0 and T m = H. We describe a sequences of additions
that construct T ` from T `−1. The canonical sequence is then the concatenation of these.
Assume that the refinement at step ` is horizontal, then we add vertical segments. For each
i = 1, . . . , n`x we add the connected components of Ω` ∩ ({θ`x,i} × R) in order of increasing
ordinate µΘ`x

(θ`x,i)− µΘ`−1
x

(θ`x,i) times. Similarly for vertical refinement steps.

4.2. Hierarchical N2S meshes

Restricting to hierarchical box meshes allows us to find sufficient conditions for the N2S
property that can be expressed as constraints on the geometries of Ω0, . . .Ωm. It is indeed
sufficient for the N2S property that there is enough separation between the boundary of
Ω` and that of Ω`−1 in the direction of the refinement. To describe this we introduce a
separation distance.

13



A S`A

Figure 5: We represent the shadow S`A (in purple) of a set A (in green) The degree is (2, 2), the refinement
at step ` + 1 is horizontal and the horizontal knot vector of the tensor B-spline space V` contains a knot
with multiplicity 2 that corresponds to the double line in the picture.

Definition 10. Let p = (a, e) and q = (b, f) be points in Ω, then the vertical separation
distance between p and q relative to level ` is a positive integer defined by

sep`y(p,q) =

{
#{j : θ`y,j ∈ [e, f ]} a = b,

+∞ a 6= b.

Similarly the horizontal separation is

sep`x(p,q) =

{
#{j : θ`x,j ∈ [a, b]} e = f,

+∞ e 6= f.

For a set of points A ⊆ Ω the separation sep`y(p, A) is defined as

sep`y(p, A) = inf
q∈A

sep`y(p,q)

and similarly for sep`x.

Based on the above separations we define the shadow operators S` that map subsets of
Ω to bigger subsets of Ω:

S`A =

{
{p ∈ Ω : sep`x(p, A) ≤ dx} if the refinement at step `+ 1 is horizontal,

{p ∈ Ω : sep`y(p, A) ≤ dy} if the refinement at step `+ 1 is vertical.

See Figure 5 for an example of S` in which the refinement at step `+ 1 is horizontal.

Theorem 11. If the domains associated to the levels are such that Ω` ⊇ S`Ω`+1, ` =
0, . . . ,m− 1 then H has the N2S property.

14



Proof. We prove the Lemma by induction: we assume that

• T `−2 and T `−1 are N2S-meshes;

• if the refinement at level `− 1 is horizontal then Ω`−1 ⊆
⋃
Rx(T `−2);

• if it is vertical Ω`−1 ⊆
⋃
Ry(T `−2);

and prove that

• T ` is an N2S-mesh

• Ω` ⊆
⋃
Rx(T `−1) if the refinement at step ` is horizontal;

• Ω` ⊆
⋃
Ry(T `−1) if the refinement at step ` is vertical.

Without loss of generality we can assume that the refinement at step ` is horizontal, i.e. it
corresponds to the addition of vertical segments.

First we prove that Ω` ⊆
⋃
Rx(T `−1). There are two cases: either the refinement at

step ` − 1 is horizontal and thus the above holds as stated in Lemma 6 and Lemma 7
or the refinement at step ` − 1 is vertical. In the second case we prove that all elements
η = [a, b]× [e, f ] of R(T `−1) that intersect Ω` are in Rx(T `−1). Let p = (px, py) be a point
in η◦ ∩Ω` and α1, . . . , αk be the vertical edges in Ev(T `−1) that intersect R× {py} ∩Ω`−1,
see Figure 6.

Ω`−1

R× {py}

Ω`

p
α1 α2 α3 α4 αk−1 αk

Figure 6: Notation used in the proof of Theorem 11.

Let a1, . . . , ak be their abscissa and Z be the knot vector

Z =
(
a1, . . . , a1︸ ︷︷ ︸
µ

Θ`−1
x

(α1)

, a2, . . . , a2︸ ︷︷ ︸
µ

Θ`−1
x

(α2)

, . . . , ak, . . . , ak︸ ︷︷ ︸
µ

Θ`−1
x

(αk)

)
. (17)
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Since all αi are contained in Ω`−1 ⊆
⋃
Ry(T `−2) it follows that for allB[Ξx,Ξy] ∈ LR(T `−1)

such that suppB[Ξx,Ξy] ⊇ η, Ξx is compatible with Z . Moreover by the definition of the
shadow operator it holds ∑

i:ai<px

µΘ`−1
x

(ai) ≥ dx + 1,∑
i:ai>px

µΘ`−1
x

(ai) ≥ dx + 1,
(18)

and thus we conclude that

suppB[Ξx,Ξy] ⊂ [a1, ak]× R.

Since all edges in Rh(M`−1) contained in [a1, ak]×{e}∩Ω`−1 have multiplicity µΘ`−1(e)
it follows that e must be a knot in Ξy with maximum multiplicity: µΞy(e) < µΘ`−1(e) implies
that e is either the first or the last knot. Similarly for f and thus Ξy is compatible with(

e, . . . , e︸ ︷︷ ︸
µ

Θ`−1
y

(e)

, f, . . . , f︸ ︷︷ ︸
µ

Θ`−1
x

(f)

)
.

Since B[Ξx,Ξy] is arbitrary we conclude that η is contained in
⋃
Rx(T `−1). Since also η is

arbitrary we conclude that Ω` ⊂
⋃
Rx(T `−1).

Recall that T ` can be obtained from T `−1 by a sequence of additions of segments. Let
γ1, . . . , γN be the segments described in Subsection 4.1 whose addition to T `−1 produces
T `. Then the γi are contained in Ω` ⊆ Rx(T `−1). The addition of the γi such that
γi
◦ ⊂ (

⋃
Rx(T `−1))

◦
preserves the N2S property according to Lemma 6. The others

must satisfy the hypothesis of Lemma 7 because of the hierarchical construction. That
is: γ cannot intercept pairs of aligned connected edges (δi, δe) with δi ⊂

⋃
Rx(T `−1),

δe 6⊂
⋃
Rx(T `−1) and σ(δe) > σ(δi). So the induction is proved.

5. Completeness

We are also interested in the completeness of the provided space, i.e. whether LR(H)
equals S(H) or not. Describing which refinements preserve completeness was one of the
themes of Dokken et al. (2013) and was pursued using homology based techniques. We
restrict our attention to hierarchical LR meshes with the N2S property and we prove that if
the Ω` are “thick enough” in the direction orthogonal to the refinement then the resulting
space is LR(H) = S(H). This is made precise in the following result.

Theorem 12. Let H be a hierarchical mesh satisfying the hypothesis of Theorem 11: i.e.
for all ` = 1, . . . ,m it holds

Ω` ⊇ S`Ω`+1.

If for all horizontal refinement steps ` and all connected component A = {a} × [e, f ] of
{a} × R ∩ Ω` it holds

sep`y((a, e), (a, f)) ≥ dy + 2, (19)
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sep`y = 7 > dy + 2sep`y = 2 < dy + 2

Not OK OK

Figure 7: Illustration of the hypothesis of Lemma 12 for a horizontal refinement step ` and dy = 2. The
region covered by Ω` is filled with the chessboard pattern. If the separation between the endpoints of the
dashed lines (intersections of Ω` with vertical lines) is greater then dy + 2 then the completeness of T ` is
implied from the completeness of T `−1.

and similarly for vertical refinement steps and all connected component A = [a, b]× {e} of
R× {e} ∩ Ω` it holds

sep`y((a, e), (b, e)) ≥ dx + 2, (20)

then LR(H) = S(H). See Figure 7 for a graphical representation of the hypothesis.

Proof. As described in Section 4, H can be obtained by refining the tensor mesh M0

corresponding to the space V0:

H =M0 + γ1 + · · ·+ γn.

Let Mi = M0 + γ1 + · · · + γi. We know that completeness holds for tensor meshes and
thus that

#LR(M0) = dim S(M0).

We prove the induction step

LR(Mi−1) = S(Mi−1) ⇒ LR(Mi) = S(Mi).

Assume that Mi is finer than T `−1 and coarser than T ` and that refinement at step
` is horizontal. Then γi is vertical segment contained in

⋃
Rx(Mi−1) and a connected

component of Ω` ∩ {a} × R. Let e1, . . . , ek be the ordinates of the intersections of γi with
horizontal edges in Eh(Mi−1), pi = (a, e1) and qi = (a, ek) be the endpoints of γi and

Ξ =
(
e1, . . . , e1︸ ︷︷ ︸
µ

Θ`−1
y

(e1)

, e2, . . . , e2︸ ︷︷ ︸
µ

Θ`−1
y

(e2)

, . . . , ek, . . . , ek︸ ︷︷ ︸
µ

Θ`−1
y

(ek)

)
.
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From Theorem 11 we know that Mi is an N2S mesh and thus from Theorem 4 that

#LR(Mi) = dimLR(Mi) ≤ dimS(Mi).

In order to prove the induction step we show that ∆LR ≥ ∆S where

∆LR = #LR(Mi)−#LR(Mi−1)

and
∆S = dimS(Mi)− dimS(Mi−1).

Reasoning as in the proof of Theorem 11, we deduce that γi satisfies the hypotheses of
Lemma 6 or Lemma 7. Thus Ξ is compatible with all the vertical knot vectors Zy of the
B-splines B[Zx,Zy] ∈ LR(Mi−1) such that (suppB[Zx,Zy]) ∩ γi 6= ∅. This means that
all the Zy as above are composed of dy + 2 consecutive knots of Ξ.

Since Mi is an N2S mesh, it follows (Bressan, 2013, Lemma 3.4) that for each point
v = (vx, vy) and integers s ∈ {1, . . . , dx + 1}, t ∈ {1, . . . , dy + 1} there exists B[Zx,Zy] ∈
LR(Mi−1) such that

#{ζ ∈ Zx : ζ ≤ vx} = s, #{ζ ∈ Zy : ζ ≤ vy} = t.

For each edge that is contained in γi, we apply this result to one inner point choosing
s = dx + 1 and considering all possible values of t. We then observe that for each knot
vector composed of dy + 2 consecutive knots of Ξ, there exists at least one B-spline in
LR(Mi−1), which is defined by this knot vector with respect to the y-direction and by
another one with respect to the x-direction. This B-spline is refined by the addition of γi
and the obtained B-splines are in LR(Mi), see Corollary 8. Consequently

∆LR ≥
k∑
i=1

µΘ`−1
y

(ei)− dy − 1 = sep`−1
y (pi,qi)− dy − 1.

Dokken et al. (2013, Theorem 5.5) provide a formula for dimS(Mi). The formula is
based on previous research from Mourrain (2014). From the formula it follows that

∆S = sep`y(pi,qi)− dy − 1 + h0(Mi)− h0(Mi−1)− h1(Mi) + h1(Mi−1) (21)

where h0, h1 are two non-negative functions of the mesh that can be computed with ho-
mological techniques. According to Dokken et al. (2013, Note 1 after Theorem 5.5),
h0(Mi) = 0 if S(Mi) 6= {0} and this is our case. The homological term h1(M0) is 0
(Note 2) since the initial mesh is a tensor-product mesh. Moreover h1(Mi) is non-increasing
with respect to i because of (19), (20) and (Dokken et al., 2013, Note 3). Consequently,
all homological terms vanish and we may complete the proof of the induction step by
observing that

∆LR ≥ sep`y(pi,qi)− dy − 1 = ∆S. (22)

In a slightly different setting, the fact that the homological terms vanish when the mesh
is constructed from a tensor mesh by adding a sequence of “long enough” segments was
already stated by Mourrain (2014, Theorem 3.7).
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6. Construction

In this subsection we present a construction for hierarchical box meshes that guarantees
both the N2S property and completeness. We assume that the spaces V0, . . . ,Vm are fixed
and that a minimum refinement level is specified for some regions.

The input of our construction is a sequence of ω1, . . . , ωm of subsets of Ω = [0, 1]2 and
the output is a mesh such that all basis functions that are active on a point in ω` are
refinements of basis functions from B`. The ω` do not need to be nested and can be empty.
For example they can be a discrete set of points, a curve or an region or a union of those.

From ω1, . . . , ωm we construct the domains Ω1 ⊇ . . . ⊇ Ωm starting from Ωm and back
to Ω1. First we define the auxiliary sets ω̃` for ` = 1, . . . ,m:

ω̃` =
⋃
{suppB : B ∈ B`, suppB ∩ ω` 6= ∅}.

Set Ωm to ω̃m. Then Ω`−1 with ` = m− 1, . . . , 1 is defined to be

Ω`−1 = ω̃`−1 ∪ S`−1Ω`. (23)

By construction the domains associated to the levels satisfy Lemma 11 and Lemma 12
and thus H is an N2S-mesh for which LR(H) = S(H).

We conclude this section with some examples of the meshes constructed with our
method in case of dyadically refined knot vectors. Let

Θ`
x =

[
0, . . . , 0︸ ︷︷ ︸
dx+1 times

, . . .
k

2d`/2e
. . . , 1, . . . , 1︸ ︷︷ ︸

dx+1 times

]
, 0 < k < 2d`/2e

Θ`
y =

[
0, . . . , 0︸ ︷︷ ︸
dy+1 times

, . . .
k

2b`/2c
. . . , 1, . . . , 1︸ ︷︷ ︸

dy+1 times

]
, 0 < k < 2b`/2c.

We show the meshes constructed from the input regions ω1, . . . , ωm with

ω` =

{
G ` = m,

∅ otherwise

for different choices of G and m.
In Figure 8 the set G is a polygonal chain composed of two segments and m is

4, 6, 8, 10, 12, 14. In Figure 9 it is a spiral centered in (0.5, 0.5) and m is 4, 6, 8, 10, 12, 14.
In both Figures the degree is d = (2, 2).

As can be seen in Figure 8 and 9 the refined region follows G closely and does not
propagate. This statement can be made more precise. For simplicity we assume that the
degree is the same in both coordinate directions dx = dy = d and that the maximal level
m is even.

The size of an element η = [a, b]× [e, f ] ∈ R(H) contained in Ω` \ Ω`+1 is bounded by

2−d`/2e−1 ≤b− a ≤ 2−d`/2e

2−b`/2c−1 ≤f − e ≤ 2−b`/2c.
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The distance of such an element from ωm can be estimated using a geometric sum. Indeed
the distance between ωm and ∂Ωm is in

[d2−m/2, (d+ 1)2−m/2+1/2].

The operator S`−1 extends the domain Ω` in one direction by a length contained between
d2−`/2+1 and (d + 1)2−`/2+1. It follows that the distance between Ω` and the boundary of
Ω`−2 (in the case of ` even) is contained between d2−`/2+1 and (d+ 1)2−`/2+3/2.

The distance between η ⊆ Ω` \ Ω`+1 and ωm can be bounded using a geometric sum
and for ` < m− 1 it is contained in

[d(2−`/2 − 2−m/2), 23/2(d+ 1)2−`/2].

So we proved that any point contained in an element of size ≈ 2−`/2 is at a distance ≈ 2−`/2

from ωm. This means that the obtained meshes are geometrically refined only near the
requested regions.

7. Comparison with THB-splines

It is interesting to compare the described approach with the THB-spline approach
developed by Giannelli et al. (2012); Mokrǐs et al. (2014). We do this in the simplified
setting in which Ω` is a union of rectangles of level `− 1. In this setting we can compare
the space LR(H) to the THB-spline space TH(H) having the same Bézier elements and
defined from the same levels. This means that LR(H) and TH(H) are defined by the same
sequence of tensor-product spaces V` and domains Ω`.

The hierarchical spline construction selects a subset C` from the tensor-product basis
B` of V`. Precisely

C` =
{
B ∈ B` : suppB ⊆ Ω` ∧ suppB 6⊆ Ω`+1

}
.

The set of generators is then
⋃m
`=0 C`.

The THB-spline approach uses the same selection procedure, but the selected B-splines
are truncated in order to guarantee that they are a partition of unity and to obtain better
locality. In particular each B-spline B selected from level ` whose support intersects Ω`+1

is replaced by the function B̂`+1 obtained by expressing B as a linear combination of B-
splines from level ` + 1 and by setting the coefficients of the B-splines in C`+1 to 0. The
procedure is then repeated for each lower level `+ 2, . . . ,m. At this point the collection of
truncated B-splines is taken as the basis of the space. The truncated functions are always
a partition of unity.

The space TH(H) is a subset of S(H) and equality is proved for meshes such that for
each level ` and B ∈ C` the intersection (suppB)◦∩(Ω\Ω`+1) is connected. Sharper results
can be obtained for specific degrees and weaker conditions are needed for the decoupled
version of the THB-basis that was proposed by Mokrǐs et al. (2014). This condition is not
always satisfied by the type of meshes we are considering as can be seen in Figure 10.
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(0,0)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

Figure 8: Meshes obtained by setting ωm = Γ for m = 4, 6, . . . , 14. The degree is (2, 2).

21



(0,0)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

Figure 9: Meshes obtained by setting ωm = Γ for m = 4, 6, . . . , 14. The degree is (2, 2).
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Figure 10: In this example mesh the support of the B-spline B of degree (3, 3) from the coarsest level inter-
sect the Ω \ Ω1 in two connected components highlighted with the chess pattern. Therefore completeness
is not guaranteed in the THB, but it is by N2S. In this example dim S = dimLR = 331 > dimTH = 328.

So in selected cases the space we are proposing is bigger than the THB-spline space.
Two other advantages are that the basis functions are B-splines and that the basis functions
are locally linearly independent.

On the other hand the locality of the refinement with our approach is degree dependent
and decreases as the degree increase. This does not happen in the THB-spline setting.
Related to this is the fact that THB-splines do not require “alternating” refinement and
thus can be refined more locally.

8. Conclusions

We restrict our attention to the subset of bi-variate box meshes that have the N2S-
property. We describe two subdomains of Ω where respectively vertical and horizontal
refinement preserves the N2S property. Using this knowledge we provide an explicit con-
struction that is based on a hierarchy of tensor spaces and domains. The LR-space associ-
ated to the constructed mesh H has the N2S property, i.e. it has a basis of locally linearly
independent functions. Moreover LR(H) is the whole space S(H) of piecewise polynomials
associated to the mesh.

The fact that our construction guarantees the N2S property is based on the results
from Bressan (2013) that apply to the n-variate case. It seems thus reasonable that the
construction can be generalized to n-variate case with similar definitions and proofs. Future
work will be devoted to the generalization of Lemmas 6 and 7 to this situation. The proof
of completeness (Theorem 12), however, relies on the results from Mourrain (2014) that
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are available for bi-variate splines only. It is expected that more effort is required to extend
the completeness proof to n-variate constructions. Some results concerning the homology
term for 3D meshes are reported in Berdinsky et al. (2014).
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