
Matrix Generation in Isogeometric Analysis by
Low Rank Tensor Approximation

A. Mantzaflaris1, B. Jüttler1,2, B.N. Khoromskij3, and U. Langer1,2

1 RICAM, Austrian Academy of Sciences, Linz, Austria
2 Johannes Kepler University, Linz, Austria

3 MPI for Mathematics in the Sciences, Leipzig, Germany

Abstract. It has been observed that the task of matrix assembly in
Isogeometric Analysis (IGA) is more challenging than in the case of tra-
ditional finite element methods. The additional difficulties associated
with IGA are caused by the increased degree and the larger supports of
the functions that occur in the integrals defining the matrix elements.
Recently we introduced an interpolation-based approach that approxi-
mately transforms the integrands into piecewise polynomials and uses
look-up tables to evaluate their integrals [17, 18]. The present paper re-
lies on this earlier work and proposes to use tensor methods to accelerate
the assembly process further. More precisely, we show how to represent
the matrices that occur in IGA as sums of a small number of Kronecker
products of auxiliary matrices that are defined by univariate integrals.
This representation, which is based on a low-rank tensor approximation
of certain parts of the integrands, makes it possible to achieve a signifi-
cant speedup of the assembly process without compromising the overall
accuracy of the simulation.

Key words: isogeometric analysis, matrix assembly, tensor decomposi-
tion, low rank tensor approximation, numerical integration, quadrature

1 Introduction

Isogeometric Analysis (IGA) has been conceived as a new approach to reconcile
the conflicting approaches that are used in design and analysis [5, 8]. This is
achieved by using NURBS (non-uniform rational B-splines) for defining the dis-
cretization spaces that provide the basis of a numerical simulation. IGA has led
to several new challenges, one of which is to find efficient methods for assembly,
i.e., for evaluating the elements of the matrices and vectors that appear in the
linear systems arising in isogeometric simulations.

The standard approach to perform the assembly task consists in using Gaus-
sian quadrature, but this does not give optimal runtimes in IGA, due to its
high computational cost. On the one hand, this has motivated the use of GPU
programming [11, 12] for accelerating the assembly process. On the other hand,
several alternatives to Gauss quadrature have been explored. Special quadra-
ture rules for spline functions [2, 4, 9, 19] have been derived, but these rules are

2 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

potentially difficult to compute (since they require solving a non-linear system
of equations) and provide only modest improvements. Reduced Bézier element
quadrature rules for low degree discretizations have been investigated recently
[21]. Another approach, which is based on spline projection and exact integration
via look-up tables, has been presented in [17, 18]. The asymptotic time complex-
ity of the method is shown to be O(np2d), where n is the number of elements, p
is the spline degree and d the spatial dimension. While this approach provides
a significant speedup when using larger polynomial degrees (i.e. degree more
than three), it did not exhibit strong improvement with respect to using Gauss
quadrature for the low degree case. Similarly, the sum-factorization technique,
applied to IGA in [1], provides a significant improvement to the cost of Gauss
quadrature, by reducing it to O(np2d+1). Again, the benchmarks presented in
this work indicate that this advantage becomes significant for higher polynomial
degrees. Finally, it has been proposed to derive discretizations via collocation
[20], but the theoretical foundations of this mathematical technology are less
well understood than in the case of Galerkin projection.

Tensor-product splines are a very popular approach to construct multivariate
representations in IGA. In fact, bi- and tri-variate parameterizations in IGA rely
almost exclusively on tensor-product representations. Tensor methods are also
a well-known approach to deal with high-dimensional problems and to address
the “curse of dimensionality” for simulations of high-dimensional problems.

A major breakthrough concerning the problem of data-sparse representation
of multivariate functions and operators on large fine grids in high dimensions
was made possible by employing the principle of separation of variables. Mod-
ern grid-based tensor methods [14, 15] achieve linear memory costs O(dn) with
respect to dimension d and grid size n. The novel method of quantized tensor
approximation is proven to provide a logarithmic data-compression for a wide
class of discrete functions and operators [13]. It allows to discretize and to solve
multi-dimensional steady-state and dynamical problems with a logarithmic com-
plexity in the volume size of the computational grid.

Even though the problems considered in isogeometric analysis are defined
almost exclusively on computational domains of dimension ≤ 3, the use of tensor
methods is a promising approach to reduce the computational costs that are
associated with isogeometric discretizations, due to the tensor-product structure
of the spline spaces that are used for the discretization.

In fact, the complexity of any quadrature-based assembly is bounded from
below by the size of the matrix which is to be generated. A further improvement
is possible only when considering alternative representations of this matrix, and
such representations can be constructed by using tensor decomposition methods.
We will show that the use of low rank tensor approximations provides significant
gains and is feasible for non-trivial geometries.

In the present paper, we obtain a representation of the matrix as a sum of
a few Kronecker products of lower-dimensional matrices. Since linear algebra
operations can be performed efficiently on the Kronecker product structure [7],
this representation is directly useful for solving the PDE, e.g., when using itera-

Matrix Generation in Isogeometric Analysis 3

tive solvers that are based on matrix-vector multiplications. Nevertheless, even
computing the (sparse) Kronecker product as a final step of the assembly has
optimal computational complexity, simply because it can be performed in time
asymptotically equal to the size of its output.

The remainder of the paper is organized as follows. Section 2 describes the
problem of matrix assembly in IGA. The following section recalls the spline
projection of the integrands, which was presented in detail in [18]. Section 4
introduces the concept of tensor decomposition and Section 5 shows how this
can be exploited for an efficient evaluation of the matrix elements. The efficiency
of the overall approach is demonstrated by numerical results, which are described
in Section 6. Finally, we conclude the paper in Section 7.

2 Preliminaries

The spaces used for the discretization of partial differential equations on two-
and three-dimensional domains in isogeometric analysis are constructed almost
exclusively with the help of (polynomial or rational) tensor-product splines. In
order to keep the presentation simple, we restrict the presentation to polyno-
mial splines and to the bivariate case. The case of rational splines (non-uniform
rational B-splines – NURBS) can be dealt with similarly.

We consider two univariate spline bases

S(s) = (S1(s), . . . , Sm(s))T and T (t) = (T1(t), . . . , Tn(t))T

of degree p, which are obtained from the knot vectors

(σ1, . . . , σp+m+1) and (τ1, . . . , τp+n+1),

respectively. The B-splines Si(s) and Tj(t) are defined by the well-known recur-
rence formulas, see [6]. We use column vectors S and T to collect the B-splines
forming the two spline bases.

More precisely, the boundary knots appear with multiplicity p+ 1, the inner
knots have multiplicity at most p, and the knot vectors are non-decreasing.
Moreover we choose σ1 = τ1 = 0, σp+m+1 = τp+n+1 = 1.

The tensor-product spline space

S = span S ⊗ span T = span {Ni : (1, 1) ≤ i ≤ (m,n)}

is spanned by the products of pairs of univariate B-splines,

Ni(s, t) = Si1(s)Ti2(t),

which are identified by double-indices i = (i1, i2).
The isogeometric approach is based on a parameterization of the computa-

tional domain Ω. This domain is represented by a suitable geometry mapping
G = (G(1), G(2)),

G : [0, 1]2 → Ω ⊂ R2.

4 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

The domain parameterization is assumed to be regular, i.e., det(∇G) does not
change its sign in [0, 1]2. It is described by the two univariate spline bases (one
for each coordinate)

G(k)(s, t) = S(s)T D(k) T (t), k = 1, 2.

The coefficients of the two coordinate functions form the m× n-matrices

D(k) = (D
(k)
i)(1,1)≤i≤(m,n).

Equivalently, this mapping can be written as

G(s, t) =
∑

(1,1)≤i≤(m,n)

Ni(s, t)di

with the control points

di = (D
(1)
i , D

(2)
i) ,

whose coordinates are the elements of the matrices D(k), k = 1, 2.
The discretization space used in isogeometric analysis is spanned by the func-

tions

βi = Ni ◦G−1 : βi(G(s, t)) = N i(s, t) . (1)

In many situations, the coefficient matrix of the resulting system of linear
equations can be constructed from the mass and the stiffness matrices that are
associated with the functions (1). We do not discuss the construction of the
right-hand side vectors in this paper, since it is very similar.

The elements of the mass matrix take the form

aij =

∫ ∫
Ω

βi(x)βj(x) dx

=

∫ 1

0

∫ 1

0

Si1(s)Ti2(t)Sj1(s)Tj2(t) |det((∇G)(s, t))|︸ ︷︷ ︸
?

dsdt.

The integrand is a product of two terms. The second one, which has been marked
by an asterisk, is independent of the indices i and j and therefore shared by all
matrix elements.

The stiffness matrix contains the elements

bij =

∫ ∫
Ω

(∇βi)(x) · (∇βj)(x) dx (2)

=

2∑
k=1

2∑
`=1

∫ 1

0

∫ 1

0

(∂δ
k
1Si1)(s) (∂δ

`
1Ti2)(t)

(∂δ
k
2Sj1)(s) (∂δ

`
2Tj2)(t) qk,`(s, t)︸ ︷︷ ︸

?

dsdt,

Matrix Generation in Isogeometric Analysis 5

where the weight functions qk,` form the 2× 2-matrix

Q = |det(∇G)|(∇G)−1K(∇G)−T .

Each of the four integrands is again a product of two terms. Once more, the
second one (marked by an asterisk) is independent of the indices i and j and
therefore shared by all matrix elements.

The matrix (or matrix-valued function) K contains material coefficients (or
is the identity matrix in the simplest case). The symbol ∂ denotes the differen-
tiation operator for univariate functions, i.e., ∂f = f ′. The Kronecker symbol δ
specifies whether a B-spline is differentiated or not.

The stiffness matrix (2) arises when considering the weak form of the diffusion
equation, i.e., when solving the following elliptic problem:

Find u ∈ H1(Ω) such that

{
−∇ · (K∇u) = f in Ω

u = 0 on ∂Ω
(3)

with the right-hand side f : Ω → R, homogeneous boundary conditions, and
the (possibly non-constant) symmetric and uniformly positive definite matrix
K : Ω → R2×2. This problem was also considered in [18] when introducing the
method of integration by interpolation and look-up (IIL).

Our approach (introduced in [18]) to the computation of the stiffness and
mass matrix elements – which we will refer to as matrix assembly – relies on
an exact or approximate projection of the integrands into suitable spline spaces.
More precisely, it is performed in two steps.

1. The terms in the integrals that have been marked by the asterisk ? are in-
dependent of the indices i, j and therefore shared by all matrix elements.
These terms, which will be called the weight functions, are replaced by suit-
able tensor-product spline functions.

2. The resulting integrals of piecewise polynomial functions, are evaluated ex-
actly, either using look-up tables (as described in [18]) or Gauss quadrature.

In [18], the first step was performed solely by interpolation or quasi-interpolation.
The present paper improves the first step by employing low-rank tensor approx-
imations for constructing sparse representations of the weight functions. This
also implies substantial modifications on the second step, since the integration
can be reduced to the evaluation of a small number of univariate integrals.

3 Spline projection

The first step of the computation uses spline spaces S̄, which are (potentially)
different from those used to define the geometry mapping and the isogeometric
discretizations. We consider univariate spline bases

S̄(s) = (S̄1(s), . . . , S̄m̄(s))T and T̄ (t) = (T̄1(t), . . . , T̄n̄(t))T

6 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

consisting of B-splines of degree p̄, which are defined by knot vectors

(σ̄1, . . . , σ̄p̄+m̄+1) and (τ̄1, . . . , τ̄p̄+n̄+1),

respectively. Once again, the boundary knots possess multiplicity p̄+1, the inner
knots have multiplicity less or equal to p̄, the knot vectors are non-decreasing,
σ1 = τ1 = 0, and σp̄+m̄+1 = τp̄+n̄+1 = 1. In practice, these new knots will
be either equal to the original knots of the coarsest isogeometric discretization
(determined by the geometry mapping) or a superset of those. For convinience, in
this section we consider equidistant (i.e., uniform) inner knots. In this situation,
the element size (which quantifies the fineness of the discretization) satisfies
h = O(max{1/m, 1/n}) as m,n → ∞. Also, we consider the same degree p̄ in
both directions only for the sake of simplicity.

The products N̄i(s, t) = S̄i1(s)T̄i2(t) of pairs of univariate B-splines span
another tensor-product spline space

S̄ = span S̄ ⊗ span T̄ = span { N̄i : (1, 1) ≤ i ≤ (m̄, n̄) }.

We are interested in the approximate evaluation of integrals of the form

Cd
ij(w) =

∫ 1

0

∫ 1

0

(∂d1Si1)(s) (∂d3Ti2)(t) (∂d2Sj1)(s) (∂d4Tj2)(t) w(s, t) dsdt.

(4)

These integrals depend on the weight function w and on the three multi-indices
i, j ∈ Z2 and d ∈ {0, 1}4. The first two indices identify the corresponding matrix
element. The remaining one specifies the order of differentiation of the univariate
B-splines.

Indeed, the elements of the mass and stiffness matrix can be rewritten as

aij = C
(0,0,0,0)
ij (|det(∇G)|) and bij =

2∑
k=1

2∑
`=1

C
(δk1 ,δ

k
2 ,δ

`
1,δ

`
2)

ij (qk`).

The first step of the matrix assembly is to project the weight function into
the spline space S̄. It is realized by using a spline projection operator

Π : C([0, 1]2)→ S̄,

e.g., interpolation or quasi-interpolation. A detailed discussion is given in [18,
Section 4.3].

More precisely, for each weight function w we create a tensor-product spline
approximation Πw ∈ S̄. It is represented in the tensor-product B-spline basis,

(Πw)(s, t) = S̄(s)T W T̄ (t)T (5)

with a m̄× n̄ coefficient matrix W . Replacing the weight functions (4) with their
spline approximations then leads to the approximate integrals

Cd
ij(Πw). (6)

Matrix Generation in Isogeometric Analysis 7

The choice of the spline space S̄ depends on the integrand that is to be
computed (i.e., mass or stiffness matrix).

For evaluating the mass matrix we use degree p̄ = 2p and choose the multi-
plicity of the knots such that smoothness of the spline functions is equal to the
smoothness of ∇G. More precisely, if the geometry mapping possesses an inner
knot σi of multiplicity µ, then the corresponding knot σ̄ of S̄ has multiplicity
µ̄ = p+ µ+ 1, and similar for the knots τj . It should be noted that this applies
only to the knots that are present in the actual geometry mapping, but not to the
knots which are created later to obtain a finer isogeometric discretization (i.e.
by h-refinement). This choice of knots allows to represent the weight function
|det(∇G)| exactly in S̄. Thus, no error is introduced for the mass matrix.

For assembling the stiffness matrix we use p̄ = p as discussed in [18]. More-
over, the knots which are already present in the geometry mapping are kept and
their multiplicity is increased by one. Additional single knots can be inserted in
order to improve the accuracy of the spline projection.

In the second step of matrix assembly, the approximations of the integrals
are evaluated exactly, using either Gauss quadrature or suitable look-up tables.
This is possible since the integrands are simply piecewise polynomial functions.

For the stiffness matrix, the error εΠ introduced by the spline projection

εΠ = max
k,`=1,2

‖qk,` −Πqk,`‖∞,[0,1]2

is closely related to the overall error of the isogeometric simulation. We consider
the problem (3), which leads to the stiffness matrix (2). Combining [18, Corollary
12] with Strang’s first lemma (cited as [18, Lemma 2]) and using results of [3]
(cited as [18, Eq. 31]) gives the bound

‖u− u?‖1,Ω ≤ C1h
p + C2εΠ

for the H1 (semi-) norm of the difference between the exact solution u and
the result u? of the isogeometric simulation, which is based on the approximate
integrals (6). The first term of the right-hand side is the discretization error,
which is caused by choosing u? from the finite-dimensional space of isogeometric
functions. The second term represents the consistency error which is due to the
approximate evaluation of the integrals.

In order to keep the presentation simple we do not consider the right-hand
side explicitly. Instead we will simply assume that its effect is also included in
the error bound for the consistency error of the stiffness matrix.

Consequently, under suitable assumptions about the error introduced by the
spline projection, the matrix assembly preserves the overall order of approxima-
tion. Since we use projection into a spline space S̄ of degree p̄, we may expect
that the difference between the weight functions and their spline projections is
bounded by

εΠ ≤ C3h
p̄+1, (7)

where the constant C3 depends only on the problem (geometry map, material
properties, right-hand side) but not on the isogeometric discretization (i.e., on

8 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

the knots which are introduced in addition to the knots of the geometry map-
ping). This has been formulated in [18, Assumption 5], and a possibility to find a
spline projection providing theoretical guarantees (based on quasi-interpolation
operators) is also described there.

Choosing p̄ = p− 1 was proved to be sufficient to preserve the overall order
of approximation with respect to the H1 semi-norm (according to Strang’s first
lemma). However, this choice was experimentally found to give sub-optimal re-
sults for the convergence with respect to the L2 norm for even degrees p, while
p̄ = p gave optimal results with respect to both norms in all cases. We will
therefore assume that assumption (7) is satisfied with p̄ = p in the remainder of
this paper.

Once a spline projection has been computed, the actual error εΠ can be
estimated by sampling.

4 Tensor decomposition

We consider a singular value decomposition

W = UTΣV

of the coefficient matrix in (5). It consists of the diagonal m×n matrix of singular
values Σ = diag(σ1, . . . , σmin(m,n)), and of the two orthogonal matrices

UT = (u1, . . . ,um) and V T = (v1, . . . ,vn),

which are represented by their row vectors ui ∈ Rm and vj ∈ Rn. More pre-
cisely, the rows of these two matrices are given by the column vectors ui and
vj . Without loss of generality we assume that the singular values are ordered,
σr ≥ σr+1.

Consequently, we may rewrite the spline projection of the weight function
(5) as a sum of products of univariate spline functions, as follows:

(Πw)(s, t) = S̄(s)TW T̄ (t) =

min(m,n)∑
r=1

(
S̄(s)Tur

√
σi
) (√

σivr
T T̄ (t)

)
.

As we will see in the next section, using this representation and truncated ver-
sions thereof makes the numerical quadrature very efficient.

While the representation in (5) is a sum of mn products of univariate spline
functions (one for each tensor-product B-spline), using singular value decompo-
sition allows to reduce the number of terms in the sum to min(m,n).

The spline projection Πw of the weight function can be approximated by
omitting the terms that correspond to smaller singular values. We choose a pos-
itive integer R ≤ min(m,n), which specifies the number of terms to be retained
by the approximation, and define the rank R tensor approximation operator

ΛR : C([0, 1]2)→ S̄.

Matrix Generation in Isogeometric Analysis 9

Given a weight function w, we project into the spline space S̄, generate a singular
value decomposition of the coefficient matrix and keep only the contributions of
the largest R singular values,

(ΛRw)(s, t) =

R∑
r=1

(
S̄(s)T

√
σrur

) (
T̄ (t)T

√
σrvr

)
. (8)

The function is generated by this operator is called a low rank (more precisely:
rank R) tensor approximation of the weight function w, and R is called its rank.

For typical geometry mappings, using a small rank R is sufficient and gives
accurate results. The Frobenius norm of the difference between the coefficient
matrices can be bounded as follows:

‖
min(m,n)∑
r=R+1

σrurvr
T ‖F ≤

√√√√min(m,n)∑
r=R+1

σ2
r .

Since the Frobenius norm of the matrix is an upper bound of the 2-norm, which
in turn is an upper bound of the element-wise maximum norm, we can use the
convex hull property of tensor-product splines to conclude that

‖Πw − ΛRw‖∞,[0,1]2 ≤

√√√√min(m,n)∑
i=R+1

σ2
r .

Once the singular value decomposition has been computed, the error can be
controlled by adjusting the rank R.

In particular, performing the singular value decomposition for the four co-
efficient matrices of the spline projections Πqk` (k, ` = 1, 2) gives four sets of
singular values (σr,k`)r=1,...,min(m,n). Each of the four low-rank tensor approxi-
mations satisfies the error bound

max
k,`=1,2

‖Πqk` − ΛRqk`‖∞,[0,1]2 ≤ εΛ = max
k,`=1,2

√√√√min(m,n)∑
r=R+1

σ2
r,k`.

The contribution of the low rank tensor approximation to the overall error can
be analyzed as in the previous section. We consider again the problem (3), which
leads to the stiffness matrix (2). When using the low rank tensor approximation
for assembling the stiffness matrix, the H1 (semi-) norm of the difference between
the exact solution u and the result u? of the isogeometric discretization, which
is based on the approximate integrals

Cd
ij(ΛRw)

is bounded by (6)

‖u− u?‖1,Ω ≤ C1h
p + C2(εΠ + εΛ).

Consequently, when choosing the tensor approximation error εΛ in the same
order as the spline projection error εΠ – which can be estimated by sampling –
then the order of accuracy of the method remains unchanged.

10 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

5 Evaluation of matrix elements

Using a low rank tensor approximation (8) of the weight function w allows to
rewrite the integrals (4) as sums of products

Cd
ij(ΛRw) =

R∑
r=1

Xd
r,i1j1(ΛRw)Y d

r,i2j2(ΛRw)

of R pairs of univariate integrals

Xd
r,ij(ΛRw) =

∫ 1

0

(∂d1Si)(s) (∂d2Sj)(s) (S̄(s)T
√
σrur) ds and

Y d
r,ij(ΛRw) =

∫ 1

0

(∂d3Ti)(t) (∂d4Tj)(t) (T̄ (t)T
√
σrvr) dt.

For each multi-index index d, the integrals (4) form a mn×mn matrix

Cd(ΛRw) = (Cd
ij(ΛRw))(1,1)≤i,j≤(m,n),

and the univariate integrals form R m×m and R n× n matrices

Xd
r (ΛRw) = (Xd

r,ij(ΛRw))1≤i,j≤m and Y d
r (ΛRw) = (Y d

r,ij(ΛRw))1≤i,j≤n.

The first matrix is the sum of R Kronecker products of matrices obtained from
the univariate matrices,

Cd(ΛRw) =

R∑
r=1

Xd
r ⊗ Y d

r . (9)

This structure suggests itself for designing an efficient evaluation procedure: In
the first step, the matrices Xd

r (ΛRw) and Y d
r (ΛRw) which are defined by the

univariate integrals are evaluated, e.g., by using Gaussian quadrature. Then, in
a second step, the matrix is assembled by summing up the Kronecker products
in (9).

We conclude this section with a brief analysis of the computational complex-
ity of the overall procedure, where we assume m ∼= n and p̄ = p. Moreover we
assume that the knot vectors of the univariate spline bases S and S̄ have the
same knots (possibly with different multiplicities) and hence O(m) knot spans.
A similar assumption is made concerning T and T̄ .

We do not include the singular value decomposition (SVD) into the complex-
ity analysis. In practice one will prefer approximate SVD methods with lower
computational costs. A detailed discussion of such methods is beyond the scope
of the present paper.

We analyze the computational costs for assembling the 2RmatricesXd
r (ΛRw)

and Y d
r (ΛRw), which possess O(mp) non-zero entries each.

When using Gaussian quadrature, we need to evaluate the non-zero B-spline
basis functions (and their derivatives) at O(p) Gauss nodes for each of the

Matrix Generation in Isogeometric Analysis 11

O(m) knot spans at costs of O(p2) for each point. In addition we evaluate 2R
spline functions using de Boor’s algorithm. The total complexity of this step is
O(Rmp3).

We then continue with the assembly step, where each Gauss node contributes
toO(p2) matrix entries of each of the 2R matrices. Thus, the effort for each Gauss
node equals O(Rp2). The total complexity of this step amounts to O(Rmp3).

The matrix (9) has O(m2p2) non-zero entries, and each is evaluated in O(R)
operations from the univariate integrals. Since m � p, the overall effort is do-
minated by this step and equals

O(Rm2p2).

Clearly, the efficiency of the method depends on the rank R which needs to be
considered in the tensor approximation. The IIL method described in [18] has
complexity of O(m2p4), and this was found to compare well with the Gauss
quadrature, where the complexity was found to be O(m2p6). Consequently, if R
is small and does not grow with m (i.e., as h → 0), then matrix assembly by
tensor decomposition has a clear advantage.

We will demonstrate in the next section that using a low rank tensor approx-
imation is sufficient in most cases and leads to a substantial speedup.

6 Numerical results

In this section we present numerical examples to demonstrate the power of as-
sembly by tensor decomposition and low rank representations. As benchmark
examples, we choose a quarter annulus and a multipatch domain consisting of
several patches. The annulus is particularly well suited for our method, since it is
a “rank one domain” in the sense that using R = 1 is sufficient. The multipatch
“yeti footprint” domain, which was taken from [16], is a harder benchmark, since
the patches do not have any symmetries. We assemble the mass and stiffness of
the underlying tensor B-spline basis. In practice, small polynomial degrees are
used for discretization; we use the same (h−refined) quadratic B-spline functions
of the domain as discrete space.

As a baseline algorithm to compare with we use Gauss quadrature assembly
with p + 1 nodes per parametric direction (FG = “full” Gauss quadrature).
The assembly based on tensor decomposition is abbreviated as TD and the
computation of the Kronecker product as KP.

We test the computational effort and memory requirements for computing
the mass and stiffness matrices. Since these matrices are symmetric, a straight-
forward saving is to compute only the lower triangular part, and this was done
in all examples.

The singular value decompositions were computed by a Jacobi method. Even
though we are interested in the highest magnitude singular values and vectors
only, our current implementation computes the full SVD. More sophisticated
methods exist that compute reduced SVDs, namely the decomposition up to
a given tolerance of the singular values. This will explored in more detail in

12 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

our future work. For this reason, in our experiments we do not measure the
time required for the computation of a (reduced) SVD. The time depends on the
dimension of the interpolation space used and the required tolerance. Indeed, this
space is independent on the refinement level of the isogeometric discretization,
since we always approximated the weight functions with a very small tolerance
(such as machine precision).

All experiments were conducted on a laptop with Intel Core i7 @ 2.70GHz
processor having two cores and 6GB of RAM, running Linux. The method is
implemented in C++ using the G+++Smo library for isogeometric analysis4.

6.1 Quarter annulus

A quarter annulus can be regarded as a line segment swept along a circular arc.
Therefore we expect that the tensor rank is low. The SVD computation confirms
that the tensor rank is exactly one, and all sub-dominant singular values are equal
to zero. Consequently, the assembly of mass and stiffness on this domain using
TD is almost as efficient as if we would treat a square domain, by hard-coding
the identity matrix in place of det∇G.

The domain is represented by linear components in the s direction and by
quadratic polynomials in the t direction. Note that we assumed to have the same
degree in both directions in the previous section. This can easily be generalized
to non-uniform degrees, as in the present example. Therefore we have used 2
and 3 Gauss points respectively, i.e. a total of 6 points per element. For our
experiments, we apply uniform h−refinement to obtain problem sizes from 6.6 ·
104 up to 4.3 · 109 degrees of freedom (dofs).

First we consider the assembly of the mass matrix. The Jacobian determinant
of the geometry mapping has rank one and is exactly represented in a spline
basis of bidegree (4,2) on the (input) coarse mesh. Therefore no approximation
is needed in the SVD step. This implies that the spline space in which the
determinant lies has dimension just 15, which is also the size of the matrix that
we shall apply SVD computation to. Figure 1 shows the domain and the control
grid, as well as the two “skeleton functions” of the rank one tensor representation
of the Jacobian determinant. The product of these components is the Jacobian
determinant functional, which is shown in Figure 2.

We demonstrate the reduction of the required memory in Table 1. The re-
quired memory shrinks from O(n2) to O(n). In our examples, this translates
into using some megabytes of memory instead of several gigabytes.

Table 2 shows the computing times and the speedup with respect to using
Gauss quadrature for the mass matrix assembly. Some entries of the table (for
high numbers of degrees of freedom) are left blank, since our program aborted,
due to insufficient memory; the testing machine (a laptop) has 6GB of memory,
which will not fit a matrix with 1G of elements, since this requires 8GB of
memory, using double arithmetic. It should be noted that TD was applicable up
to 16 levels of dyadic refinement (about 4.3 ·109 dof), in only a fifth of a second.

4 Geometry + Simulation Modules, see http://www.gs.jku.at/gismo, also [10].

Matrix Generation in Isogeometric Analysis 13

Fig. 1. Left: A B-spline quarter annulus domain. The color field is the value of the
Jacobian determinant. Right: “Skeleton functions” of the Jacobian determinant. The
linear function is associated with the first direction, while the curved one describes the
determinant along the second parametric direction.

Fig. 2. Two views of the graph of the Jacobian determinant and its control grid over
the parameter domain [0, 1]2. The degree is 2 in the first direction and 4 in the second
one.

Certainly, at this point we are unable to compute the Kronecker product of the
skeleton matrices, but given enough memory and processors this is a task that
could be performed easily in parallel.

We now turn our attention to the stiffness matrix. We find that the weight
functions qk,` are also represented by rank one tensor approximations. However,
a sufficiently good approximation of these weight functions requires some steps
of h−refinement. In the experiments of Figure 3, we used a 266K (515×517) grid
for the interpolation of these weight functions. This was sufficient to approximate
the four functions q`,k up to machine precision. Overall, the stiffness matrix has
rank four.

Table 3 shows the computational time and reports the speedup for the stiff-
ness matrix assembly. Note that at (dyadic) refinement level 13 we are dealing
with around 67.1 million degrees of freedom, and the number of non-zeros in
the global matrix reaches 1 billion. When using double precision, this requires

14 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

Table 1. Quarter annulus: memory statistics for the (rank one) mass matrix for high
levels of dyadic h−refinement. The second column shows the number of degrees of
freedom per coordinate (tensor) direction. The third column contains the number of
non-zero (nz) entries in each factor matrix of the Kronecker product in (9). The non-
zero entries of the mass matrix are shown in the last column. The factor matrices in
the decomposition of the stiffness matrix use four times as many non-zero elements.

h−ref. level no. of dof mass matrix TD nz mass matrix nz

8 257× 258 769 + 1, 284 987K
9 513× 514 1, 537 + 2, 564 3.9M
10 1, 025× 1, 026 3, 073 + 5, 124 15.7M
11 2, 049× 2, 050 6, 145 + 10, 244 62.9M
12 4, 097× 4, 098 12, 289 + 20, 484 251.7M
13 8, 193× 8, 194 24, 577 + 40, 964 1G
14 16, 385× 16, 386 49, 153 + 81, 924 4G
15 32, 769× 32, 770 98, 305 + 32, 770 16G
16 65, 537× 65, 538 196, 609 + 327, 684 64G

Table 2. Computation times (in seconds) for the mass matrix assembly of the quarter
annulus. The last two columns report the speedup (time ratio).

h−ref. level FG TD KP FG/TD
FG/

(TD+KP)

8 0.30 9 · 10−4 0.017 339 16.87
9 1.22 2 · 10−3 0.07 610 17.9
10 4.82 5 · 10−3 0.23 947 20.9
11 18.94 7 · 10−3 0.79 2,600 23.6
12 76.21 1.5 · 10−2 3.23 5,154 23.4
13 - 4.1 · 10−2 - - -
14 - 6.5 · 10−2 - - -
15 - 0.1 - - -
16 - 0.18 - - -

at least 8GB of memory, and was not feasible on our test machine (laptop).
Consequently the columns FG and KP are filled up to refinement level 12.

One may observe that computing times are mostly determined by the memory
required for the problem. In particular, note that computing e.g. the mass matrix
using FG with 8 levels of refinement implies the computation of a matrix of
around 526K elements (taking into account symmetry). This took 0.3 seconds,
which is quite similar to using TD with 16 levels of refinement for computing
(in 0.18 seconds) a decomposition of a (much bigger) matrix with comparable
amount of non-zero elements.

The annulus example has also been used as a benchmark for the IIL method.
As observed in [18, Sect. 7.3], the speedup of the stiffness matrix assembly with
respect to the baseline FG method is independent of h, that is, the computation
time for both FG and IIL is linear with respect to the number of degrees of
freedom. We did not include the comparison with IIL in Table 3, since its per-

Matrix Generation in Isogeometric Analysis 15

Table 3. Computation times (in seconds) and speedup for the stiffness matrix assembly
of the quarter annulus.

h−ref. level FG TD KP FG/TD
FG/

(TD+KP)

8 0.36 0.019 0.016 19.02 10.2
9 1.45 0.083 0.072 17.40 9.3
10 5.84 0.085 0.28 68.86 15.8
11 23.59 0.089 1.09 264 19.9
12 96.50 0.099 4.56 979 20.7
13 - 0.11 - - -
14 - 0.14 - - -
15 - 0.21 - - -
16 - 0.34 - - -

formance is quite similar to FG for low degrees (e.g., it is approximately twice
as fast as FG for bi-quadratic discretizations, cf. [18, Fig. 10]).

6.2 Yeti footprint

We now turn to a more challenging benchmark. The domain is a “footprint” do-
main parameterized by 21 patches (Figure 3) introduced in [16]. All the patches
have a number of interior knots per direction, ranging from one to three.

One question is whether the rank of each patch (i.e., the rank of the tensor
approximation) stabilizes to a small value. To test this, we set a tolerance of
10−10 and compute the rank of det∇G and qk,` for all mappingsG of the different
patches and several levels of h−refinement. In all cases, the rank stabilized (i.e.,
it stayed constant under h−refinement) to a value between 4 and 7 for det∇G
and to values ranging from 14 to 22 for qk,`. The exact numbers are shown in
Figure 3(left).

Clearly, the full multi-patch (mass or) stiffness matrix is a block-structured
matrix where the blocks are the patch-wise matrices. Therefore, we now choose
one patch (marked in Figure 3 left) in order to perform our benchmark com-
putation. Figure 4 provides a closer look at the selected patch and its Jacobian
determinant.

In Table 4 we report computing times and memory requirements for the mass
matrix assembly for the selected patch. The last column shows the memory sav-
ings that can be obtained by using a tensor representation, instead of assembling
the global mass matrix.

We note that the mass matrix on this patch has rank 7, therefore memory
requirements are seven times more than the annulus case, but the percentage
shows that this is still minor compared to the size of the full matrix. The timings
confirm that also in this case a substantial speedup is possible. In particular, in
the last row we assembled a (tensor decomposed) mass matrix for 17.2 billion
degrees of freedom, and this took one second. This suggests that in less than

16 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

Fig. 3. The yeti footprint domain, parameterized by 21 quadratic B-spline patches.
Patch segmentation (left), control grids (middle) and the (absolute) Jacobian determi-
nant are shown. On the left picture rank(det∇G) and max(rank(qk,`), k, ` ∈ {1, 2})
are given.

half a minute, the full mass matrix of all 21 patches can be computed with the
same refinement level.

Table 5 reports on the stiffness matrix assembly for the same patch. Each
weight qk,` has a rank 21 tensor approximation, leading to a total rank of 84
for the tensor form of the stiffness matrix. This increase with respect to the
mass matrix is reflected in the computation time and the number of non-zero
elements, i.e., in the memory that is required. Nevertheless, the percentage of
memory required is still around 3% of the full matrix for one million degrees of
freedom, and is reduced to half at every refinement level. The Kronecker product
computation becomes slower since now we need to sum up R = 84 contributions
to compute one entry in the Kronecker product. Nevertheless, we still get a
speedup factor 1.52 compared to FG. The speedup observed if we refrain from
computing the KP (sixth column) is still quite important and scales nicely with
refinement. Finally, from the last row of the table we may estimate that about
three minutes’ time would suffice for assembling a (decomposed) giant stiffness
matrix of 361 billion degrees of freedom on a laptop.

7 Conclusion

We explored the use of low rank tensor approximation for performing the assem-
bly task of the isogeometric mass and stiffness matrices. Clearly, the method is
general and applicable to other types of isogeometric matrices, arising in PDE
discretizations.

Matrix Generation in Isogeometric Analysis 17

Fig. 4. The Jacobian determinant values of the selected patch (Fig. 3) on the domain
(left). The graph and control net in parameter domain (right).

Table 4. Computing times (in seconds), speedup and memory requirements for the
mass matrix assembly of the selected patch of the yeti footprint. The levels of (dyadic)
refinement vary from 9 to 16.

no. of dof FG TD KP FG/TD
FG/

(TD+KP)
Mem.(%)

1.0M 7.96 0.015 0.60 544 13.0 0.273
4.2M 32.50 0.025 2.34 1289.14 13.7 0.137
16.8M 129.83 0.053 11.33 2461.57 11.4 0.068
67.1M - 0.091 - - - 0.034
268M - 0.148 - - - 0.017
1.1G - 0.262 - - - 0.009
4.2G - 0.496 - - - 0.004
17.2G - 0.997 - - - 0.002

Our results show that the use of tensor methods in IGA possesses a great
potential. The main advantage is the substantial memory reduction that is ob-
tained by creating low rank approximations of large isogeometric matrices. This
observation can be further exploited if one adopts the Kronecker representation
both for storing matrices and for applying iterative solvers or other operations.
Indeed, our benchmarks show that impressive speedups are possible if one avoids
the evaluation of the full matrices.

As another advantage, using tensor methods allows to fully exploit the tensor-
product structure of the B-spline basis to apply efficient quadrature, also for low
polynomial degrees. This has been a long-standing challenge in isogeometric
analysis, since the increased support and degree of the basis functions result
in a rapidly growing quadrature grid, and affects dramatically the computation
times. By reducing the problem to 1D components, the number of evaluations

18 A. Mantzaflaris, B. Jüttler, B.N. Khoromskij and U. Langer

Table 5. Computing times (in seconds), speedup and memory requirements for the
stiffness matrix assembly of the selected patch of the yeti footprint. The levels of
(dyadic) refinement vary from 9 to 16.

no. of dof FG TD KP FG/TD
FG/

(TD+KP)
Mem.(%)

1.0M 9.94 0.073 7.25 136.75 1.36 3.33
4.2M 40.45 0.14 29.1 298.97 1.39 1.66
16.8M 164.4 0.27 108.1 614.38 1.52 0.83
67.1M - 0.53 - - - 0.41
268M - 1.06 - - - 0.21
1.1G - 2.17 - - - 0.10
4.2G - 4.46 - - - 0.05
17.2G - 8.85 - - - 0.02

and quadrature points increase logarithmically with the number of degrees of
freedom.

Future research will be devoted to the use of approximate SVD computation
and to the extension to the trivariate case.

Acknowledgement. This research was supported by the National Research
Network “Geometry + Simulation” (NFN S117), funded by the Austrian Science
Fund (FWF).

References

1. P. Antolin, A. Buffa, F. Calabrò, M. Martinelli, and G. Sangalli. Efficient matrix
computation for tensor-product isogeometric analysis: The use of sum factorization.
Comp. Meth. Appl. Mech. Engrg., 285:817–828, 2015.

2. F. Auricchio, F. Calabrò, T. Hughes, A. Reali, and G. Sangalli. A simple algo-
rithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric
analysis. Comp. Meth. Appl. Mech. Engrg., 249-252:15–27, 2012.

3. Y. Bazilevs, L. Beirão da Veiga, J. A. Cottrell, T. J. R. Hughes, and G. Sangalli.
Isogeometric analysis: Approximation, stability and error estimates for h-refined
meshes. Math. Models Methods Appl. Sci., 16(7):1031–1090, 2006.

4. F. Calabrò, C. Manni, and F. Pitolli. Computation of quadrature rules for inte-
gration with respect to refinable functions on assigned nodes. Applied Numerical
Mathematics, 90:168–189, 2015.

5. J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward
Integration of CAD and FEA. John Wiley & Sons, Chichester, England, 2009.

6. C. De Boor. A practical guide to splines. Applied mathematical sciences. Springer,
Berlin, 2001.

7. W. Hackbusch. Tensor spaces and numerical tensor calculus. Springer, Berlin,
2012.

8. T. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite ele-
ments, NURBS, exact geometry and mesh refinement. Comp. Meth. Appl. Mech.
Engrg., 194(39–41):4135–4195, 2005.

Matrix Generation in Isogeometric Analysis 19

9. T. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-based
isogeometric analysis. Comp. Meth. Appl. Mech. Engrg., 199(5 – 8):301–313, 2010.

10. B. Jüttler, U. Langer, A. Mantzaflaris, S. E. Moore, and W. Zulehner. Geometry +
Simulation Modules: Implementing Isogeometric Analysis. PAMM, 14(1):961–962,
2014.

11. A. Karatarakis, P. Karakitsios, and M. Papadrakakis. Computation of the iso-
geometric analysis stiffness matrix on GPU. In M. Papadrakakis, M. Kojic, and
I. Tuncer, editors, Proc. of the 3rd South-East European Conference on Computa-
tional Mechanics (SEECCM), 2013. http://www.eccomasproceedings.org/cs2013.

12. A. Karatarakis, P. Karakitsios, and M. Papadrakakis. GPU accelerated computa-
tion of the isogeometric analysis stiffness matrix. Comp. Meth. Appl. Mech. Engrg.,
269:334 – 355, 2014.

13. B. N. Khoromskij. O(d logn)–Quantics approximation of N–d tensors in high-
dimensional numerical modeling. Constr. Appr., 34(2):257–280, 2011.

14. B. N. Khoromskij. Tensor-structured numerical methods in scientific computing:
survey on recent advances. Chemometr. Intell. Lab. Syst., 110(1):1–19, 2012.

15. B. N. Khoromskij. Tensor Numerical Methods for Multidimensional PDEs: Theo-
retical Analysis and Initial Applications. In Proc. ESAIM, pages 1–28, 2014.

16. S. Kleiss, C. Pechstein, B. Jüttler, and S. Tomar. IETI – isogeometric tearing and
interconnecting. Comp. Meth. Appl. Mech. Engrg., 247-248:201–215, 2012.

17. A. Mantzaflaris and B. Jüttler. Exploring matrix generation strategies in isoge-
ometric analysis. In M. Floater et al., editors, Mathematical Methods for Curves
and Surfaces, volume 8177 of Lecture Notes in Computer Science, pages 364–382.
Springer, 2014.

18. A. Mantzaflaris and B. Jüttler. Integration by interpolation and look-up for
Galerkin-based isogeometric analysis. Comp. Methods Appl. Mech. Engrg., 284:373
– 400, 2015. Isogeometric Analysis Special Issue.

19. B. Patzák and D. Rypl. Study of computational efficiency of numerical quadrature
schemes in the isogeometric analysis. In Proc. of the 18th Int’l Conf. Engineering
Mechanics, EM’12, pages 1135–1143, 2012.

20. D. Schillinger, J. Evans, A. Reali, M. Scott, and T. Hughes. Isogeometric collo-
cation: Cost comparison with Galerkin methods and extension to adaptive hier-
archical NURBS discretizations. Comp. Meth. Appl. Mech. Engrg., 267:170–232,
2013.

21. D. Schillinger, S. Hossain, and T. Hughes. Reduced Bézier element quadrature
rules for quadratic and cubic splines in isogeometric analysis. Comp. Meth. Appl.
Mech. Engrg., 277(0):1 – 45, 2014.

