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Abstract

We consider the space of rational functions of degree n with a common denominator. It
is shown that – in addition to the standard rational de Casteljau algorithm – the cor-
responding rational Bézier curves admit up to n! different de Casteljau-type algorithms,
depending on the ordering of the elementary factors of the polynomial. Our observations
generalize recent results of Han, Chu and Qiu [3], which cover the case of denominators of
the form

∏n

i=1(1− t+ qi−1t) where q is a positive constant, to rational curves with general
denominators.

Keywords: rational Bernstein functions, de Casteljau-type algorithm, rational Bézier
curves, Lupaş q-analogue of Bernstein operator, degree elevation

1. Introduction

Rational Bézier and B-spline curves and surfaces are one of the the standard repre-
sentations for free-form geometry in Computer Aided Design and Geometric Modeling
[2, 4, 7]. The use of rational representations allows the exact description of conic sections
and quadric surfaces (including spheres and cylinders), which are of fundamental interest
for various applications.

Bernstein polynomials and B-splines form bases with optimal properties for the spaces of
polynomials and spline functions of given degree (and knots in the case of spline function).
The spaces of rational (spline) functions with a common denominator are spanned by basis
functions with similar properties, which are constructed by collecting rational Bernstein
functions or NURBS (Non-Uniform Rational B-splines) basis functions.

In a recent paper, Han, Chu and Qiu [3] consider rational functions with denominators
of the form

∏n

i=1(1−t+qi−1t) where q is positive a real constant. Based on an operator that
has been introduced by Lupaş [5], they introduce a system of rational basis functions that
shares many properties with Bernstein polynomials. The Lupaş q-analogue of Bernstein
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operator consists essentially in replacing the usual binomials with their generalized version
based on powers of a fixed real number q, see [3, 5] for details.

It is the scope of this short paper to show that similar results are available for a wider
class of spaces of rational functions and to analyze the close relations to the standard ap-
proach in Computer Aided Geometric Design, which relies on the use of rational Bernstein
functions. We shall see that this leads to several new de Casteljau-type evaluation algo-
rithms for rational Bézier curves. While the immediate practical significance of these new
algorithms is rather low, these observations might motivate more detailed investigations of
nested spaces spanned by bases that are connected by simple recurrence relations to admit
de Casteljau-type algorithms. This should extend some of the benefits of using Bernstein-
Bézier representations, such as numerically stable evaluation algorithms, to more general
spaces of functions. Such investigations would have a similar scope as the exploration of
blossoming for non-polynomial functions [1].

More precisely, the present paper shows how the observations from [3] can be extended
to spaces of rational functions with more general denominators, simply by using ratio-
nal Bernstein functions. More precisely, we consider nested spaces of rational functions,
obtained by successively multiplying the denominator with linear factors and raising the
degree of the denominator. We derive recurrence formulas for the weights and basis func-
tions of these spaces. Based on these recurrences it is observed that each ordering of
the denominator factors provides a de Casteljau-type algorithm for curves expressed with
respect to this basis.

2. Rational Bernstein functions

We consider an infinite sequence of linear factors

Li(t) = ai(1− t) + bit, i ∈ Z+, (1)

which are defined by the real coefficients ai and bi, (ai, bi) 6= (0, 0). If all coefficients are
positive, then these factors do not possess roots in the interval [0, 1]. Some of these factors
may degenerate to constants. This is the case if the coefficients satisfy ai = bi.

For any positive integer n, we denote the product of the first n factors by

ωn(t) = L1(t) · . . . · Ln(t).

The product is a polynomial of degree at most n. It possesses a unique representation

ωn(t) =
n
∑

i=0

wn
i β

n
i (t)

with respect to the Bernstein polynomials βn
i (t) =

(

n

i

)

ti(1 − t)n−i of degree n. Following
the usual approach in Computer Aided Geometric Design [2, 4, 7], the coefficients of this
representation are called the weights. A simple computation confirms that

wn
i =

1
(

n

i

)

(

∑

K∪L={1,...,n}
|K|=(n−i),|L|=i

∏

k∈K

ak
∏

l∈L

bl
)

. (2)
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Consequently, if all coefficients ai and bi are positive, then so are the weights.
The weights are used to define the rational Bernstein functions

ρni (t) =
wn

i β
n
i (t)

ωn(t)
. (3)

Note that these functions depend only on the ratios of ai : bi, i.e., they do not change if we
replace (ai, bi) with (λiai, λibi), where λi is a non-zero real number. Moreover if ai · bi ≤ 0
then Li(t) and consequently the basis functions will have a root within the interval [0, 1].
For these reasons, in applications the coefficients (ai, bi) will be positive.

If all weights are non-zero, then these functions span the space of rational functions of
degree n with denominator ωn(t),

Rn = span{ρni (t) | i = 0, . . . , n} = {P (t)/ωn(t) | P (t) ∈ Πn(t)}, (4)

where Πn(t) is the space of polynomials of degree n. These spaces are nested, i.e. Rn−1 ⊂
Rn.

We extend these definitions to include the case n = 0 by defining

ω0(t) = ρ00(t) = 1.

Consequently, R0 is the linear space of constant functions. Moreover, the functions in (3)
are defined for all integers i by setting of wn

i = 0 and ρni (t) = 0 whenever i < 0 or i > n.
The rational Bernstein functions possess several useful properties, which are similar to

the properties of the “Lupaş q-analogues of the Bernstein functions” [3]:

Proposition 1.

(i) Non-negativity: If all coefficients ai, bi are positive, then ρni (t) ≥ 0 for t ∈ [0, 1].

(ii) Partition of unity:
∑n

i=0 ρ
n
i (t) = 1 almost everywhere1.

(iii) Endpoint interpolation: If all coefficients ai, bi are non-zero, then ρni (0) = δi0 and
ρni (1) = δin.

(iv) Inverse property: ρni (t) = ρ̂nn−i(1 − t), where ρ̂ are the basis functions defined in an

analogous way using the linear factors L̂i(t) = bi(1− t) + ait.

(v) Reducibility: We obtain the classical polynomial Bernstein basis when ai = bi = 1.

The proofs of these observations follow directly from the definition of the rational
Bernstein functions.

3. Recurrence relations

Before establishing recurrence relations, we need to analyze the weights in more detail.

1except for the roots of ωn(t)
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Proposition 2. The weights satisfy the recurrence formula

wn
i = an

(n− i)

n
wn−1

i + bn
i

n
wn−1

i−1 . (5)

Proof. The recurrence of the denominators

ωn(t) = ωn−1(t)Ln(t) (6)

implies the equation

n
∑

i=0

wn
i β

n
i (t) =

[

n−1
∑

i=0

wn−1
i βn−1

i (t)

]

[an(1− t) + bnt],

from which we obtain

wn
i β

n
i (t) = an(1− t)wn−1

i βn−1
i (t) + bntw

n−1
i−1 β

n−1
i−1 (t). (7)

Dividing both sides by βn
i (t) gives (5).

Based on these observations we derive a recurrence relation for the rational Bernstein
functions.

Proposition 3. The rational Bernstein functions satisfy the recurrence formula

ρni (t) =
an(1− t)

Ln(t)
ρn−1
i (t) +

bnt

Ln(t)
ρn−1
i−1 (t). (8)

Proof. Combining (6), (7) and (3) confirms (8).

This recurrence will be used in the next section to derive a de Casteljau-type algorithm
for evaluating rational Bézier curves.

Note that there are infinitely many formulas expressing ρni as a (non-constant) linear
combination of ρn−1

i and ρn−1
i−1 . More precisely we have

ρni (t) =
n

n− i

(1− t)

Ln(t)

wn
i

wn−1
i

ρn−1
i (t), (9)

ρni (t) =
n

i

t

Ln(t)

wn
i

wn−1
i−1

ρn−1
i−1 (t) (10)

and any affine combination of (9) and (10) provides a valid formula.
As we shall see in the next section, Eq. (8) can be used to derive a de Casteljau-type

algorithm, since the coefficients on the right-hand side are independent of i. Among all
affine combinations of (9) and (10), the recurrence (8) is the only one with this property.

Another formula expresses each rational Bernstein function of degree n in terms of two
functions of degree n + 1, thereby confirming the nested nature of the spaces Rn.
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Proposition 4. The rational Bernstein functions satisfy

ρni (t) = an+1
n+ 1− i

n + 1

wn
i

wn+1
i

ρn+1
i (t) + bn+1

i+ 1

n+ 1

wn
i

wn+1
i+1

ρn+1
i+1 (t). (11)

Proof. Expressing ρn+1
i+1 (t) using equation (10) and ρn+1

i (t) using equation (9) leads to the
formula.

This result allows to formulate an algorithm for degree elevation. Due to the linear
independence of the rational Bernstein functions, there exists only one formula of this
kind.

4. De Casteljau-type algorithms

Given the control points P0, . . . , Pn ∈ R
d for some dimension d, we define a rational

Bézier curve in R
d,

c(t) =

n
∑

i=0

Piρ
n
i (t).

If the weights are positive, then a rational Bézier curve possesses the convex hull property
and shape-preserving properties, i.e., it is variation diminishing and convexity preserving
[8, p. 112]. This includes the case of a rational Bézier curve with weights defined by linear
factors (1) with positive constants ai and bi. In particular, this also covers curves defined
by the “Lupaş q-analogues of the Bernstein functions” as observed – independently of the
shape-preserving properties of rational Bézier curves – in [3].

Definition 5. For any given value of t ∈ [0, 1], the de Casteljau-type algorithm defines
recursively the points

P 0
i (t) = Pi, for i = 0, . . . n;

P j
i (t) =

aj(1− t)

Lj

P j−1
i (t) +

bjt

Lj

P j−1
i+1 (t), for j = 1, . . . , n and i = 0, . . . , n−j. (12)

Proposition 6. The points defined in the de Casteljau-type algorithm satisfy

P j
i (t) =

j
∑

k=0

Pi+kρ
j

k(t). (13)

In particular we have P n
0 (t) = c(t).
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Proof. We proceed by mathematical induction. For j = 0 we get (13) by the convention
ρ00(t) ≡ 1. For the induction step we obtain

P j
i (t) =

aj(1− t)

Lj

P j−1
i (t) +

bjt

Lj

P j−1
i+1 (t)

=
aj(1− t)

Lj

(

j−1
∑

k=0

Pi+kρ
j−1
k (t)

)

+
bjt

Lj

(

j−1
∑

k=0

Pi+k+1ρ
j−1
k (t)

)

=

j
∑

k=0

Pi+k

(

aj(1− t)

Lj

ρj−1
k (t) +

bjt

Lj

ρj−1
k−1(t)

)

=

j
∑

k=0

Pi+kρ
j

k(t),

where the last equality follows from (8).

The maximum number of different de Casteljau-type algorithms of this form is n! (This
is a factorial, not an exclamation mark!). Indeed, if all linear factors are different, then
their permutations define the different algorithms. Note that all these de Casteljau-type
algorithms are different from the standard rational de Casteljau algorithm, see Example 9.

For each step (12) of these algorithms, the ratio used to generate the new point from
the two existing ones is the same for all i. This is different from the standard de Casteljau
algorithm (see Figure 4), where a different ratio is used in each linear combination.

Our approach can be extended to quadratic elementary factors of the denominator as
follows. Consider linear factors with complex coefficients. If two consecutive linear factors
are complex conjugate, then their product is real and the composition of the corresponding
two steps in the de Casteljau-type algorithms gives linear combinations with real coeffi-
cients. This leads to a de Casteljau-type algorithm also for quadratic elementary factors,
since these can be split into two adjacent complex conjugate linear factors. Consequently,
we can extend this approach to rational curves with any denominator. We demonstrate
this approach by applying it to one example, see Example 10.

Finally we note that the rational de Casteljau-type algorithm described in Definition 5
provides a geometric interpretation for the influence of the constants ai, bi to the shape
of the curve, cf. Figure 1. Without loss of generality, we consider the constants an, bn
associated with the last linear factor, as we can always reorder the linear factors. In the
final step we generate a blend curve between the two curves P n−1

0 (t) and P n−1
1 (t). Both

curves are rational Bézier curves with the same weights (determined by the first n − 1
linear factors) but with different control polygons. The control points of the first and
second curve are P0, . . . , Pn−1 and P1, . . . , Pn, respectively. The ratio an/bn determines the
influence of both curves to the final result. If it is equal to one, then the final curve is
simply a linear blending curve between the two curves. For larger or smaller values, it
remains closer to the first or to the second curve, respectively. A similar but less intuitive
interpretation (as a blend between three curves) can be given in the case of two complex
conjugate linear factors.
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Figure 1: Geometric interpretation of the ratio an/bn for a cubic rational Bézier curve. The last step of the
de Casteljau-type algorithm generates a blend between the two quadratic rational Bézier curves (shown as
dashed lines), which are defined by the first three and by the last three control points. Depending on the
ratio an/bn, the cubic curve (shown as solid line with different colors) follows the first (dashed red) or the
second (dashed green) quadratic curve more closely. The picture shows the curves obtained for the ratios
20 (red), 1 (blue) and 1/20 (green).

5. Examples

We present several examples that illustrate the findings of this paper.

Example 7. For the special choice ai = a, bi = b we obtain wn
i = an−ibi. In this

case, the rational basis functions are the Bernstein polynomials composed with a ratio-
nal reparametrization of degree 1 that maps the boundaries of the interval [0, 1] onto itself.
More precisely we get

ρni (t) = βn
i

(

bt

a(1− t) + bt

)

. ♦

Example 8. For the special choice ai = 1, bi = qi−1, where q is a positive real number we
get the “Lupaş q-analogues of the Bernstein functions”, which were considered earlier in [3].
The authors of that paper observed that the weights admit a particularly nice closed-form
representation in this case. ♦

Example 9. Consider three linear factors

L1(t) = 3(1− t) + t, L2(t) = 6(1− t) + 5t, L3(t) = 1(1− t) + 3t.

We obtain the weights

w1
0 = 3, w1

1 = 1

w2
0 = 18, w2

1 =
21

2
, w2

2 = 5

w3
0 = 18, w3

1 = 25, w3
2 =

68

3
, w3

3 = 15.
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Figure 2: The rational Bernstein functions of degree three from Example 9 (black) compared to the
Bernstein polynomials (gray).

The corresponding cubic rational basis functions ρ3i (t) are displayed in Figure 2. We
consider a curve with control points

P0 = [0, 0], P1 = [−1, 1], P2 = [2, 3], P3 = [1, 0].

The de Casteljau-type algorithm for t = 1/2 generates the points P j
i

j\i 0 1 2 3
0 [0, 0] [−1, 1] [2, 3] [1, 0]

1 [−1
4
, 1
4
] [−1

4
, 3
2
] [7

4
, 9
4
]

2 [−1
4
, 9
11
] [29

44
, 81
44
]

3 [19
44
, 279
176

],

which are displayed on Figure 3, top left. The five additional permutations of the factors
L1, L2 and L3 lead to five further de Casteljau-type algorithms that generate the same
curve point.

Note that these algorithms do not provide the tangent property of the classical de
Casteljau algorithm in general, i.e., the line connecting the last two points is generally not
tangent to the curve. Similarly, these algorithms do not have a subdivision property in
general and cannot be used to split the curve. In contrast, algorithms obtained using the
blossoming approach (cf. [6]) possess these properties. ♦
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Figure 3: Six different de Casteljau-type algorithms for value t = 1/2.

Figure 4: The standard rational de Casteljau algorithm for value t = 1/2.
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Figure 5: Three different de Casteljau-type algorithms for value t = 2/3 for a rational curve with two
complex conjugate linear factors in the denominator. Some of the intermediate control points are located
on quadratic rational curves, since we had to merge two steps of the algorithm.

Example 10. Consider four linear factors

L1(t) = L2(t) = (1− t) + 2t, L3(t) = L4(t) = −(1 + 3i)(1− t) + (1− i)t.

The factors L1 and L2 are real and identical, and the factors L3 and L4 are complex
conjugate. The corresponding quartic rational basis functions are thus real with the last
row of weights being

w4
0 = 10, w4

1 = 11, w4
2 =

29

3
, w4

3 = 6, w4
4 = 8.

We consider a curve with the control points

P0 = [−1, 0], P1 = [−1, 3/2], P2 = [0, 2], P3 = [1, 3/2], P4 = [1, 0].

We can still apply the de Casteljau-type algorithms as in the previous example. After the
step corresponding to one complex factor we get complex control points, which become
real again after the step corresponding to the complex conjugate. We display in Figure 5
the three de Casteljau-type algorithms which are obtained by performing the two complex
conjugate steps immediately one after the other.

More precisely, if the two linear factors Lj+1(t) and Lj+2(t) are complex conjugate, then
the points P j+2

i (t) lies on a conic section (a quadratic rational curve) with the control points
P j
i (t), P

j
i+1(t), P

j
i+2(t) and the weights determined by the denominator Lj+1(t) · Lj+2(t).

These quadratic curves are plotted in Figure 5 at the corresponding places in the de
Casteljau-type algorithm. ♦

6. Conclusion

We have analyzed nested spaces of rational functions, obtained by successively mul-
tiplying the denominator with linear factors. We were able to determine the recurrence
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formulas for weights and basis functions of these spaces. Each ordering of the denominator
factors provides a de Casteljau-type algorithm for curves expressed with respect to these
rational basis.

The algorithms can be extended in a straightforward way to the case of tensor-product
patches. Indeed, in this case each variable is handled separately. Future research could be
devoted to triangular rational patches with denominators that have only linear elementary
factors, and to rational spline curves and surfaces.
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[5] A. Lupaş. A q-analogue of the Bernstein operator. Sem. Numer. Statist. Calc., 9:85–92,
1987.

[6] M.-L. Mazure. Extended Chebyshev spaces in rationality. BIT Numerical Mathematics,
53(4):1013–1045, 2013.

[7] L. Piegl and W. Tiller. The NURBS book. Springer, 2013.

[8] H.J. Wolters. Rational techniques. In G. Farin, J. Hoschek, and M.-S. Kim, editors,
Handbook of Computer Aided Geometric Design, chapter 5, pages 111–140. Elsevier,
2002.

11


