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Abstract

As a remarkable difference to the existing CAD technology, where shapes are represented
by their boundaries, FEM-based isogeometric analysis typically needs a parameterization
of the interior of the domain. Due to the strong influence on the accuracy of the analysis,
methods for constructing a good parameterization are fundamentally important. The
flexibility of single patch representations is often insufficient, especially when more complex
geometric shapes have to be represented. Using a multi-patch structure may help to
overcome this challenge.

In this paper we present a systematic method for exploring the different possible param-
eterizations of a planar domain by collections of quadrilateral patches. Given a domain,
which is represented by a certain number of boundary curves, our aim is to find the op-
timal multi-patch parameterization with respect to an objective function that captures
the parameterization quality. The optimization considers both the location of the control
points and the layout of the multi-patch structure. The latter information is captured by
pre-computed catalogs of all available multi-patch topologies. Several numerical examples
demonstrate the performance of the method.

Keywords: parameterization, multi-patch domains, isogeometric analysis

1. Introduction

The powerful framework of Isogeometric Analysis (IgA) unifies the descriptions of the
geometric objects (the computational domains) and of the unknown quantities considered
in numerical simulations by adopting multivariate spline functions for their representation
[6]. This approach helps to deal with the problem of data exchange between the software
tools used for the geometrical construction and design of CAD models and the tools used
for analysis. Additionally, the higher smoothness of the spline functions has shown to be
beneficial for the robustness and accuracy of the numerical simulations.

In the existing CAD technology, shapes are represented by boundary representation
(B-rep) models, which contain information about the surfaces of geometric objects [5].
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However, IgA typically needs a parameterization of the interior of the domain. Domain pa-
rameterization techniques, which generate domain parameterizations from boundary data,
are therefore of a vital interest.

The starting point for exploring such methods is the case of a single patch, i.e., of a
domain that is topologically equivalent to a d-dimensional cube of dimension d = 2, 3.
Several techniques have been described in the literature.

These include discrete Coons patches [8], which are computationally inexpensive, or the
spring model based approach [10]. A direct construction of spline parameterizations for
swept volumes was established by [1]. A method for generating volumetric single-patch T-
spline parameterizations of contractible objects is described in [31]. Optimal analysis-aware
parameterizations were studied in [30].

For two-dimensional domains, a sequence of methods with varying levels of computa-
tional complexity has been presented in [7]: The first two methods make use of several func-
tionals to place the inner control points, while the third method employs a harmonic map-
ping to guarantee regularity. Harmonic functions are used in [21] and [13] also to construct
parameterizations of generalized cylinders and of contractible domains, respectively. An-
other method, that is specifically tailored towards single-patch NURBS-parameterization,
has been developed in [23] using sequences of harmonic mappings.

When dealing with more complex geometric shapes, however, single patch represen-
tations do not provide sufficient flexibility. The use of multi-patch structures, which are
obtained by gluing patches together, is a standard approach to make them more versatile.

The coupling of the patches can be performed in several ways. One may identify
degrees of freedom along the interfaces. This has led to special constructions for splines
on multi-patch domains, such as spline forests [27] or multi-patch B-splines with enhanced
smoothness [3]. Alternatively, one may use continuity constraints and enforce them via
Lagrangian multipliers. This was found to be useful for designing isogeometric solvers that
exploit the power of parallel computing [14, 16]. Finally, there exist numerous techniques
such as use of mortar methods, Nitsche’s method, and the discontinuous Galerkin method
[2, 12, 19].

The construction of multi-patch parameterizations in IgA is less well understood. For
a fixed topology, an optimization-based technique has been investigated in [29]. Skeleton-
based polycube constructions have been used to generate T-spline parameterizations of
multi-patch-type [20]. An isogeometric segmentation pipeline, which combines domain
splitting with single patch parameterization techniques, was established in [15, 22, 24]. It
should be noted that there are strong relations to the problem of block-structured hexahe-
dral mesh-generation, see [18] and the references therein. Recently, a systematic method
for exploring the possible quad mesh topologies has been presented in [25].

In our present paper, which focuses on the two-dimensional case, we establish a system-
atic method for exploring the different possible segmentations of a domain into quadrilateral
patches. Given a domain with a certain number of boundary curves, which we denote as
segments, our aim is to find the optimal multi-patch parameterization with respect to an
objective function that captures the parameterization quality. The optimization considers
both the location of the control points and the layout of the multi-patch structure. This
is achieved by using catalogs of all available multi-patch topologies.

This paper is organized as follows. First we recall the concept of a multi-patch pa-
rameterization and introduce the patch adjacency graph in Section 2. The outline of

2



the algorithm as well as the objective functions used for the geometry optimization are
presented in the next section. Finally we demonstrated the performance of the proposed
method by several computational examples in Section 4. The method used for enumerating
the multi-patch topologies is reported in the appendix.

2. Preliminaries

We introduce the notion of a multi-patch parameterization and show how to capture
its topology by a patch adjacency graph.

2.1. Valid multi-patch parameterizations

We consider a simply connected planar domain Ω with piecewise smooth boundary.
More precisely, the boundary is represented by b parametric curves,

ci : [0, 1] → R
2, i = 1, . . . , b, (1)

which are called segments. Note that the indices of these curves are always considered
modulo b. The segments do not intersect except for the end points of neighboring segments,

∀i : ci(1) = ci+1(0) and

∀i, j, ∀s, t ∈ [0, 1) : ci(s) = cj(t) ⇒(i = j ∧ s = t).

The first property ensures that the segments form a closed loop. Without loss of generality,
we assume that the segments are oriented clockwise.

Some pairs of adjacent segments may meet with tangent (G1) continuity, i.e.,

∃λ > 0 : ċi(1) = λċi+1(0).

Adjacent edges meet in corners, which are either convex if the inner angle is smaller than
π or non-convex otherwise. The latter notion also includes the case of tangent continuity
between adjacent segments.

We want to represent the domain, i.e., the interior of the loop formed by the segments,
by a multi-patch parameterization (MPP). More precisely, the parameterization consists of
p geometry patches g(j).

g
(j) : [0, 1]2 → R

2 j = 1, . . . , p.

A patch is regular if the determinant of the Jacobian ∇g
(j) is positive. In particular,

this implies that the corner angles do not exceed π. Every patch g
(j) has a loop of four

boundary curves

g
(i)
1 : [0, 1] → R

2 : t 7→ g
(i)(0, t)

g
(i)
2 : [0, 1] → R

2 : t 7→ g
(i)(t, 0)

g
(i)
3 : [0, 1] → R

2 : t 7→ g
(i)(0, 1− t)

g
(i)
4 : [0, 1] → R

2 : t 7→ g
(i)(1− t, 0),

with counterclockwise orientation, see Fig. 1.
We use the opposite (i.e., clockwise) orientation for the boundary of the domain in

order to prepare the definition of the adjacency relation (see below), which identifies pairs
of curves with opposite orientation.
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Figure 1: Parameter domain and loop of boundary curves for a patch i

All boundary curves and the segments forming the domain boundary are collected into
a set

S = {g
(i)
ℓ | ℓ = 1, . . . , 4; i = 1, . . . , p} ∪ {ci | i = 0, . . . , b− 1}.

The interface relation ∼ on S identifies curves that possess the same parameterization in
reverse orientation,

s ∼ s′ ⇔ s(t) = s′(1− t), ∀t ∈ [0, 1] s, s′ ∈ S.

It captures both the adjacency relation between patches and between a patch and the
domain boundary. This relation is symmetric but neither reflexive nor transitive, and it
does not relate pairs of segments ci and cj.

A set of patches {g(j)} is called a valid multi-patch parameterization if it satisfies the
following three conditions:

(P) All patches are regular and their interiors are mutually disjoint.

(R1) Every curve in S, which can be either a segment (on the domain boundary) or a
patch boundary curve, is related to exactly one other curve in S.

(R2) There are no relations between the boundary curves of each patch.

The condition (R1) implies that the relation ∼ identifies pairs of curves of S for each
valid MPP. Therefore S has to contain an even number of curves. Indeed, the total number
of boundary curves g

(i)
ℓ of all patches is even, hence the number of segments on the domain

boundary has to be even too.

2.2. The patch adjacency graph (PAG)

We introduce patch adjacency graph (PAG), also known as “dual layout”, see [4]. It
can be obtained from any MPP M and captures the information provided by the adjacency
relation ∼. The PAG is a planar graph and its vertices are split into two groups:

• Every patch is represented by an inner vertex.

• Every segment of the boundary introduces a boundary vertex.

The total number of vertices v = b+ p is the sum of the number b of the boundary curves
and of the number p of patches. We introduce a global numbering of the vertices:
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• The boundary vertices have numbers 1, . . . , b, which are inherited from the associated
boundary segments and ordered clockwise.

• The inner vertices have the numbers b+ 1, . . . , b+ p.

The edges of the PAG can be grouped into two categories:

• Each inner edge corresponds to a pair of curves of S identified by ∼. Recall that each
inner vertex of the PAG is associated with four boundary curves, while each boundary
vertex is associated with a single curve (a segment on the domain boundary). Two
vertices of the PAG are connected by an inner edge, if one of the curves associated
with the first one is related to one of the curves associated with the second one.

• Pairs of adjacent boundary segments define boundary edges.

vertex

boundary edge

inner edge
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Figure 2: Multi-patch domain with associated PAG

The patch adjacency graph of a valid MPP is a planar graph that possesses the following
three properties:

(G1) The inner vertices of G have valence four, while the boundary vertices possess valence
three.

(G2) The subgraph which is formed by the boundary vertices is a circle. Therefore, two
of the neighbors of each boundary vertex are boundary vertices, while the remaining
one is an inner vertex.

(G3) The subgraph which is formed by the inner vertices is connected and does not contain
any biangles or loops1 (i.e., faces bounded by one or two edges of the graph).

The planarity of the PAG follows from the fact that the patches of M parameterize the
physical domain without overlaps. The valency of the inner vertices is determined by the
number of boundary curves of each patch. The valency of the boundary vertices follows
from the construction. The connectivity of the subgraph containing the inner vertices (G3)
is implied by the fact that the domain is connected. The regularity of the patches entails
the second part of (G3).

1A loop corresponds to a patch with identified opposite boundaries since we consider regular parame-
terizations only. The region in its interior cannot be filled with regular patches.
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It should be noted that PAGs with multiple edges exist, see Fig. 3. Later we will
introduce a boundary compatibility condition, which is required at non-convex vertices of
the domain.

Figure 3: MPP with associated PAG with two edges between two vertices

Each PAG is represented by five functions, which we denote by I, E,N,W , and S. The
first function

I : {1, . . . , b} → {b+ 1, . . . , b+ p}

assigns the unique inner vertex to each boundary vertex, cf. (G2), while the remaining four
functions

E,N,W, S : {b+ 1, . . . , b+ p} → {1, . . . , b+ p}.

specify the four neighbors (East, North, West, South) of each inner vertex.
For certain ranges of b and p we created catalogs of PAGs satisfying (G1-G3). This is

described in more detail in the appendix.

3. Parameterization algorithm

Given a collection of boundary segments, a PAG is said to be valid if adjacent boundary
vertices that correspond to edges enclosing a non-convex vertex are adjacent to different
inner vertices,

∠(ċj(1), ċj+1(0)) ≥ 0 ⇒ I(j) 6= I(j + 1). (2)

The validity is required to obtain regular parameterizations in the vicinity of non-convex
boundary vertices, see Fig. 4.

Figure 4: Violation of the boundary compatibility condition (left: PAG, right: associated patch layout)
leads to a singular parameterization.

We consider all valid PAGs for the given value of b and for all p ≤ pmax, where the
maximum number of patches pmax is chosen by the user. For each valid PAG we compute
a candidate parameterization in three steps:
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1. Build the control point structure of the MPP defined by the PAG.

2. Find initial values of the inner control points by minimizing the objective function (5).
These values are computed by solving a linear system.

3. Find optimal values of control points by minimizing the objective function (6) via
nonlinear optimization, using the previously computed result as initial solution.

Among all results we then select the one which is regular and provides the smallest value
of the non-linear objective function (6). Notice that the two objective functions (5) and
(6) will be defined later in Sections 3.2 and 3.3, respectively.

3.1. Building the MPP control point structure

For simplicity we choose all patches to have same knot vectors and degrees and therefore
the control points can be denoted as

dki,j, i, j = 0, . . . , n, k = b+ 1, . . . , b+ p.

We further assume that all segments are spline curves, which have the same degree and the
same knot vectors as the patches. If this is not the case, we approximate the boundary of
the domain by appropriate curves, in order to fulfill this requirement. Their control points
are denoted as

dki,0, i = 0, . . . , n, k = 1, . . . , b, (3)

where the second lower index is introduced in order to simplify the notation.
To keep preserve the domain boundary, fixed values are assigned to the boundary

control points of the adjacent patches,

d
I(k)
n,n−i = dki,0 if E(I(k)) = k,

d
I(k)
i,n = dki,0 if N(I(k)) = k,

d
I(k)
0,i = dki,0 if W (I(k)) = k,

d
I(k)
n−i,0 = dki,0 if S(I(k)) = k.

Furthermore, we identify interface control points of adjacent patches. This leads to the
equation

dkn,i = dk
′

n−i,0 if k′ = E(k) and k = S(k′). (4)

and 15 similar ones, which cover the 16 different cases of patch-patch contact.

3.2. Constructing the initial solution

We collect the coordinates of control points of all patches in a vector d. Some of these
coordinates are determined by the conditions (3). After omitting them we obtain the
sub-vector d∗, which contains the unknowns of the optimization problem. In addition, we
denote with dk the coordinates of the control points of patch no. k.

We use a simple linear direct method (see [7]) to obtain an initial solution. More
precisely, we solve the optimization problem

b+p
∑

k=b+1

λℓQℓ(d
k) + λuQu(d

k) → min
d∗

(5)
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which is obtained by combining the parametric length functional

Qℓ(d
k) =

∫

Ω

‖g(k)
u ‖2 + ‖g(k)

v ‖2du dv

with the uniformity functional

Qu(d
k) =

∫

Ω

‖g(k)
uu ‖

2 + 2‖g(k)
uv ‖

2 + ‖g(k)
vv ‖

2du dv

using user-defined non-negative weights λℓ and λu. The choice of the weights will be
discussed in Section 4.2.

In addition, the solution has to satisfy the adjacency conditions (4), which are simply
enforced by identifying control points. (One might use Lagrangian multipliers instead, but
this would produce a bigger system with a matrix that is not guaranteed to be positive
definite anymore). Due to the simple nature of these functionals, the solution of the
optimization problem is found easily by solving a linear system using a direct solver.

We obtain an initial parameterization, which is, however, not always satisfactory.

3.3. Non-linear optimization

In order to improve the quality of the MPP we consider the more general objective
function

b+p
∑

k=b+1

λℓQℓ(d
k) + λuQu(d

k) + λoQo(d
k) + λsQs(d

k) + λaQa(d
k) → min

d∗

(6)

which is obtained by additionally considering the orthogonality functional

Qo(d
k) =

∫

Ω

(g(k)
u · g(k)

v )2du dv,

the skewness functional

Qs(d
k) =

∫

Ω

(

(g
(k)
u · g

(k)
v )2

(g
(k)
u · g

(k)
u )(g

(k)
v · g

(k)
v )

)2

du dv,

and the area functional

Qa(d
k) =

∫

Ω

det(g(k)
u , g(k)

v )2du dv.

The first two measures were already used in [7]. In addition we consider the third functional,
which measures the squared determinant of the geometry mapping. This penalizes fold-
overs and encourages a uniform size of the elements.

Similar to [7] we apply an iterative Gauss-Newton method to find the solution of the
optimization problem, which is defined by the objective function (6) and the constraints (4).
The result of the simpler problem (5) is used to initialize the iteration process.

4. Computational results

We demonstrate the performance of our method by several computational examples.
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(a) Hexagon - PAG: (6|6|16) (b) Hexagon - PAG: (6|4|1) (c) Hexagon - PAG: (6|6|19)

(d) Tunnel - PAG: (6|6|16) (e) Tunnel - PAG: (6|4|1) (f) Tunnel - PAG: (6|6|19)

(g) Yacht - PAG: (6|6|16) (h) Yacht - PAG: (6|4|1) (i) Yacht - PAG: (6|6|19)

Figure 5: Multi-patch parameterizations created from different PAGs

4.1. Influence of the chosen PAG

First we explore the influence of the selected PAG to the properties of the final multi-
patch parameterization. Figure 5 shows three examples and the resulting MPPs for three
different choices of the PAGs. The geometries of the examples represent a simple hexagon
shape (first row), a tunnel cross section (second row) and the profile of a yacht (third row).
For all three geometries, the boundary is defined by six segments, and all segments meet in
convex vertices only. Thus, we can consider the full range of PAGs in all these examples.

Each segment is given by a quadratic B-spline curve with 5 control points and an
uniform knot-vector. Consequently, we use spline patches with 25 control points to param-
eterize the domain. All shapes are of similar size and are contained in the bounding box
[0, 12]2. We are interested in a solution with a maximal number of 6 patches, therefore
34 PAGs are considered. For the non-linear optimization we choose the weights λo = 0.1,
λu = 0.1 and λa = 2. The remaining weights are set to 0. For each geometry we pick the
optimal result and compare it to the result of the other shapes with the same PAG. The
results are summarized in Table 1. The PAGs are identified by a label of the form

(number of segments b|number of patches p|PAG id).

4.2. Further examples

Table 2 and Figures 6–10 present further examples. Details of the Flow Passage example
show the behavior of the parameterization near the leading edge (Fig. 8(c)), the trailing
edge (Fig. 8(d)) and the extraordinary vertex in the inside of the domain (Fig. 8(e)).

For all these examples, we report the number of segments on the boundary b, the
maximum number of patches considered pmax, the number of control points (cps) used for
each patch, the number of valid PAGs, the id of the best PAG, the value of the objective
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name criterion PAG number
(segments|patches|id)

(6|6|16) (6|4|1) (6|6|19)
Hexagon optimal solution ? yes no no

value of the objective function (6) 1463.8 2159.4 1470.8
regularity yes yes yes

Tunnel optimal solution ? no yes no
value of the objective function (6) 1073.2 886.2 1016.5

regularity no yes no
Yacht optimal solution ? no no yes

value of the objective function (6) 825.6 1192.3 703.6
regularity yes no yes

Table 1: Comparison of the examples in Fig. 5

function and the total computing time (excluding the generation of the list of PAGs) in
the Table. The computations were done on a 64-Bit Debian Linux laptop with an Intel
i7-4500U quad core CPU with 1.80 GHz and 16 GB of memory.

We scaled all examples to make them fit into the box [0, 12] × [0, 12] and used the
weights λo = 0.5, λu = 0.1 and λa = 2 in the Jet, Hammer, Car and Puzzle Piece 1
examples. For the Muffin example the weights were chosen as λa = 5 and λℓ = 1. The
Puzzle Piece 2 was computed using λℓ = λs = 0.05 and λa = 5 and the Flow-Passage used
λo = λu = λs = 1 and λa = 5. All remaining weights were set to zero.

For the Jet example, we investigated the influence of the starting solution, reporting two
different initial solutions corresponding to different weights in the objective function (5) in
Fig. 9. We chose λℓ = 1 and λu = 0 for the left figure, while we used λℓ = λu = 1 for the
right one. However, both starting points for the non-linear optimization led to the same
final result. A similar behavior was observed in other examples.

In our experiments, the choice of the weights for the non-linear optimization function (6)
seems to be quite robust for domains that are sufficiently simple. For more complicated
examples, we used a catalog of combinations of weights to select suitable values. This
approach, however, leads to a larger computation time as the number of optimization
problems is increased.

If self-intersections are likely to appear, then using the area functional with a relatively
large weight helps significantly to obtain regular solutions. See [7] for a more detailed
discussion of the influence of the remaining weights. It should be noted that all functionals
encourage the use of several smaller patches instead of a few larger ones, since splitting
a patch decreases the (total) value of the objective function. This effect, however, is
limited by the fact that the segments on the boundary cannot be subdivided during the
optimization. One might compensate it by using more complicated weights, but this was
not found to be necessary in our examples.

It should be noted that a large number of PAGs had to be considered for the Flow
Passage example, thereby increasing the computation time. This is due to the fact that
this shape has more convex vertices on the boundary, hence more PAGs are valid.
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name b pmax # cps per patch # valid PAGs best PAG value of (6) time (in sec)
Jet 6 7 25 100 (6|7|20) 704.1 54.9

Hammer 12 7 25 38 (12|7|488) 1465.3 22.0
Muffin 6 8 25 14 (6|8|157) 5467.5 8.3

Car 12 8 25 110 (12|8|4778) 329.3 71.8
First Puzzle Piece 8 6 36 8 (8|6|25) 5323.7 6.4

Second Puzzle Piece 12 9 36 45 (12|9|8829) 3127.5 65.6
Flow Passage 12 9 16 2903 (12|9|7354) 1776.1 1227.4

Table 2: Further examples

(a) Symmetric part (b) Full

Figure 6: First puzzle piece

(a) Symmetric part (b) Full

Figure 7: Second puzzle piece
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(a) Symmetric part (b) Full

(c) Detail - Leading edge (d) Detail - Trailing edge (e) Detail - EV

Figure 8: Flow-Passage of a compressor blade

5. Conclusion

We presented a method for parameterizing a planar shape which is represented by a
number of boundary segments. Our algorithm identifies the optimal multi-patch parame-
terization with respect to a quality measure given by an objective function. All different
possible segmentations of the domain into quadrilateral patches are systematically explored
and a Gauss-Newton method is used to find the optimal placement of the inner control
points for each segmentation. The multi-patch topologies, which are suitable for the given
boundary segments are taken from a catalog. Selecting the configuration with the lowest
value of the objective function gives the desired parameterization.

The method works well for examples with a modest number of patches and boundary
segments. It is clear that it will not be suitable for larger number of patches, simply
since the size of the catalog grows too fast. Nevertheless, we feel that the method can be
valuable when dealing with certain classes of engineering shapes, such as the flow passage
of a compressor blade. As an advantage, our method is guaranteed to find the optimal
parameterization (in the sense that it provides the minimal value of the objective function)
among all possible multi-patch topologies with a certain number of patches.

The functionals presented in this paper work well but do not guarantee a regular solu-
tion. This issue can be solved by using more complicated functionals ([10, 28]). We did not
consider these functionals in our work since they require more sophisticated optimization
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(a) λℓ = 1, λu = 0 (b) λℓ = 1, λu = 1

Figure 9: Two different initial solutions of the Jet example

techniques.
Future work will focus on the extension to the 3D case and – closely related to it –

on more advanced methods for creating and representing the catalogs of available multi-
patch topologies. In the 3D case, the patch layout cannot be captured by a planar graph,
requiring a more complicated structure instead. Moreover the enumeration of this more
complicated structure is not yet understood. The quality functionals can be generalized
to the 3D case [11]. Also, we plan to identify the essential parts of these catalogs, which
are determined by the distribution of the extraordinary vertices.

Another interesting topic is the development of heuristic algorithms that only generate
a relevant subset of the catalog, thus decreasing the number of multi-patch layouts and
therefore the computing time of the method.

Additionally, we will explore applications to isogeometric mesh generation in the context
of aircraft engine design.

Appendix A. Catalog of PAGs

We present a simple algorithm to construct all PAGs (Gj), j ∈ J, which satisfy the
properties (G1) to (G3) for a given number of boundary segments. Starting from the given
boundary segments ci, the boundary vertices and edges of G can be constructed easily. The
remaining challenge is to complete the interior of the graph according to the properties
(G1) to (G3).

Appendix A.1. Existence of valid PAGs

First we explore the existence question for valid PAGs. Recall that a PAG is valid if
it satisfies the condition formulated in Eq. (2). We already observed in Section 2.1 that
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(a) Jet (b) Hammer

(c) Muffin (d) Car

Figure 10: Several results of the optimization process
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an even number of boundary segments is a necessary condition for the existence of a valid
multi-patch parameterization. This condition is also sufficient:

Lemma 1. A valid patch graph Gv exists iff the number of given boundary segments b is
even.

Proof. For b = 2 and b = 4 the graphs can be given explicitly in Fig. A.11. If b > 4, a
construction is used to achieve a patch graph. All b boundary vertices are placed on a
circle. A smaller copy of this circle with its vertices is moved to a concentric position, see
Fig. A.12. All boundary vertices are connected to the replicated vertices on the smaller
circle. Another smaller, concentric circle is added. b

2
inner vertices are positioned on this

circle in way, that always two vertices on the middle circle can be connected to them in
a planar way. Finally we note that the resulting PAGs are always valid, since no pair of
adjacent boundary vertices are connected to the same inner vertices.

Figure A.11: PAGs for b = 2 and b = 4

Figure A.12: Construction used in lemma 1 for 10 boundary segments

It should be noted that this construction produces a PAG with b + b
2
inner vertices.

However, valid PAGs with a lower number of inner vertices may exist, depending the
number of non-convex boundary vertices.

Appendix A.2. Enumeration of PAGs

The enumeration of planar graphs with certain properties is a well-studied problem in
combinatorics and graph theory, see [9] and the references therein.
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The number of graphs grows very fast with the number of vertices: The asymptotic
behavior of the number of connected planar graphs with n vertices is given in [9] as

an−7/2bnn!

with certain constants a and b.
Our simple enumeration algorithm is based on a list of complete ternary trees, which

can be generated easily [17].
First we initialize the circle of b boundary vertices and create one leaf connected to

each boundary vertex except for the last one. These leaves are numbered by 1 to b − 1
clockwise. We now attach a ternary tree with p nodes to the last boundary vertex and
number the leaves of the tree by 1 to 2p+ 1 counterclockwise, see Fig. A.13.

1

2

3

b− 2

b− 1

b

. . .
. . .

. . .

. . .

. . .

1

2

32p

2p+ 1

Figure A.13: Enumeration of PAGs using ternary trees

A PAG is now obtained by creating connections between boundary leaves and tree
leaves, and connections between tree leaves, while maintaining the planarity of the graph.

1. Firstly we connect each boundary leaf no. i to tree leaf no. fi. This can be rep-
resented by a strictly increasing sequence of numbers (fi)i=1,..,b−1, in which f1 and
every difference fi+1 − fi are odd numbers.

2. Secondly we connect each of the remaining tree leaves with another tree leaf, using
assignment functions

ai : {fi + 1, . . . , fi+1 − 1} → {fi + 1, . . . , fi+1 − 1}

satisfying the conditions

ai(x) = y ⇒ (x 6= y ∧ ai(y) = x) ,

ai(x1) = y1 ∧ ai(x2) = y2 ⇒ x1 ≤ x2,y2 ≤ y1 ∨ y1 ≤ x2, y2 ≤ x1∨

x2 ≤ x1,y1 ≤ y2 ∨ y2 ≤ x1, y1 ≤ x2.

While the first condition ensures, that always pairs of tree leafs are matched, the
second one makes sure, that the connections can be realized in a planar way.
Geometrically, these assignments correspond to a selection of non-intersecting diag-
onals of (fi+1 − fi − 1) vertices on a circle numbered by {fi + 1, . . . , fi+1 − 1}, such
that each vertex belongs to exactly one diagonal.
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# boundary segments
# patches 2 4 6 8 10 12

1 0 1 0 0 0 0
2 0 0 3 0 0 0
3 0 0 2 12 0 0
4 0 0 3 18 55 0
5 0 1 6 36 132 273
6 5 4 20 84 330 910
7 9 39 66 252 880 2730
8 17 116 382 825 2698 8191
9 99 511 1476 3792 8969 26423

Table A.3: Number of different PAGs for given numbers of boundary edges and patches

3. Finally we replace all triples of three adjacent edges with two inner valence 2 vertices
by a single edge.

We briefly discuss the complexity of this procedure: The number tp of ternary trees
with p nodes can be calculated using the Pólya Enumeration Theorem [26]. We arrive at
the recursion

t1 = 1

tp =

(

∑

i+j+k=p−1

titjtk + 3
∑

i+j=p−1

titj + 3tp−1

)

.

The first numbers in this sequence are 1, 3, 12, 55, 273. The number of sequences considered
in the first step is bounded by

(

2p+1
b−1

)

, and the number of possible pairings in step 2 does

not exceed M !
2M/2(M/2)!

with M = 2p− b+ 2. Note that M is even since b is even. The total

cost of the algorithm is thus bounded by the product of these three numbers. Clearly,
the costs grow quickly with p and b, hence the algorithm can be used for relatively small
numbers only.

The procedure gives a catalog of PAG, but each PAG may be present several times. We
eliminate duplicates by assigning a unique numbering to the inner vertices and comparing
edge lists. Note that structurally equivalent PAGS with different numbering of the boundary
vertices are considered as different. This is useful as these graphs give different patch
structures (except for highly symmetric shapes). Moreover, some of these PAGs may be
valid for a given collection of segments, while others may be invalid. This depends on the
location of non-convex boundary vertices.

All PAGs obtained from the same ternary tree are different. At most
(

p−1+M/2
M/2

)

different
ternary trees can be obtained from a given PAG, hence the number of duplicates is bounded
by this number.

As an example, Fig. A.14 shows all PAGs for b = 6, p = 2, . . . , 6. These PAGs were a
subset of the catalog of PAGs used in the example in Section 4.1. There is only one class
of structurally equivalent PAGs for each of the cases N = 2, . . . , 5, but several ones for
N = 6.

Table A.3 reports the numbers of different PAGs for various values of the number
boundary segments b and the number of patches p.
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N = 2 :

(6|2|1) (6|2|2) (6|2|3)

12)

N = 3 :

(6|3|1) (6|3|2)

|5)

N = 4 :

(6|4|1) (6|4|2) (6|4|3)

|4)

N = 5 :

|2)

(6|5|1) (6|5|2) (6|5|3) (6|5|4) (6|5|5) (6|5|6)

N = 6 :

(6|6|1) (6|6|2) (6|6|3) (6|6|4) (6|6|5) (6|6|6)

(6|6|7) (6|6|8) (6|6|9) (6|6|10) (6|6|11) (6|6|12)

(6|6|13) (6|6|14) (6|6|15) (6|6|16) (6|6|17) (6|6|18)

(6|6|19) (6|6|20)

Figure A.14: The PAGs for 6 segments and 2 to 6 patches.
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[26] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemi-
sche Verbindungen. Acta Mathematica, 68(1):145–254, 1937.

[27] M. Scott, D. Thomas, and E. Evans. Isogeometric spline forests. Comp. Meth. Appl.
Mech. Engrg., 269:222–264, 2014.

20



[28] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. Parameterization of computational
domain in isogeometric analysis: methods and comparison. Computer Methods in
Applied Mechanics and Engineering, 200(23):2021–2031, 2011.

[29] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. Analysis-suitable volume param-
eterization of multi-block computational domain in isogeometric applications. Comp.-
Aided Design, 45:395–404, 2013.

[30] G. Xu, B. Mourrain, R. Duvigneau, and A. Galligo. Optimal analysis-aware parame-
terization of computational domain in 3d isogeometric analysis. Comp.-Aided Design,
45(4):812–821, 2013.

[31] Y. Zhang, W. Wang, and T. Hughes. Conformal solid T-spline construction from
boundary T-spline representations. Computational Mechanics, 51(6):1051–1059, 2013.

21


