
Low Rank Tensor Methods in Galerkin-based

Isogeometric Analysis

Angelos Mantzaflaris a Bert Jüttler a Boris N. Khoromskij b

Ulrich Langer a

aRadon Institute for Computational and Applied Mathematics (RICAM), Austrian
Academy of Sciences, Linz, Austria

bMax-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany

Abstract

The global (patch-wise) geometry map, which describes the computational domain,
is a new feature in isogeometric analysis. This map has a global tensor structure,
inherited from the parametric spline geometry representation. The use of this global
structure in the discretization of partial differential equations may be regarded as
a drawback at first glance, as opposed to the purely local nature of (high-order)
classical finite elements. In this work we demonstrate that it is possible to exploit
the regularity of this structure and to identify the great potential for the efficient
implementation of isogeometric discretizations. First, we formulate tensor-product
B-spline bases as well as the corresponding mass and stiffness matrices as tensors
in order to reveal their intrinsic structure. Second, we derive an algorithm for the
the separation of variables in the integrands arising in the discretization. This is
possible by means of low rank approximation of the integral kernels. We arrive at
a compact, separated representation of the integrals. The separated form implies
an expression of Galerkin matrices as Kronecker products of matrix factors with
small dimensions. This representation is very appealing, due to the reduction in
both memory consumption and computation times. Our benchmarks, performed
using the C++ library G+Smo, demonstrate that the use of tensor methods in
isogeometric analysis possesses significant advantages.

Key words: isogeometric analysis, low rank approximation, stiffness matrix,
matrix formation, tensor decomposition, Kronecker product, numerical quadrature

Email addresses: angelos.mantzaflaris@oeaw.ac.at (Angelos Mantzaflaris),
bert.juettler@ricam.oeaw.at (Bert Jüttler), bokh@mis.mpg.de (Boris N. Khoromskij),
ulrich.langer@ricam.oeaw.at (Ulrich Langer).

1 Introduction

Isogeometric analysis (IGA) [15,36] uses tensor-product B-spline bases for both the
geometry description and the discretization of partial differential equations (PDEs).
For a Galerkin-based approach, the 3D geometry is represented by tri-variate B-spline
volumes. This significantly increases the complexity and, consequently, the computation
times of matrix formation, which involves expensive multidimensional quadrature. Our
aim is to apply tensor numerical methods, which are based on the idea of a low-rank
separable tensor decomposition of integral kernels in order to obtain a fast generation
technology of three-dimensional Galerkin matrices. Tensors generalize matrices to higher
dimensions, and are the objects of interest when working with tensor-product B-splines
in dimension three or higher.

In the present work, an automatic, input sensitive procedure is deduced that is able
to capture the complexity of a given isogeometric domain and generate an adapted
representation which is more efficient to manipulate in simulations. For example, if the
input is a 3D cube, the computations will complete much faster than for a general
freeform volume. Here the complexity of a domain is quantified by a rank parameter.

We represent the Galerkin matrices using the language of tensors. Then we employ
tensor decomposition to derive a compact Kronecker format for these matrices which
drastically reduces computation times for matrix formation. In particular, we prove a
computation cost proportional to the geometric complexity of the input isogeometric
domain which is linear in the size of the computed matrix. The overall error of the
procedure is controlled by the threshold in the low rank tensor approximation. In this
way, we reduce demanding multi-dimensional quadrature operations on tensor-product
B-splines to inexpensive one-dimensional operations on univariate B-splines. Finally, our
experiments demonstrate how one can use the Kronecker product format as a black-box
matrix in matrix-vector evaluations in iterative solvers, leading to drastical reduction of
memory requirements in the overall process.

1.1 Related work

There exist several lines of research dealing with the problem of increased computa-
tion costs in IGA. For the problem of matrix formation, we may refer to works exploring
new rules with fewer quadrature points for numerical integration. These new rules are
typically developed and computed numerically in 1D, and then they are extended in
more dimensions by the use of tensor-product structure [4,5,37,32].

Moreover, there are works that assume that a 1D integration routine is available, and
aim at efficiently applying it to more dimensions. Other lines of work in this direction
include reduced quadrature [56], variationally consistent quadrature [33], isogeomet-
ric collocation methods [3,26,55,6,20] and adaptivity using adaptively refined meshes
[25,54,24].

Another line of work is towards exploitation of the tensor-product structure of
multivariate B-splines. This idea goes back to [16]. In particular, the technique of sum
factorization employed in isogeometric analysis in [2], notably combined with weighted

2

quadrature rules [12]. In the integration by interpolation and lookup approach, intro-
duced in [50], a lower degree is used to approximate the Jacobian determinant and reduce
the complexity of the representation. Subsequently the resulting elementary integrals are
pre-computed by the use of compact look-up tables. A main issue is that a small gain is
observed for low degree (quadratic or cubic), which nevertheless are the most common
degrees used in applications.

Finally, let us mention works related to the efficient manipulation of isogeometric
data in solvers. These are based on the use of Kronecker product structure for precon-
ditioning [23,22,49] as well as to the fast solution of the Sylvester equation [53,7].

Our main tool is the rank-structured tensor decomposition and the use of multilin-
ear algebra. Traditional numerical approximations of PDEs in Rd are computationally
tractable only for a moderate number of spacial variables due to the “curse of dimen-
sionality”, i.e. the fact that storage demands and complexity costs grow exponentially
with the dimension d. The breaking through approach of data-sparse representation of
d-variate functions and operators on large tensor-product grids is based on the principle
of separation of variables. The low-parametric representations of high-dimensional data
arrays employs the traditional canonical, Tucker and matrix product states (tensor train)
tensor formats [34,58,59,18,52]. Literature surveys on the methods of multilinear algebra
on rank-structured tensors can be found in [45,42,27,28].

The modern grid-based tensor methods for solving multidimensional PDEs employ
the commonly used low-parametric rank-structured tensor formats, thus requiring merely
linear in d storage costs O(dn) for representation of function related tensors of size
nd, where n is usually associated with a large univariate grid-size, see survey papers
[42,39]. Efficient tensor methods for the treatment of function related tensors (obtained
by sampling a continuous function on the large tensor grid) via canonical and Tucker
formats were described in [43,44].

The method of quantized tensor approximation (QTT) is proven to provide a log-
arithmic data-compression for a wide class of discrete functions and operators [41]. It
enables to discretize and solve multi-dimensional steady-state and dynamical problems
with a logarithmic complexity O(d log n) in the volume size of the computational tensor-
product grid. The decoupling of multivariate functions using tensor decomposition is
further analyzed in [19].

1.2 Contributions and outline

Our work extends [51], where the low-rank approximation in the 2D case is treated
by means of singular value decomposition (SVD). Two basic properties of isogeometric
analysis are important for the method. First, the tensor-product B-spline functions have
the property of being separable, i.e., they are the product of univariate basis functions.
Second, the kernels appearing in isogeometric integrals typically involve coefficients of
a PDE and the partial derivatives of the geometry map, all defined globally on a patch
representing the domain. These two properties pave the way for the use of numerical
tensor calculus.

3

Our approach suggests to delay multi-dimensional operations as long as possible.
This is possible due to the tensor-product nature of the B-spline basis and the global
geometry map. In fact, our final aim is to refrain from multi-dimensional operations
completely, as far as the matrix assembly and the solution process is concerned.

We focus on the task of Galerkin matrix formation and we consider the mass and
the stiffness matrix as model cases. For a tensor-product patch with O(n) degrees of
freedom per parametric dimension, the number of non-zero entries in these matrices is
O(ndpd), where d denotes the spatial dimension (e.g. d = 2 or 3) and p is the spline
degree used for each dimension. Since the time complexity of the method is bounded by
the size of the output, this is a lower bound for the asymptotic computation time of the
problem. We present a procedure that achieves (quasi-optimal) complexity O(Rdndpd),
where R is a rank parameter related to the geometric complexity of the input domain.

Concerning the implementation, the method requires 1D interpolation and matrix
formation routines, a tensor decomposition routine and the Kronecker product operation.
Therefore, the method can be used on top of existing isogeometric procedures, and does
not require a change of paradigm. For instance, any known quadrature rule for univariate
splines can be employed, e.g. [4,37].

The paper is organized as follows. In Section 2 we briefly describe the isogeometric
paradigm and we focus on the specific integrals that arise in the process. Section 3 is
devoted to a short introduction to multilinear algebra dealing with such rank-structured
representations. In Section 4 we establish tensor notation for B-splines, and we define the
mass and stiffness tensors in Section 5. Our main algorithm is summarized in Section 6,
where we also provide a complexity analysis. We conclude with experiments and brief
conclusions in Sections 7 and 8, respectively.

2 Isogeometric discretization

A Galerkin-based isogeometric simulation is performed on a parameterized physical
domain Ω. The domain is parameterized by a global geometry mapping G : Ω̂ → Ω,
where the parameter domain Ω̂ is an axis-aligned box in Rd. More generally, one might
consider a collection of such boxes for a multi-patch domain parameterization [11,48]. In
order to keep the presentation simple and since this suffices to describe the main ideas
we restrict ourselves to only one patch.

Any point x ∈ Ω in the physical domain is the image of a point ξ ∈ Ω̂ in the
parameter domain,

x = G(ξ) =
∑
i∈I

di βi(ξ) . (1)

The geometry mapping is represented using basis functions βi (which are typically
NURBS functions), which are multiplied by control points di. The latter ones possess
an intuitive geometric meaning and are well-established tools in geometric design [21].

The isogeometric simulation takes advantage of the given parameterization of the

4

domain Ω. In particular, the isogeometric discretization space is defined as

Vh = span{βi ◦G−1 : i ∈ I}. (2)

The functions in the discretization space Vh are linear combinations of the basis func-
tions,

uh =
∑
i∈I

ui (βi ◦G−1) , (3)

with certain coefficients u = (ui)i∈I , where I is a finite (multi-)index set.

Here, for any function (e.g. u) which is defined on the physical domain Ω, we use a
Greek character (e.g. φ) to denote its pull-back φ = u ◦G.

The finite-dimensional space Vh is now used for the Galerkin discretization of the
variational (weak) formulation of some boundary value problem for a linear elliptic PDE
that can be written in the form: find

u ∈ V such that a(u, v) = `(v), ∀v ∈ V . (4)

In the case of a scalar second-order PDE and natural boundary conditions, V is nothing
but the Sobolev space H1(Ω). In the presence of Dirichlet boundary conditions imposed
on some part ΓD of the boundary Γ of the physical domain Ω, u must satisfy this
Dirichlet boundary conditions, whereas the test functions v have to vanish on ΓD. In the
following, it is obviously enough to consider the case of natural boundary conditions.

It should be noted that the isogeometric discretization is often derived from a
representation (1) of the geometry mapping, which is obtained by applying several
refinement steps (usually h-refinement / knot insertion) to the original representation of
the mapping, in order to generate a sufficiently fine space for the simulation.

After applying the Galerkin method to the variational form (4), we arrive at the
discretized problem, which consists in finding

uh ∈ Vh ⊂ V such that a(uh, vh) = `(vh), ∀vh ∈ Vh . (5)

We refer to classical text books on the finite element method like [8,10,13] for a detailed
presentation of Galerkin method and the corresponding numerical analysis.

Considering the test functions vh = βi ◦ G−1, i ∈ I, the variational form (5) leads
to the linear system of algebraic equations

Su = b,

which characterizes the isogeometric solution uh with coefficients u, cf. (3).

In the remainder of the paper, we focus on typical ingredients of the bilinear form.
Let

φh = uh ◦G and ψh = vh ◦G.
We consider the mass term

aM(uh, vh) =
∫

Ω̂
φh ψh ω dξ, ω = | det∇G|, (6)

5

the stiffness term

aS(uh, vh) =
∫

Ω̂
∇φh>K∇ψh dξ, K = [κ`,m] =

(∇G)>c (∇G)c
| det∇G|

, (7)

and the advection term

aA(uh, vh) =
∫

Ω̂

(
∇φh>%

)
ψh dξ, % = (∇G)>c (r ◦G). (8)

Their definition involves the Jacobian matrix ∇G, its (transposed) cofactor matrix
(∇G)>c = (∇G)−1 det∇G, and the advection vector field r. The elements of the system
matrix S take the form

Sij = a(βi, βj) , (9)

where the bilinear form a is essentially a linear combination of the terms in (6-8). For
example, the Neumann problem for the PDE −∆u+ r>∇u+u = f leads to the bilinear
form a = aS + aA + aM . Other terms that appear in the discretization of variational
forms of PDEs yield similar expressions. In particular, it is easy to consider additional
coefficients in the diffusion and reaction terms of the PDE that we can incorporate in K
and ω, respectively. In order to keep the presentation simple, we discuss neither terms
arising from boundary conditions nor the right-hand side of the system.

3 Tensor calculus and formats

We recall fundamentals of tensor algebra and numerical tensor calculus. Additional
information and further details are provided in the rich literature on this topic, see e.g.
[27,28,42,45] and references therein.

3.1 Tensors

Given a non-negative integer d ∈ Z≥0 and a vector n = (n1, . . . , nd) ∈ Zn+ with
positive integer elements, we consider the index set

I = I1 × ...× Id =
d

X
k=1

Ik, Ik = {1, . . . , nk}.

A (real) n-tensor
T = [ti]i∈I ∈Wn = RI

of order d and dimension n is an array consisting of real elements ti = ti1,...,id ∈ R with
indices i = (i1, . . . , id) ∈ I, i.e., ik ∈ Ik, k = 1, . . . , d. For example, the elements of a
(3, 3, 3)-tensor are visualized in Fig. 1. The number of elements

π(n) = n1 · · ·nd

is called the size of the tensor. The set of n-tensors forms the linear space Wn, equipped
with the Euclidean scalar product.

6

a111 a211 a311

a321

a331

a332

a333a233a133

a123 a223

a232a132
a213a113 a313

a222 a322a122

a131
a212

a121 a221

a312
a231

a323

a112

g212g112

g111 g211

g122 g222

g221g212

a11 a21

b21

b22

b23
b11

b12

b13

a12

a13

a22

a23

c23

c13

c22

c12
c11

c21

b11
a12 a13

b13
c13

c12
b12

a11
c11 b21

a22 a23

b23
c23

c22
b22

a21
c21

Fig. 1. A 3-tensor A = [ai1,i2,i3] with i = (i1, i2, i3) ∈ {1, 2, 3}3. From left to right: full format,
Tucker format with rank (2, 2, 2), and canonical format of rank 2 at the bottom.

First and second order tensors, where the dimension takes the form n = (n1) and
n = (n1, n2), respectively, play a special role. Any (n1)-tensor v is simply a vector and
it will be denoted by a lowercase bold character. Any (n1, n2)-tensor A is a matrix and
will be denoted by an uppercase italic character. Additionally it is possible to see real
scalars as tensors of order d = 0.

The vectorization of a tensor, vec(T), results in a vector which is obtained simply
by reshaping the multi-index i to a single index using a lexicographic ordering in I. A
matricization mat(T) of a tensor is matrix obtained by splitting the indices i1, . . . , id
into two disjoint subsets, which are ordered lexicographically and used to assign every
tensor entry to matrix row and column.

In order to facilitate the analysis of the computational complexity we will often
consider n-tensors with ni = n; these will be denoted as nd-tensors. The storage
requirements of a nd-tensor grow exponentially with d since dim(Wn) = nd. This fact,
which is sometimes called the “curse of dimensionality”, makes it virtually impossible to
use the traditional numerical methods, since they are characterized by linear complexity
in the discrete problem size, even for moderate values of the dimension d. Instead it
is preferable to employ memory-efficient representations, which are based on tensor-
products.

3.2 Tensor product and tensor formats

The tensor product of an n-tensor T = [ti] and an n̄-tensor T̄ = [t̄ī] is the (n, n̄)-
tensor P that is formed by the products of all pairs of elements,

P = T⊗ T̄ = [pi,̄i](i,̄i)∈I×Ī , pi,̄i = pi1,...,id ,̄i1,...,̄id̄ = titī = ti1,...,id t̄̄i1,...,̄id̄ . (10)

7

Moreover, the tensor product

Q =
d⊗

k=1

v(k) with elements qi1,...,id =
d∏

k=1

v
(k)
ik

(11)

of d vectors v(k) of dimensions nk, where k = 1, . . . , d, is an n = (n1, . . . , nd)-tensor, is
referred to as a rank-1 tensor. Note that the storage costs of this tensor scales linearly
in the order d.

Multiplication by scalars, which are seen as tensors of order 0, is a special case of
the tensor product, where one usually omits the ⊗ sign. It satisfies the identity k∏

j=1

s(j)

 k⊗
j=1

T(j)

 =
k⊗
j=1

(
s(j)T(j)

)
. (12)

Using the tensor product leads to memory-efficient representations of tensors. In our
paper we use the two main formats (or representations) which are common in the
literature:

• The R-term canonical representation of a tensor takes the form

T = [ti] =
R∑
r=1

d⊗
k=1

v(k,r), i.e., ti = ti1,...,id =
R∑
r=1

d∏
k=1

v
(k,r)
ik

, (13)

and is parameterized by Rd vectors v(k,r) ∈ Rnk . Clearly, any tensor admits a canonical
representation for a sufficiently large value of R. The smallest integer R such that a
given tensor T admits such a representation is called its (canonical) rank R. If an
nd-tensor has rank R or lower, then its storage cost is bounded by Rnd.

An important special case is R = 1, where the representation takes the form (11).
Tensors admitting a rank-1 representation are said to be separable.

In the case of matrices, the singular value decomposition (SVD) creates a canonical
representation, where the rank R is equal to the number of non-zero singular values
and the vectors v(k,r) are the left and right singular vectors scaled by the square roots
of the singular values.
• A more general representation is the Tucker format

T = [ti] =
ρ1∑
r1=1

···

ρd∑
rd=1

cr1,...,rd

d⊗
k=1

v(k,rk), i.e., ti = ti1,...,id =
ρ1∑
r1=1

···

ρd∑
rd=1

cr1,...,rd

d∏
k=1

v
(k,rk)
ik

.

(14)
which is defined by specifying the, so called, multi-rank ρ = (ρ1, . . . , ρd), the ρ1 +
· · · + ρd vectors v(k,rk) ∈ Rnk and the core tensor C = [cr] of order d and dimension
ρ. The storage cost is bounded by dρn + ρd with ρ = maxk ρk. This format becomes
identical to the canonical format when choosing ρk = R and considering a diagonal
core tensor C.

In the remainder of the paper we will focus mostly on the canonical representation.
However, a representation in the Tucker format can be converted into a canonical
representation, and vice versa. Notice that the maximal canonical rank of a tensor is

8

bounded by π(n)/max{nk}, while the canonical rank of the Tucker tensor does not
exceed π(ρ)/max{ρk}.

3.3 Binary operations on tensors

Besides the tensor product, numerous product operations for tensors are available.
They can be defined by applying summation to certain subsets of the elements of the
tensor product (10) or by performing a matricization (in the case of matrices). We will
use the operations which are listed in Table 1.

Table 1
Selected binary operations for two tensors T = [ti] ∈Wn and T̄ = [t̄ī] ∈Wn̄.

Name symbol order of result obtained from the tensor
product (10) by

compatibility
requires

contracted · d + d̄− 2 summation over indices
with i1 = ī1

n1 = n̄1

Frobenius : d− d̄ summation over indices
with ik = īk, k = 1, . . . , d̄

d ≥ d̄ and nk = n̄k
for k = 1, . . . , d̄.

Kronecker �•× 2 matricization with respect
to (i1, ī1) and (i2, ī2)

d = d̄ = 2

These operations are restricted to compatible pairs of tensors, and the Kronecker
product is defined for pairs of matrices only. Sometimes it will be necessary to consider
tensors with permuted indices to achieve compatibility. We will use the tilde to indicate
the application of an index permutation σ. More precisely,

T∼ = [tσ(i)]

is a tensor obtained from T = [ti] by suitably permuting indices, and ∼= denotes equality
of tensors up to index permutations, i.e.,

T ∼= T̄ ⇔ T∼ = T̄.

The choice of the permutation σ should always be clear from the context.

Some remarks about these product operations are in order:

• The contracted product

P = T · T̄ = [ti] · [t̄ī] with elements pi2,...,id ,̄i2,...,̄id̄ =
n1∑
i1=1

ti1,i2,...,id t̄i1 ,̄i2,...,̄id̄ .

generates a tensor of order d + d̄ − 2. It is possible to perform summations over
other index pairs than the first ones (i.e., ij = īk for general j, k). Again, this will be
expressed as T∼ · T̄∼. In particular, this covers the case of matrix multiplication,

AB = A∼ ·B with A∼ = A>,

9

where we used the transposition operation to comply with the convention that the
summation considers the first indices of both tensors.
• The Frobenius product

P = T : T̄ = [ti] : [t̄ī] with elements pid̄+1,...,id
=

∑
i1,...,id̄

ti1,...,id̄,id̄+1,...,id
t̄i1,...,id̄ .

performs summation with respect to as many index pairs as possible, where this is
determined by the order of the second factor, which is assumed to not exceed the order
of the first one. Again it is possible to consider other sequences of pairs of indices.

This product gives a scalar number if both factors have the same order and dimen-
sion. It thus defines an inner product and the norm ‖ · ‖F on Wn in this case.

The Frobenius product of separable tensors of the same dimensions satisfies the
useful identity (

d⊗
i=1

v(i)

)
:

(
d⊗
i=1

v̄(i)

)
=

d∏
i=1

(v(i) · v̄(i)). (15)

• The Kronecker product

A �•× Ā =

a11Ā · · · a1,n2Ā

...
. . .

...

an1,1Ā · · · an1,n2Ā

 ,

is only defined for pairs of matrices. It is a particular matricization of the tensor
product of the two matrices A and Ā. The Kronecker product is a non-commutative
operation. It relates the tensor product operation to standard matrix operations. In
particular, the Kronecker product of two matrices (2-tensors) is a specific matricization
of their tensor product (which is 4-tensor). More precisely, if A = [aij] and B = [bnm],
we obtain

mat(A⊗B) = A �•× B , (16)

where the matricization on the left-hand side is defined by collapsing the indices i, n
to a single row index and the indices j, m to a single column index.

3.4 Algorithms for tensor decomposition

The rank-structured tensors with controllable complexity (i.e., the set of tensors in
canonical or Tucker formats with bounded rank) form a manifold S ⊂Wn [27]. In order
to reduce the complexity of computations with tensors, we need to find approximate
representations of general tensors in this manifold, by performing a projection into S.
This projection takes the form of the tensor truncation operator

TS : Wn → S : TSA = argmin
U∈S

‖A−U‖, (17)

10

and leads to a non-linear optimization problem, which is usually solved only approxi-
mately.

For projecting a tensor to the canonical rank-R format, one frequently used approach
is the alternating least-squares (ALS) method for non-linear approximation. This is an
iterative optimization algorithm which minimizes the squared Frobenius norm

f
(
V (1), . . . , V (d)

)
=

∥∥∥∥∥A−
R∑
r=1

d⊗
k=1

v(k,r)

∥∥∥∥∥
2

F

.

Here V (k) ∈ Rnk×R is the matrix with columns v(k,r). We start from some initial guess
for V (k), k = 1, . . . , d. One iteration of the ALS algorithm consists in successively solving
d least-square problems

V (1)′ = argmin
U∈Rn1×R

f
(
U, V (2), . . . , V (d)

)
...

V (d)′ = argmin
U∈Rnd×R

f
(
V (1)′ , . . . , V (d−1)′ , U

)
.

The process is repeated until a certain tolerance is reached, or until no improvement
is observed. Several techniques have been developed to obtain a robust ALS iteration,
including choice of initial solutions, imposing orthogonality constraints, incorporating
line search, etc. [45].

A quasi-optimal rank-ρ approximation in the Tucker format is provided by the
higher-order SVD (HOSVD) algorithm [18]. This algorithm is based on tensor unfoldings.
In particular, we can transform a tensor A into a matrix by selecting a specific index k
as the row index, and expanding the remaining ones to the column index. This matrix,
which has dimension nk×

∏
j 6=k nj is the called the k-unfolding A(k). The first step of the

HOSVD algorithm is to compute the SVD of all unfoldings, i.e.,

A(k) = U (k) Σ(k) V (k)T k = 1, . . . , d .

The skeleton vectors of the Tucker format in direction k are set to be the columns of
U (k), k = 1, . . . , d. The second step produces the core tensor

C = U (1) · · ·U (d) ·A

where the computations are performed from right to left and the contracted product with
U (k) is taken with respect to the k− th index of A. This completes the algorithm. Using
a tolerance ε > 0 for truncating the SVDs in the first step yields an ε−approximation
of A in the Tucker format.

The reduced HOSVD algorithm efficiently performs tensor truncation to the canon-
ical representation for moderate dimensions, cf. [44, Th. 2.5]. For sufficiently smooth
integral kernels, one obtains a canonical representation of rank bounded by R = ρd−1 =
O(| log ε|d−1 logd−1 n), where ε is the error in the Tucker approximation of a (function-
related) tensor. This bound can be proven for the class of tensors generated by analytic

11

functions with possible point singularities, see [29,40,42]. A further reduction of the
canonical rank can be obtained by invoking the ALS algorithm.

4 Tensor functions

We proceed from tensors to functions with tensor-product structure. Tensor-product
B-splines naturally fall into this category. Interestingly, there is a strong link between
rank-1 tensors and multivariate functions which are products of univariate functions.

4.1 Tensor-product B-splines

We consider d possibly different univariate spline spaces Spkτk
with variables ξ(k),

k = 1, . . . , d. Each space is defined by a knot-vector τ k and a degree pk. The standard
basis of Spkτk

consists of the B-splines of degree pk, which are associated with the knots
τ k, see [57]. We collect the basis functions in the vector

β(k)(ξ(k)) =
[
β

(k)
ik

(ξ(k))
]

, ξ(k) ∈ [ak, bk] , k = 1 . . . d ,

which has the index set Ik possessing nk = #τ k − pk − 1 elements. More precisely, we
obtain a vector (i.e., an element of Rnk) for any given value of the argument ξ(k). For
any such value, at most pk + 1 elements of the vector take non-zero values.

Given a coefficient vector c(k), a spline function fk ∈ Spkτk
can be represented using

the inner product,

fk(ξ
(k)) = c(k) · β(k)(ξ(k)).

We will omit the argument ξ(k) if no confusion can arise.

The d−variate tensor-product spline space Sp1
τ1
⊗ · · ·⊗Spdτd

is the space of piecewise

polynomial functions with variables ξ = (ξ(1), . . . , ξ(d)) which is spanned by the tensor-
product B-splines. These multivariate spline functions of degree p = (p1, . . . , pd) are the
elements of the separable n-tensor

B(ξ) =
d⊗

k=1

β(k)(ξ(k)) = [βi(ξ)] =

[
d∏

k=1

β
(k)
ik

(ξ(k))

]
, ξ ∈ Ω̂. (18)

More precisely, we obtain a tensor for any given value of the argument ξ. Consequently,
the tensor-product B is a function with values in Wn. For any given value ξ, at most
π(p+ 1) tensor-product B-splines take non-zero values.

Finally, we define the gradient

∇⊗B(ξ) =

[
∂

∂ξ(k)
βi1,...,id(ξ)

]

of the tensor-product basis, which is a tensor of dimension (d, n1, . . . , nd).

12

4.2 Tensor-product spline functions

Each spline function f ∈ Sp1
τ1
⊗ · · ·⊗Spdτd

depends on the d arguments ξ = (ξ(1), . . . , ξ(d))
and possesses a unique representation

f(ξ) = C : B(ξ) =
∑
i∈I

ci βi(ξ), (19)

where the coefficients form a tensor C ∈ W(m,n). Three types of spline functions will
used in our paper:

(1) Scalar-valued spline functions are obtained by specifying an empty first part m of
the dimension, thus C ∈Wn.

(2) For vector-valued spline functions, the first part of the dimension m is equal to the
dimension d, thus C ∈Wd,n. The geometry mapping G, which has been introduced
in (1), belongs to this class if it is a polynomial one. The elements of B are the
basis functions βi, and the associated control points di correspond to fibers (i.e.,
1-slices) of the coefficient tensor C.

Rational geometry mappings can be represented using homogeneous coordinates
where C ∈ Wd+1,n. For simplicity we restrict the presentation to the polynomial
case but note that all results can be generalized to the more general case, cf. [50].

(3) Matrix-valued spline functions are obtained by considering dimensions with m =
(d, d), thus C ∈Wd,d,n.

4.3 Rank-R spline functions

Owing to (15), a scalar-valued tensor-product spline function (19), which is defined
by a rank−R coefficient tensor

C =
R∑
r=1

d⊗
k=1

c(k)
r ,

is a sum of R products

f(ξ) =
R∑
r=1

d∏
k=1

f (k)
r (ξ(k)) (20)

of the univariate spline functions

f (k)
r (ξ(k)) = c(k)

r · β(k)(ξ(k)) .

We refer to any function f of the form (20) as a rank-R function, also if the univariate
factors are not spline functions.

This observation can be carried over to matrix-valued spline functions

F (ξ) = C : B(ξ) =
∑
i∈I

 c1,1,i · · · c1,d,i
...

. . .
...

cd,1,i · · · cd,d,i

 βi(ξ) ,

13

where one considers coefficient tensors C ∈Wd,d,n with C = [c`,m,i] having the property
that the slices C`,m obtained by fixing the first two indices have rank R. These slices
admit a representation

C`,m =
R∑
r=1

d⊗
k=1

c
(k)
`,m,r.

The elements of the matrix-valued function F = [φ`,m]`,m=1,...,d are sums of R products

φ`,m(ξ) =
R∑
r=1

d∏
k=1

φ
(k)
`,m,r(ξ

(k)) (21)

of univariate spline functions

φ
(k)
`,m,r(ξ

(k)) = c
(k)
`,m,r · β(k)(ξ(k)) .

These functions form factor matrices

F (k)
r (ξ(k)) = [φ

(k)
`,m,r(ξ

(k))]`,m=1,...,d = C(k)
r
∼ · β(k)(ξ(k))

with coefficient tensors C(k)
r = [c

(k)
`,m,r]`,m=1,...,d. The index permutation rotates the indices

such that the last one takes the first place. Again we refer to a function F of the form
(21) as matrix-valued rank-R function, also if the univariate matrix-valued factors are
not spline functions.

Note that each of the d2 elements of the matrix-valued function F (ξ) may have a
different rank. Thus one may consider a d× d matrix of coordinate-wise ranks R`,m and
define the overall rank of F (ξ) as R = max`,m{R`,m}.

5 Tensor isogeometric analysis

We use tensor notation to express the entries of Galerkin matrices. Then we consider
kernel functions of the rank-R and derive a compact Kronecker format for the mass and
stiffness matrices.

5.1 Mass and stiffness tensors

The (element-wise) integral

P =
∫

Ω̂
T(ξ) dξ with elements pi =

∫
Ω̂
ti(ξ) dξ (22)

of a tensor-valued function T = T(ξ) = [ti(ξ)] with the variable ξ ∈ Ω̂ is obtained by
applying the integration to its entries. Integration commutes with multiplication in the
following sense: the integral of a tensor product of d tensors T(k)(ξ(k)), where the k-th
one depends on ξ(k) only, inherits the product structure,

∫
Ω̂

d⊗
k=1

T(k)(ξ(k)) dξ =
d⊗

k=1

∫ bk

ak

T(k)(ξ(k)) dξ(k). (23)

14

We define the mass tensor

M =
∫

Ω̂
ω B︸︷︷︸

=[βi]

⊗ B︸︷︷︸
=[βj]

dξ ∈W(n,n), (24)

where the scalar ω = |det∇G| is determined by the geometry mapping. Note that the
integrand is a tensor, see (22). The associated mass matrix M = mat (M) ∈ Rπ(n)×π(n)

is obtained by performing matricization with respect to the indices i and j.

In addition we consider the stiffness tensor

S =
∫

Ω̂
[K · (∇⊗ B︸︷︷︸

=[βi]

)] · (∇⊗ B︸︷︷︸
=[βj]

) dξ ∈W(n,n), (25)

where the matrix K = [κ`,m] ∈ Rd×d is again determined by the geometry mapping, see
(7). The stiffness matrix S = mat S ∈ Rπ(n)×π(n) is the matricization of the stiffness
tensor with respect to the indices i and j.

We rewrite the stiffness tensor in the form

S =
d∑

`,m=1

P`,m , (26)

where we use the auxiliary tensors

P`,m =
∫

Ω̂
κ`,m (

∂

∂ξ(`)
B)⊗ (

∂

∂ξ(m)
B) dξ ∈W(n,n) for `,m = 1, . . . , d . (27)

Using the representation (26) will be more convenient for splitting the integration into
univariate ones.

For later reference we introduce an artificial representation of the partial derivative
operator as a product of d factors,

∂

∂ξ(`)
=

d∏
k=1

ϑ
(k)
` where ϑ

(k)
` =

∂

∂ξ(`)
if k = `

id otherwise,
(28)

simply by multiplying it with several copies of the identity operator.

5.2 The low rank case

We now consider mass and stiffness tensors, which are defined by rank-R scalar- and
matrix-valued functions, see (20) and (21). More precisely, the scalar factor ω and the
matrix-valued function K = [κ`,m]`,m=1,...,d are now given as

ω(ξ) =
R∑
r=1

d∏
k=1

ω(k)
r (ξ(k)), κ`,m(ξ) =

R∑
r=1

d∏
k=1

κ
(k)
`,m,r(ξ

(k)). (29)

15

We also collect the factors of the elements of the matrix K in factor matrices

K(k)
r (ξ(k)) = [κ

(k)
`,m,r(ξ

(k))]`,m=1,...,d.

In Section 6 we will discuss how to obtain approximate low rank representations for K
or ω, in the case that they are not given a priori in this way.

Using these representations makes it possible to reduce the integral evaluations to
the univariate case. This will be expressed with the help of auxiliary matrices or tensors.

More precisely, we consider a univariate function w : [ak, bk] → R, a univariate
matrix-valued function

W = [ω`,m]`,m=1,...,d : [ak, bk]→ Rd×d,

a B-spline basis (18), and the factorization (28). We now define the univariate mass
matrix with weight w,

M (k){w} =
∫ bk

ak

wβ(k) ⊗ β(k) dξ(k) ∈ Rnk×nk (30)

and the univariate auxiliary matrices with weights W = [ω`,m]`,m=1,...,d,

P
(k)
`,m{W} =

∫ bk

ak

ω`,m (ϑ
(k)
` β

(k))⊗ (ϑ(k)
m β

(k)) dξ(k) ∈W(nk,nk). (31)

We are now in position to state our main result regarding the structure of Galerkin
matrices in the low-rank case.

Theorem 1 (Kronecker format). The mass and stiffness matrices possess the Kronecker
representation

M =
R∑
r=1

d⊙
•×
k=1

M (k){ω(k)
r } and S =

R∑
r=1

d∑
`,m=1

d⊙
•×
k=1

P
(k)
`,m{K(k)

r } , (32)

provided that ω and K are rank-R functions as defined in (29).

Proof. For the mass tensor, starting from (24) and in view of (18) and (29) we have

M =
R∑
r=1

∫
Ω̂

(
d∏

k=1

ω(k)
r

)(
d⊗

k=1

β(k)

)
⊗
(

d⊗
k=1

β(k)

)
dξ .

By reordering the factors of the two d-fold tensor products we get

M ∼=
R∑
r=1

∫
Ω̂

(
d∏

k=1

ω(k)
r

)(
d⊗

k=1

[
β(k) ⊗ β(k)

])
dξ .

Now we use (12) and obtain

M ∼=
R∑
r=1

∫
Ω̂

d⊗
k=1

(
ω(k)
r β(k) ⊗ β(k)

)
dξ =

R∑
r=1

d⊗
k=1

∫ bk

ak

ω(k)
r β(k) ⊗ β(k) dξ(k) ,

16

where we swapped integration and tensor product, cf. (23). Next we use (30) to confirm

M ∼=
R∑
r=1

d⊗
k=1

M (k){ω(k)
r }. (33)

Now we consider the stiffness tensor. First we note that the factorization (28) and
(12) implies

∂

∂ξ(`)
B =

(
d∏

k=1

ϑ
(k)
`

)(
d⊗

k=1

β(k)

)
=

d∏
k=1

(
ϑ

(k)
` β

(k)
)
.

Combining this result with the low rank representation (29) we expand the slices of the
auxiliary tensors (27) as

P`,m
∼=

R∑
r=1

d⊗
k=1

∫ bk

ak

κ`,m,r (ϑ
(k)
` β

(k))⊗ (ϑ(k)
m β

(k)) dξ(k) .

Next we use (31) and (26) to confirm

S ∼=
R∑
r=1

d∑
`,m=1

d⊗
k=1

P
(k)
`,m{K(k)

r }. (34)

Based on the representations (33) and (34) of the mass and stiffness tensors,
we finally exploit the relationship between Kronecker and tensor product (16). This
confirms the representations (32) of the mass and stiffness matrices, which are specific
matricizations of the associated tensors.

A completely analogous formulation can be derived for the advection matrix (8), or
for other kinds of matrices appearing in a Galerkin discretization.

We will refer to the representation (32), which expresses the mass and stiffness
matrices as a sum of Kronecker products of smaller matrices, which are obtained by
univariate integrations, as the Kronecker format of the matrices. Moreover, the number
of summands will be referred to as the Kronecker rank of the matrix, see also [30]. Note
that this notion of rank is different from the usual matrix rank.

Example 2. Consider a volumetric domain Ω, given as the image of the parametric
map

G : [0, 1]3 → R3 with (x, y, z) 7→ G(ξ) =
(
(x2 − 1)(y + 1), (x+ 1)(y + 1), z

)
.

where we use the abbreviations ξ(1) = x, ξ(2) = y, ξ(3) = z. For the sake of simplicity we
work with the monomial basis, instead of using B-splines. We consider a single element
[0, 1]3 and univariate quadratic basis (β0, β1, β2) = (1, t, t2), t ∈ [0, 1] in all directions.
The tensor-product basis functions are

B = [βi] = [βi1βi2βi3] =
[
xi1yi2zi3

]
, i = (i1, i2, i3) ∈ {0, 1, 2}3 .

17

We have ω(ξ) = det∇G = (x+ 1)2(y+ 1), which is clearly a rank-1 function. Therefore
the entries of the mass tensor are integrals of the form

mi,j =
∫

[0,1]3
ω(ξ) βi βj dξ =

∫ 1

0
(x+ 1)2xi1+j1dx

∫ 1

0
(y + 1)yi2+j2dy

∫ 1

0
zi3+j3dz .

Each univariate integral is easily computed either by quadrature or in closed form. By
considering the vector of degrees of freedom vec B = (1, z, z2, . . . , x2y2z2)>, we obtain
the Kronecker format (32) of the mass matrix M ∈ R27×27,

M = M1 �•× M2 �•× M3 =

7/3 17/12 31/30

17/12 31/30 49/60

31/30 49/60 71/105

 �•×

3/2 5/6 7/12

5/6 7/12 9/20

7/12 9/20 1/30

 �•×

1 1/2 1/3

1/2 1/3 1/4

1/3 1/4 1/5

 ,

where the Kronecker factors are indexed by quadratic monomial bases. In the same
spirit, we can see that the rank of each entry of K(ξ) is at most 2,

K =
1

ω

(x + 1)2 + (y + 1)2 (1− x)(1 + x)2 − 2x(y + 1)2 0

(1− x)(1 + x)2 − 2x(y + 1)2 (x2 + 1)2 + 4x2y(y + 2) 0

0 0 ω2

 ,

that is, the stiffness matrix has Kronecker rank equal to 9. Therefore it can be represented
by 27 matrices 1 of size 3× 3. Note that this is only one third of the storage required by
the full matrix, even in this toy example.

6 Efficient matrix assembly

We present the algorithm of matrix generation based on low rank approximation of
integral kernels. It is assumed that the domain is given by the geometry map (1), where
the basis functions are tensor-product B-splines of degree p, which are defined on the
knot vectors τ k, k = 1, . . . , d.

6.1 The algorithm

We consider the formation of the mass and the stiffness matrices. The approach can
be adapted easily to other relevant matrices. The algorithm consists of three steps:

Step 1: Spline projection. We define two spline projectors Π′ and Π′′ which generate
accurate representation of the kernels ω and K, respectively. Firstly we specify knot
vectors γk and degrees q = (q1, . . . , qd) for the target space of the projections. Secondly
we define the projection of a given function by performing tensor-product interpolation

1 Due to symmetry, 6 of these matrices appear twice, therefore storage reduces to 21 matrices.

18

at the Greville points. These procedures define rank-1 operators and can be performed
efficiently, by solving a sequence of univariate interpolation problems.

In the case of the mass matrix, the kernel function ω = | det∇G| is a tensor-product
spline function in a spline space of higher degree and lower smoothness than the space
associated to G. More precisely, the partial derivative ∂

∂k
G(ξ) is a spline function with

differentiability reduced by one with respect to the knots in direction k. Overall, the
determinant has degree q = dp− 1. To construct the knot vector γk, we start from τ k
and increase the multiplicity of each interior knot by one. Then we apply degree elevation
(which further increases knot multiplicities) until the degree reaches q. The projection Π′

is simply interpolation with respect to the Greville points of this tensor-product spline
space. We obtain

(Π′ω)(ξ) = V : B′(ξ) = ω(ξ) . (35)

For the case of the stiffness matrix, the numerator in (7) has degree 2(d− 1)p. The
continuity at the knots is reduced by one, due to the involved partial derivatives of G,
as before. Moreover, the functions are now rational, therefore an approximation error
occurs 2 . We observed that the approximation error reaches machine precision after few
degree elevation steps, starting from the knot vectors γk used to define B′. We obtain

(Π′′κ`,m)(ξ) = C`,m : B′′(ξ) ≈ κ`,m(ξ) , `,m = 1, . . . , d . (36)

Step 2: Low rank approximation. We use the spline representations created by Π′

and Π′′ to construct low rank approximations of ω and κ`,m. In particular, we consider
canonical tensor decompositions of the coefficient tensors, (35) and (36)

V ≈ T ′R′V =
R′∑
r=1

d⊗
k=1

v(k)
r and C`,m ≈ T ′′R′′C`,m =

R′′∑
r=1

d⊗
k=1

c
(k)
`,m,r (37)

which are obtained by applying the tensor truncation operators T ′R′ and T ′′R′′ , see (17).
The choice of the approximate Kronecker ranks R′ and R′′ will be addressed in Sec-
tion 6.3. Consequently, we obtain low rank approximations of ω and K

ω(ξ) ≈ (T ′R′Π
′ω)(ξ) = (T ′R′V) : B′(ξ) =

R′∑
r=1

d∏
k=1

ω(k)
r (ξ(k)) (38)

and

κ`,m(ξ) ≈ (T ′′R′Π
′′κ`,m)(ξ) = (T ′′R′C`,m) : B′′(ξ) =

R′′∑
r=1

d∏
k=1

κ
(k)
`,m,r(ξ

(k)) (39)

where

ω(k)
r (x̂(k)) = v(k)

r · β′(k)(ξ(k)) and κ
(k)
`,m,r(ξ

(k)) = c
(k)
`,m,r · β′′(k)(ξ(k)) .

2 One can eliminate this error by considering a NURBS with weight function ω. This, however,
makes it more complicated to perform the low rank approximation in Step 2, except if the
weight function has rank 1. Nevertheless this would not eliminate the low rank approximation
error.

19

Step 3: Matrix Assembly. With the representations (38) and (39) at hand, we use
Theorem 1 to evaluate the matrices. The assembly requires two ingredients. Firstly,
one needs a procedure that can generate each univariate B-spline mass, stiffness and
advection matrices, which appear as building blocks in the Kronecker format (32).
Secondly, it requires a procedure that evaluates the sum of Kronecker products of
matrices.

6.2 Computational complexity

In order to simplify the presentation we consider a d−dimensional tensor-product
basis with n = (n1, . . . , nd), nk ≈ n, and polynomial degree pk ≈ p, k = 1, . . . , d.
Moreover we assume that the projection operators used in the first step of Paragraph 6.1
are based on spline bases with O(md) functions, for some positive integer m.

The number of non-zero entries, which equals O(ndpd), is a lower bound for the
time complexity of matrix assembly. When using a typical element-wise assembly pro-
cedure, one has to iterate over the O(nd) elements, and to compute O(qdp2d) values and
derivatives of basis functions (where q stands for the number of quadrature points per
direction) per element. This results in total costs of O(ndp3d) for the matrix formation,
since q = O(p).

We now discuss the complexity of matrix assembly based on low-rank tensor approx-
imation, using the notions of Kronecker format and Kronecker rank, see Section 5.2.

Theorem 3. Consider a B-spline discretization with O(nd) degrees of freedom on a
patch with an approximate Kronecker rank R of the mass and stiffness matrices. The
computation of the Kronecker format of these matrices requires O(Rdnp3 + Rdmd)
elementary operations, while the cost of converting it to the full matrix format amounts
to O(Rdndpd).

Proof. The spline projectors are based on interpolation, where we exploit the tensor-
product structure. The cost of the interpolation problem is reduced to the cost of
computing the LU factorization of d banded matrices of size m × m with bandwidth
O(p) each, which is done in O(dmp2).

The tensor decomposition is applied to the integral kernels, which are discretized (by
the spline projectors) on a tensor grid of dimension m = (m, . . . , ,m), i.e. we evaluate
the functions at O(md) points. The cost of this decomposition is dominated by the
HOSVD algorithm, i.e. by the cost of performing matrix SVD on the d unfoldings of a
tensor of size O(md), with a total cost of O(dmd+1), cf. [17,45]. This cost can be further
reduced to O(Rdmd) if we employ reduced SVD computation 3 , i.e. if we compute only
the R dominant singular values, cf. [9,44].

We generate the each univariate matrix in (32) of Theorem 1 using O(np3) elemen-
tary operations. Since the matrix is a sum of R Kronecker products of such matrices,
the total cost for computing the Kronecker format is O(Rdnp3), where we use O(p)
quadrature points in each knot-span. Finally, for computing the nd×nd matrix, it suffices
to perform the Kronecker product computations in (32), with complexityO(Rdndpd).

3 Probabilistic algorithms reduce the cost of rank-R SVD even to O(md logR) [31].

20

The costs of the Kronecker product computation dominate the overall complexity.
Indeed we have m = O(n). Moreover we obtain m � n if the geometry representation
uses a coarser spline space than the isogeometric discretization. This can be achieved
by employing a larger polynomial degree for the spline projection, due to the built-in
smoothness of the geometry.

One important feature of this decomposition is that relatively simple domains will
produce a low rank representation, while the rank will be larger for more complicated
ones. Thus the complexity of the computation follows the intrinsic geometric complexity
of the domain and of its parameterization. Moreover, if the bilinear form is symmetric
(e.g. a Laplacian) the algorithm will produce a symmetric matrix. In the case of the
stiffness matrix the symmetry can be used to further reduce the computation and storage
costs, since certain matrix factors appear twice in the Kronecker format.

The method offers an additional advantage in the case when the Kronecker format of
the matrix suffices for the further computations. This advantage is twofold; both storage
cost and computation times reduce significantly. With respect to storage, the Kronecker
format requires storing O(Rdnp) values instead of O(Rdndpd) for the expanded matrix.
As an instance of computation times we mention the matrix-vector product. The cost of
this operation using the Kronecker format is O(Rdpnd) instead of O(pdnd) for the full
matrix, which is O(Rdp) per vector element instead of O(pd) (where the vector has size
O(nd)). Therefore, isogeometric iterative solvers relying on this operation, may benefit
from using this representation, see also [14].

6.3 Controlling the consistency error

Recall that the notion of consistency error refers to the error introduced during
the matrix generation process. For our method, it depends on the spline projection
error (introduced by Π) and the truncation error (introduced by the low-rank tensor
approximation TR). The overall error introduced in the function f , and consequently in
the entries of a matrix involving f as integral kernel, is bounded by

‖f − TRΠf‖∞ ≤ εΠ + εTR .

With this error bound at hand, the same approach as in [50, Th. 13] can be employed
to derive consistency error bounds for Galerkin discretization of the particular bilinear
forms. We shall verify experimentally in Section 7 that optimal convergence rates are
obtained.

The usual scenario for controlling the error is to set an a priori error tolerance and to
ensure that both contributions to the total error respect it. As already mentioned, in the
general case the rank is related to the desired accuracy by R = O(| log εTR |d−1 logd−1m),
where m is the same as in Theorem 3. In particular in 2D, using R-truncated SVD
implies an error bounded by

εTR ≤
√∑
r>R

σ2
r ,

where σr are the singular values ordered by decreasing magnitude.

21

Regarding the projection error, in general it should be chosen such that the overall
accuracy is maintained. For instance if Π uses uniform splines of degree q with m knot
spans per direction, we have εΠ = O(m−q−1). To match, e.g., the L2 discretization
error, which is for elliptic problems O(n−p−1) (for uniform grids), it suffices to choose
m = n(p+1)/(q+1). Consequently for q ≈ dp we obtain m ≈ n1/d as the degree p increases.

Finally, small (negligible) integration error is introduced by the quadrature of the 1D
(mass or stiffness) integrals. The degree of these integrals is larger than 2p+ 1, which is
the exactness of the Gauss rule with p+ 1 nodes. Nevertheless, p+ 1 nodes per direction
suffice to reduce the error down to the order of the approximation error.

The two approximation steps (projection and tensor decomposition) does not lead to
rank deficiency of the resulting stiffness matrix (similarly for the mass matrix) provided
that the procedure preserves positive definiteness (positivity) of the matrix K(ξ) (of
the factor ω). In [59] it is shown that these matrix properties can be preserved even for
Kronecker rank-1 approximations. According to our numerical experiment in Section 7.2,
any approximation with a rank lower than optimal did not lead to such rank deficiency,
independently of the discretization step size h.

7 Experiments and numerical results

In this section we apply our method to a set of model shapes. We have developed a
C++ implementation of the method in the G+Smo library 4 [38].

In what follows we examine the performance of tensor decomposition on the model
patches, then we test the convergence rates obtained by our algorithm for problems
involving the mass and the stiffness matrices, as well as the effect of rank truncation.

Moreover we compare computation times for matrix generation and for a simple
conjugate gradient solver when using the full matrix format and when using the (low
rank) Kronecker matrix format.

7.1 Tensor decomposition

In this section we examine the Kronecker-rank profile of some model geometries.
The approximated quantities are the kernels appearing in the mass (6) and stiffness (7)
integrals. The patches tested are shown in Table 2. For each shape, the degree p of the
parameterization and the size of the control grid is indicated. For the functions ω,K,
the obtained rank values and the size of the control grid of the representation used are
given. This representation follows the spaces defined in Section 6.1.

We use HOSVD to obtain a Tucker representation of the tensors and we convert it
to a canonical representation. For obtaining an even lower canonical rank, we use ALS
iteration in the process. We use successive rank-1 approximations of the residue as initial
values for each step of the ALS iteration. In all computations, we set the accuracy to
ε = 10−8, and we stop the iteration as soon as the Frobenius norm of the residue is
below ε.

4 Geometry plus simulation modules, http://gs.jku.at/gismo, 2016.

22

http://gs.jku.at/gismo

Table 2 shows that the rank profile is related to the geometric complexity of the
domain. We know that in 2D the rank (computed by SVD) is limited by the minimum
number of basis functions in the coordinate bases of the projection basis used in Π. In
3D, the rank is bounded by the product of the two short dimensions in the core tensor
of the HOSVD. Below the shape we note the (tensor) dimensions of the B-spline basis
used for the geometry parameterization, as well as for projecting Ω and K, respectively.

The results reveal that the overall rank profile is correlated with the geometric
complexity of the model, rather than the polynomial degree. In particular, patches which
are more symmetric have lower rank numbers, while irregular shapes (such as case (e))
have more elevated rank numbers, even though the degree of the parameterization is
small.

We can observe that symmetric shapes or shapes with a polar parameterization
have smaller rank values than shapes with arbitrary form. The correlation to the degree
of the parameterization is weaker. Indeed, the trilinear shape in (2e) has higher rank
values than (2b), which is quadratic in all parametric directions. Note however that
the bottom and top faces of (2e) are arranged in an arbitrary fashion, contrarily to the
mirror symmetry which is present in (2b).

We also tested the behaviour of the rank values when applying h−refinement to the
projection space. In all cases it is verified that the computed rank value is invariant
under h−refinement. This is an indication that these values are intrinsic properties
of the underlying continuous functions ω or K, which in turn depend on the given
parameterization.

7.2 Order of convergence

In this section we use the models (2c) and (2f) and we consider the problem of
approximating the function

f(x, y, z) = sin(πx) sin(πy) sin(πz) , (40)

in two scenarios. In the first one, we use the mass matrix for computing the L2 projection
of f(x, y, z) to the (k−refined) B-spline space obtained from the geometry representation.
In the second scenario we consider the PDE −∆f = g, f = f0 on ∂Ω, where f0 and g
are defined so that the exact solution is (40). This PDE is solved for the control points
of the approximate solution using the computed stiffness matrix. A view of the function
on the two test domains is depicted in Figure 2.

As outlined in Section 6.3, the overall error is the sum of the discretization plus
the consistency (integration) error. We verify that the overall error is of the order
of the discretization error in Figure 3. Indeed, for both scenarios optimal orders of
approximation are obtained, in the L2 norm and the H1 seminorm, respectively.

In a second experiment, we investigate the influence of rank truncation in the
convergence rates. In particular, we obtain different approximations of ω = det∇G
using canonical rank R = 1, 2, 3, 4. The last value is equal to ω up to machine precision.
In Figure 4 we present a convergence test of the different rank values. A plateau is

23

Table 2
Different patches and their rank profile. Shape: the degree and the number of coefficients per
direction is reported. ω(ξ): The rank of the function and the size of the spline coefficient tensor
used for representing the function. K(ξ): The rank of each entry of the matrix, and the size of
the spline coefficient tensor used for representing it. We remark that rank 0 is assigned to the
null function.

Shape
Rank profile

ω(ξ) K(ξ)

(a)

p = (1, 1, 2), 2× 2× 3

1

6× 6× 3

[
2 0 1
0 1 0
1 0 1

]
5× 5× 9

(b)

p = (2, 2, 2), 4× 4× 4

1

11× 11× 11

[
1 1 0
1 1 0
0 0 1

]
17× 17× 17

(c)

p = (2, 1, 2), 9× 2× 5

4

24× 3× 12

[
6 6 1
6 6 1
1 1 9

]
36× 5× 18

Shape
Rank profile

ω(ξ) K(ξ)

(d)

p = (1, 1, 1), 2× 2× 2

2

3× 3× 3

[
4 4 0
4 4 0
0 0 2

]
5× 5× 5

(e)

p = (1, 1, 1), 2× 2× 2

2

3× 3× 3

[
3 3 3
3 8 4
3 4 4

]
5× 5× 5

(f)

p = (2, 2, 1), 3× 3× 2

1

6× 6× 3

[
1 1 1
1 2 2
1 2 2

]
9× 9× 5

(c)

(f)

Fig. 2. The benchmark domains colored by the value of the function (40).

observed, which indicates that the approximation error is limited by the error in the
rank approximation. A higher rank value sets this limit to higher accuracy. For the
value R = 4, the full convergence rate is obtained. This shows that the rank truncation
error is carried over to the final solution, therefore it has to be controlled with care to
obtain high accuracy. We used a conjugate gradient method to solve the resulting linear

24

1 1.5 2
2

4

6

8

3
4
5

− log(h)

−
lo

g
(‖
f h
−
f
‖ 2
,Ω

)

L2 projection (R=1)

p = 2

p = 3

p = 4

0.5 1 1.5
0

2

4

6

2
3
4

− log(h)

−
lo

g
(|f

h
−
f
| 1,

Ω
)

Poisson equation (R=13)

p = 2

p = 3

p = 4

Fig. 3. Experimental orders of convergence for the L2 projection and Laplacian problems using
low rank mass and stiffness approximation, for degrees p = 2, 3, 4. The domain Ω is the volume
depicted in Table 2f, and fh stands for the computed approximation of (40).

systems, and no rank deficiency phenomena were observed in the process.

0.5 1 1.5
−1

0

1

2

3

− log(h)

−
lo

g
(‖
f h
−
f
‖ 2
,Ω

)

L2 projection (p=2)

R = 1

R = 2

R = 3

R = 4

0.5 1 1.5
−1

0

1

2

3

4

− log(h)

−
lo

g
(‖
f h
−
f
‖ 2
,Ω

)
L2 projection (p=3)

R = 1

R = 2

R = 3

R = 4

Fig. 4. Rank truncation effect: We apply L2 projection with approximate mass matrix using
different ranks, for degrees p = 2 and p = 3. The domain used is the one shown in Table 2c.

7.3 Computation and storage costs for matrix assembly

In this section we examine the computation and storage costs of the two different
representations. First, we look at the Kronecker matrix format (KF) and secondly we
use our algorithm to compute the (usual) standard format (SF) of the matrix, by taking
Kronecker products (KP).

Moreover, we compare our assembly method with a classical tensor-product Gauss
quadrature (TPG) approach with p + 1 nodes per parametric direction, where p is the

25

B-spline degree in each direction. The experimentally observed timings and speedup are
shown in Table 2.

We observe that overall computation time is negligible for the KF format, when
compared to the time to compute the KP and SF. The timings include the tensor
decomposition as well as the generation of the univariate B-spline mass or stiffness
matrices in KF. This is a striking result; assembly times can be logarithmic with respect
to the number of degrees, if solely the KF suffices for further use. Moreover, the storage
costs for KF grow linearly under global h−refinement. For instance, for the last step
of refinement in (2c), we would need around 45GB of RAM for storing the matrix at
the last step of refinement. This was beyond available memory, therefore only KF is
computed.

Regarding comparison with respect to TPG, in all experiments a significant speedup
is obtained for both (the SF of) the mass and the stiffness matrix computation. The
speedup is asymptotically constant with respect to n, as expected (computation time
grows linearly with respect to nd). Moreover, speedup doubles each time we increase
the polynomial degree by one. Finally, the speedup certainly decreases when the rank R
increases; however, even in the case of R = 37 the new method is 10 times faster than
the classical algorithm. Already from these small (quadratic and cubic) degrees a great
advantage becomes visible. Certainly, speedups become even more prominent for higher
polynomial degree. Nevertheless, the speedup obtained for low degree splines is most
important, due to the common use of these degrees in practical applications.

Table 3
For the patch 2c. The Kronecker rank of the mass matrix is 4

DoFs Storage (NNZ) Computation (sec) Speedup

(mass, p = 2) KF SF KF KP TPG TPG/(KF+KP) TPG/KF

37× 10× 19 1,217 662,244 0.005 0.032 0.427 11.5 79.8

69× 18× 35 2,337 4,671,324 0.006 0.217 3.430 15.4 616.9

133× 34× 67 4,577 35,019,084 0.006 1.597 24.765 15.5 4,259

261× 66× 131 9,057 271,049,004 0.008 11.885 190.862 16.1 24,681

517× 130× 259 18,017 2,132,574,444 0.008 - - - -

(mass, p = 3)

38× 11× 20 1,757 2,031,120 0.005 0.090 1.947 20.4 357.8

70× 19× 36 3,325 13,592,656 0.006 0.582 14.814 25.2 2,605

134× 35× 68 6,461 99,034,320 0.007 4.241 110.754 26.1 16,885

262× 67× 132 12,733 755,219,920 0.007 30.033 881.372 29.3 125,894

518× 131× 260 25,277 5,897,023,440 0.009 - - - -

7.4 Comparison of iterative solving in Kronecker and full format

One advantage of the KF representation is its minimal storage requirements. This
can be advantageous when available resources are forbidding for computing the SF of the
matrix. In this section we demonstrate the possibility to solve the linear system directly
using the KF as a black-box matrix, and refrain from computing the expanded matrix.
To do so, we perform matrix-vector product where the matrix is in KF.

26

Table 4
For the patch 2f. The mass matrix has Kronecker rank 1.

DoFs Storage (NNZ) Computation (sec) Speedup

(mass, p = 2) KF SF KF KP TPG TPG/(KF+KP) TPG/KF

10× 10× 10 133 85,184 0.001 0.003 0.054 15.0 56.3

18× 18× 18 253 592,704 0.001 0.016 0.415 23.9 439.7

34× 34× 34 493 4,410,944 0.002 0.122 3.35 27.2 2,024

66× 66× 66 973 34,012,224 0.002 0.948 24.6 25.9 12,527

130× 130× 130 1,933 267,089,984 0.002 7.363 188.8 25.6 122,133

(mass, p = 3)

11× 11× 11 196 274,625 0.001 0.009 0.24 24.8 247.8

19× 19× 19 364 1,771,561 0.001 0.050 1.94 38.3 1,895

35× 35× 35 700 12,649,337 0.001 0.336 14.7 43.6 13,221

67× 67× 67 1,372 95,443,993 0.001 2.511 109.4 43.5 84,872

131× 131× 131 2,716 741,217,625 0.002 18.066 873.4 48.3 509,198

Table 5
For the patch 2c. The stiffness matrix has Kronecker rank 37.

DoFs Storage (NNZ) Computation (sec) Speedup

(stiffness, p = 2) KF SF KF KP TPG TPG/(KF+KP) TPG/KF

37× 10× 19 11,249 662,244 0.050 0.17 0.691 3.15 13.9

69× 18× 35 21,609 4,671,324 0.052 1.214 5.522 4.36 107

133× 34× 67 42,329 35,019,084 0.056 9.394 38.34 4.06 689.5

261× 66× 131 83,769 271,049,004 0.061 66.3 311.9 4.7 5,134

518× 131× 260 233,804 5,897,023,440 0.068 - - - -

(stiffness, p = 3)

38× 11× 20 16,244 2,031,120 0.052 0.49 4.12 7.5 78.8

70× 19× 36 30,748 13,592,656 0.053 3.34 29.2 8.6 552.5

134× 35× 68 59,756 99,034,320 0.057 23.1 229.6 9.9 3,997

262× 67× 132 117,772 755,219,920 0.066 172.7 1,852 10.7 27,965

518× 131× 260 233,804 5,897,023,440 0.084 - - - -

We consider the L2 projection problem of Paragraph 7.2 (using the rank-4 KF from
Figure 2c). The moment vector and the rank-4 Kronecker product sum representation
(exact up to machine precision) of the mass matrix are considered already computed.
We examine two scenarios, for polynomial degrees p = 2 and p = 3. First, the Kro-
necker format is converted to the full matrix (i.e. we perform the Kronecker product
computations) and then a conjugate gradient (CG) iteration is used to solve the system.
Second, we use fast matrix-vector product between the Kronecker format of the mass
matrix and the right-hand side vector. In both scenarios, we use a diagonal (Jacobi)
preconditionner.

In Table 7 we report the computation times in these two scenarios. Also, in Table 8
we report the computation times in these two scenarios for computing the solution of
the Poisson equation (using the rank-13 KF from Figure 2f).

In all cases, the CG residual is set below ε = 10−10. This explains the higher iteration
numbers for very coarse discretizations: in these cases the expected accuracy is much

27

Table 6
For the patch depicted in Table 2f. The stiffness matrix has Kronecker rank 13.

DoFs Storage (NNZ) Computation (sec) Speedup

(stiffness, p = 2) KF SF KF KP TPG TPG/(KF+KP) TPG/KF

10× 10× 10 1,585 85,184 0.002 0.008 0.087 8.4 47.1

18× 18× 18 3,025 592,704 0.002 0.055 0.7 12.1 315.8

34× 34× 34 5,905 4,410,944 0.002 0.4 5.45 13.6 2,235

66× 66× 66 11,665 34,012,224 0.003 3.1 39.2 12.6 12,544

130× 130× 130 23,185 267,089,984 0.005 21.6 306.3 14.2 65,461

(stiffness, p = 3)

11× 11× 11 2,341 274,625 0.002 0.025 0.5 18.7 250.9

19× 19× 19 4,357 1,771,561 0.002 0.153 4.08 26.2 1,812

35× 35× 35 8,389 12,649,337 0.003 1.086 29.4 27.0 10,596

67× 67× 67 16,453 95,443,993 0.004 8.142 226.5 27.8 58,659

131× 131× 131 32,581 741,217,625 0.006 58.707 1,802 30.7 289,588

lower that ε, therefore the many iterations approximate remaining noise down to ε. In
any case, our focus here is on the space requirements and the computation time of the
KF, instead of testing the performance of the solver. We refer the reader to [46,47] for a
thorough presentation of solving linear systems and PDEs with tensor product structure.

The last row would required 2GB or 5.5GB of memory to execute the Kronecker
product. Since these memory sizes are close to the limits of the system memory (6GB),
we did not attempt to compute it. However, the Kronecker format performed perfectly
fine, and CG converged in one minute, for degree 3.

Regarding computing times, the KF-CG outperforms SF-CG when the rank is suf-
ficiently small. Even for larger rank values, increasing the degree is in favor of KF-CG.
This can be explained, since higher degrees burden the sparsity of SF. Even for the degree
value p = 3 and rank R = 13 as is the case in Table 8, when the number of degrees
of freedom grow, KF-CG has comparable performance. It should be noted that our
experiments we assumed no structure of the right-hand side. Therefore the complexity
of the matrix-vector multiplication remains for both methods linear in the size of this
vector, which is O(nd).

Table 7
Comparison between the classical matrix representation (SF) and the Kronecker product sum
representation (KF) for the L2 projection problem.

Degree p = 2

DoFs KF-CG KP + SF-CG ITER

37× 10× 19 .15 .026 + .245 155

69× 18× 35 .82 .192 + 1.33 126

133× 34× 67 5.88 1.47 + 7.48 93

261× 66× 131 32.9 - 65

Degree p = 3

DoFs KF-CG KP + SF-CG ITER

38× 11× 20 .70 .076 + 2.31 505

70× 19× 36 3.19 .545 + 10.7 357

134× 35× 68 14.71 4.22 + 49.3 219

262× 67× 132 68.9 - 121

28

Table 8
Comparison between the classical matrix representation (SF) and the Kronecker product sum
representation (KF) for the solution of the isogeometric Laplacian problem.

Degree p = 2

DoFs KF-CG KP + SF-CG ITER

10× 10× 10 .0208 .0084 + .0048 59

18× 18× 18 .1854 .0557 + .0714 78

34× 34× 34 1.920 .3766 + .9012 108

66× 66× 66 33.94 3.198 + 13.90 201

Degree p = 3

DoFs KF-CG KP + SF-CG ITER

11× 11× 11 .078 .022+.035 137

19× 19× 19 .494 .141+.396 144

35× 35× 35 4.12 1.01+2.95 126

67× 67× 67 40.35 9.51+32.32 168

8 Conclusions

The global geometry map has been regarded many times in the literature as a
drawback of the isogeometric paradigm, in terms of matrix assembly costs in 3D. Tensor
decomposition methods transform this “curse of dimensionality” into a “blessing” for
the efficient implementation of isogeometric analysis. Indeed, both memory requirements
and computation times are drastically reduced, compared to the typical local approach
inspired by finite element methods.

Several further improvements can be considered. For example, in our experiments
we used a simple ALS iteration combined with a greedy strategy for canonical tensor
decomposition. The rank values obtained by this algorithm are known to be suboptimal.
The reason is that the optimization procedure may converge to local minima, due to the
choice of initial values. More sophisticated methods exist, for instance one can enhance
the algorithm with line search approaches to escape from local minima. Nevertheless
the obtained sub-optimal rank values provided high efficiency gains in the assembly
procedure.

An interesting possibility is to use the Kronecker format as the basic matrix for-
mat. This has a two-fold advantage, since not only it reduces drastically the matrix
generation timings, but also the memory requirements reduce exponentially. In practice,
this memory reduction allows to represent matrices will billions of rows without the
need of several terabytes of memory. For example, this can be used for keeping the
communication costs low in a distributed memory parallel environment. We also refer
to the isogeometric tearing and interconnecting (IETI) solver, cf. [35] and references
therein, where the performance of the parallelized method was limited by the available
memory for storing the matrices, even though computation times remained very low.
However, efficient linear solvers in this format is a topic fostering further investigations,
which are beyond the aims of the present paper.

Finally, we note that typical volume parameterization such as Gordon-Coon’s vol-
umes or swept volumes [1] are expected to have low rank values and are favorable for
our algorithm.

Acknowledgements

This research was supported by the National Research Network “Geometry + Simula-
tion” (NFN S117, 2012–2016), funded by the Austrian Science Fund (FWF).

29

References

[1] M. Aigner, C. Heinrich, B. Jüttler, E. Pilgerstorfer, B. Simeon, and A. V. Vuong.
Mathematics of Surfaces XIII, chapter Swept Volume Parameterization for Isogeometric
Analysis, pages 19–44. Springer Berlin Heidelberg, 2009.

[2] P. Antolin, A. Buffa, F. Calabrò, M. Martinelli, and G. Sangalli. Efficient matrix
computation for tensor-product isogeometric analysis: The use of sum factorization. Comp.
Meth. Appl. Mech. Engrg., 285:817–828, 2015.

[3] F. Auricchio, L. Beirão da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli. Isogeometric
collocation methods. Mathematical Models and Methods in Applied Sciences, 20(11):2075–
2107, 2010.

[4] F. Auricchio, F. Calabrò, T. Hughes, A. Reali, and G. Sangalli. A simple algorithm for
obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comp.
Meth. Appl. Mech. Engrg., 249-252:15–27, 2012.

[5] M. Bartoň and V. M. Calo. Optimal quadrature rules for odd-degree spline spaces and their
application to tensor-product-based isogeometric analysis. Computer Methods in Applied
Mechanics and Engineering, 305:217 – 240, 2016.

[6] L. Beirão da Veiga, C. Lovadina, and A. Reali. Avoiding shear locking for the timoshenko
beam problem via isogeometric collocation methods. Computer Methods in Applied
Mechanics and Engineering, 241244:38 – 51, 2012.

[7] P. Benner, R.-C. Li, and N. Truhar. On the ADI method for Sylvester equations. Journal
of Computational and Applied Mathematics, 233(4):1035–1045, 2009.

[8] D. Braess. Finite Elements: Theory, fast solvers and applications in solid mechanics, third
edition. Cambridge University Press, third edition, 2007.

[9] M. Brand. Fast low-rank modifications of the thin singular value decomposition. Linear
Algebra and its Applications, 415(1):20 – 30, 2006. Special Issue on Large Scale Linear and
Nonlinear Eigenvalue Problems.

[10] S. Brenner and L. Scott. The Mathematical Theory of Finite Element Methods. Springer-
Verlag, 2002.

[11] F. Buchegger, B. Jüttler, and A. Mantzaflaris. Adaptively refined multi-patch B-splines
with enhanced smoothness. Applied Mathematics and Computation, 272, Part 1:159 – 172,
2016.

[12] F. Calabrò, G. Sangalli, and M. Tani. Fast formation of isogeometric Galerkin matrices
by weighted quadrature. arXiv preprint arXiv:1605.01238, 2016.

[13] P. G. Ciarlet. Finite Element Method for Elliptic Problems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2002.

[14] N. Collier, D. Pardo, L. Dalcin, M. Paszynski, and V. Calo. The cost of continuity: A
study of the performance of isogeometric finite elements using direct solvers. Computer
Methods in Applied Mechanics and Engineering, 213216:353 – 361, 2012.

30

[15] J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. Isogeometric Analysis: Toward Integration
of CAD and FEA. John Wiley & Sons, Chichester, England, 2009.

[16] C. de Boor. Efficient computer manipulation of tensor products. ACM Trans. Math.
Softw., 5(2):173–182, June 1979.

[17] L. de Lathauwer, B. de Moor, and J. Vandewalle. A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl., 21:1253–1278, 2000.

[18] L. de Lathauwer, B. de Moor, and J. Vandewalle. On best rank-1 and rank-(R1, R2, ..., RN)
approximation of high-order tensors. SIAM J. Matrix Anal. Appl., 21:1324–1342, 2000.

[19] P. Dreesen, M. Ishteva, and J. Schoukens. Decoupling multivariate polynomials using
first-order information and tensor decompositions. SIAM Journal on Matrix Analysis and
Applications, 36(2):864–879, 2015.

[20] A. F., L. Beirão da Veiga, J. Kiendl, C. Lovadina, and A. Reali. Locking-free isogeometric
collocation methods for spatial timoshenko rods. Computer Methods in Applied Mechanics
and Engineering, 263:113 – 126, 2013.

[21] G. Farin. Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2002.

[22] L. Gao and V. M. Calo. Fast isogeometric solvers for explicit dynamics. Comp. Methods
Appl. Mech. Engrg., 274(0):19 – 41, 2014.

[23] L. Gao and V. M. Calo. Preconditioners based on the alternating-direction-implicit
algorithm for the 2d steady-state diffusion equation with orthotropic heterogeneous
coefficients. Journal of Computational and Applied Mathematics, 273(0):274 – 295, 2015.

[24] C. Giannelli, B. Jüttler, S. K. Kleiss, A. Mantzaflaris, B. Simeon, and J. Speh. THB-
splines: An effective mathematical technology for adaptive refinement in geometric design
and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering,
299:337 – 365, 2016.

[25] C. Giannelli, B. Jüttler, and H. Speleers. THB–splines: The truncated basis for hierarchical
splines. Computer Aided Geometric Design, 29:485–498, 2012.

[26] H. Gomez, A. Reali, and G. Sangalli. Accurate, efficient, and (iso)geometrically flexible
collocation methods for phase-field models. Journal of Computational Physics, 262(0):153
– 171, 2014.

[27] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank tensor
approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[28] W. Hackbusch. Tensor spaces and numerical tensor calculus. Springer, Berlin, 2012.

[29] W. Hackbusch and B. Khoromskij. Low-rank Kronecker product approximation to multi-
dimensional nonlocal operators. part I. Separable approximation of multi-variate functions.
Computing, 76:177–202, 2006.

[30] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov. Hierarchical Kronecker tensor-
product approximations. Journal of Numerical Mathematics, 13(2):119–156, 2005.

31

[31] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Rev.,
53(2):217–288, May 2011.

[32] R. R. Hiemstra, F. Calabrò, D. Schillinger, and T. J. Hughes. Optimal and reduced
quadrature rules for tensor product and hierarchically refined splines in isogeometric
analysis. ICES REPORT 16-11, 2016.

[33] M. Hillman, J. Chen, and Y. Bazilevs. Variationally consistent domain integration for
isogeometric analysis. Comp. Meth. Appl. Mech. Engrg., 284:521–540, 2015.

[34] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. J. Math.
Phys, 6(1):164–189, 1927.

[35] C. Hofer. Parallelization of continuous and discontinuous Galerkin dual-primal
isogeometric tearing and interconnecting methods. Technical Report No. 2016-01
https://www.dk-compmath.jku.at, DK Computational Mathematics Linz Report Series,
2016.

[36] T. Hughes, J. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comp. Meth. Appl. Mech. Engrg., 194(39–
41):4135–4195, 2005.

[37] T. Hughes, A. Reali, and G. Sangalli. Efficient quadrature for NURBS-based isogeometric
analysis. Comp. Meth. Appl. Mech. Engrg., 199(5 – 8):301–313, 2010.

[38] B. Jüttler, U. Langer, A. Mantzaflaris, S. Moore, and W. Zulehner. Geometry + simulation
modules: Implementing isogeometric analysis. Proc. Appl. Math. Mech., 14(1):961–962,
2014. Special Issue: 85th Annual Meeting of the Int. Assoc. of Appl. Math. and Mech.
(GAMM), Erlangen 2014.

[39] V. Khoromskaia and B. N. Khoromskij. Tensor numerical methods in quantum chemistry:
from Hartree-Fock to excitation energies. Phys. Chem. Chem. Phys., 2015.

[40] B. N. Khoromskij. Structured rank-(r1, . . . , rd) decomposition of function-related operators
in Rd. Comput. Meth. Appl. Math, 6(2):194–220, 2006.

[41] B. N. Khoromskij. O(d log n)–Quantics approximation of N–d tensors in high-dimensional
numerical modeling. Constr. Appr., 34(2):257–280, 2011.

[42] B. N. Khoromskij. Tensor-structured numerical methods in scientific computing: survey
on recent advances. Chemometr. Intell. Lab. Syst., 110(1):1–19, 2012.

[43] B. N. Khoromskij and V. Khoromskaia. Low rank Tucker-type tensor approximation to
classical potentials. Central European journal of mathematics, 5(3):523–550, 2007.

[44] B. N. Khoromskij and V. Khoromskaia. Multigrid accelerated tensor approximation of
function related multidimensional arrays. SIAM J. Sci. Comput., 31(4):3002–3026, 2009.

[45] T. Kolda and B. Bader. Tensor decompositions and applications. SIAM Review, 51/3:455–
500, 2009.

[46] D. Kressner and C. Tobler. Krylov subspace methods for linear systems with tensor product
structure. SIAM Journal on Matrix Analysis and Applications, 31(4):1688–1714, 2010.

32

[47] D. Kressner and A. Uschmajew. On low-rank approximability of solutions to high-
dimensional operator equations and eigenvalue problems. Linear Algebra and its
Applications, 493:556 – 572, 2016.

[48] U. Langer, A. Mantzaflaris, S. Moore, and I. Toulopoulos. Multipatch discontinuous
Galerkin isogeometric analysis. In Isogeometric Analysis and Applications, Lecture Notes
in Computational Science and Engineering, pages 1–32. Springer International Publishing,
2015.

[49] M. Los, M. Wozniak, M. Paszynski, L. Dalcin, and V. Calo. Dynamics with matrices
possessing kronecker product structure. Procedia Computer Science, 51:286 – 295, 2015.

[50] A. Mantzaflaris and B. Jüttler. Integration by interpolation and look-up for Galerkin-
based isogeometric analysis. Comp. Methods Appl. Mech. Engrg., 284:373 – 400, 2015.
Isogeometric Analysis Special Issue.

[51] A. Mantzaflaris, B. Jüttler, B. Khoromskij, and U. Langer. Matrix generation in
isogeometric analysis by low rank tensor approximation. In J.-D. Boissonnat, A. Cohen,
O. Gibaru, C. Gout, T. Lyche, M.-L. Mazure, and L. L. Schumaker, editors, Curves and
Surfaces, volume 9213 of LNCS, pages 321–340. Springer, 2015.

[52] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317,
2011.

[53] G. Sangalli and M. Tani. Isogeometric preconditioners based on fast solvers for the
Sylvester equation, 2016.

[54] D. Schillinger, L. Dedè, M. Scott, J. Evans, M. Borden, E. Rank, and T. Hughes.
An isogeometric design-through-analysis methodology based on adaptive hierarchical
refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comp.
Meth. Appl. Mech. Engrg., 249 – 252:116 – 150, 2012.

[55] D. Schillinger, J. Evans, A. Reali, M. Scott, and T. Hughes. Isogeometric collocation:
Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS
discretizations. Comp. Meth. Appl. Mech. Engrg., 267:170–232, 2013.

[56] D. Schillinger, S. Hossain, and T. Hughes. Reduced Bézier element quadrature rules for
quadratic and cubic splines in isogeometric analysis. Comp. Meth. Appl. Mech. Engrg.,
277(0):1 – 45, 2014.

[57] L. Schumaker. Spline Functions: Basic Theory. Cambridge University Press, third edition,
2007.

[58] L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31:279–311, 1966.

[59] C. F. van Loan and N. Pitsianis. Approximation with Kronecker products. In Linear
algebra for large scale and real-time applications (Leuven, 1992), volume 232 of NATO
Adv. Sci. Inst. Ser. E Appl. Sci., pages 293–314. Dordrecht, 1993.

33

	Introduction
	Related work
	Contributions and outline

	Isogeometric discretization
	Tensor calculus and formats
	Tensors
	Tensor product and tensor formats
	Binary operations on tensors
	Algorithms for tensor decomposition

	Tensor functions
	Tensor-product B-splines
	Tensor-product spline functions
	Rank-R spline functions

	Tensor isogeometric analysis
	Mass and stiffness tensors
	The low rank case

	Efficient matrix assembly
	The algorithm
	Computational complexity
	Controlling the consistency error

	Experiments and numerical results
	Tensor decomposition
	Order of convergence
	Computation and storage costs for matrix assembly
	Comparison of iterative solving in Kronecker and full format

	Conclusions
	References

