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Abstract

This work is motivated by the need to generate volumetric spline models for isogeometric analysis. There exist numerous
constructions of volumetric spline models that represent contractible solids. We present a novel decomposition algorithm
that splits general solids into pieces that can be dealt with by these existing methods. More precisely, we present a
method to automatically decompose solid objects in boundary representation into pieces with fewer or no tunnels by
cutting them with auxiliary surfaces. The segmentation is guided by a reduced form of the object’s boundary and volume
Reeb graphs with respect to several Morse functions, the level sets of which define the cutting surfaces. Special attention
is paid to the selection of suitable cutting surfaces, where we employ a quality criterion to avoid the creation of badly
shaped pieces.
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Figure 1: Segmentation of a cube with several straight tunnels using cutting surfaces that have been automatically selected by our algorithm,
based on boundary and volume Reeb graphs. For a more detailed description, the reader is referred to Section 3.1.

1. Introduction

We describe the goals of our splitting algorithm in this
section and discuss related work.

1.1. Outline and motivation

Given a solid object, which is represented by a bound-
ary surface, we present a new algorithm for automatically
reducing the number of tunnels through the object (which
is closely related to the genus of the boundary surface),
see Fig. 1. As an input, we use a triangular surface mesh
of a 3D-object, from which only local information about
neighboring triangles is readily accessible. For analyz-
ing, comparing or decomposing solid objects, some global
structural information is often needed. Many approaches
have been used to construct representations that provide

such information, for example by identifying tunnels in
the shape, by pooling similar triangles into region patches
to get a more compact representation, or by creating a
skeletal structure to represent the shape. We will follow
the latter approach, computing Reeb graphs of the object
with respect to simple linear Morse functions in order to
capture information about the shape of the object and its
boundaries at the same time.

The Reeb graphs are then used to guide the decomposi-
tion of the object. In each iteration of the algorithm, pla-
nar cutting surfaces in the level sets of the current Morse
function are inserted into the object if they simplify the
shape. Only a small number of cutting surfaces are in-
serted until the object is split into separate, contractible
pieces (i.e., each piece can be continuously shrunk to a
point), see Fig. 1 for a representative result. A quality



criterion is applied in order to select good cuts, which, for
example, form near-orthogonal angles with the object’s
surface, see Fig. 2.

In principle it is possible to resolve any tunnels in the
object in this way, provided that the Morse functions are
chosen appropriately. For straight tunnels in the object,
using linear functions is sufficient. For cutting open more
complicated tunnels in the object, however, more elaborate
Morse functions would be required.

The decomposition of a solid into large contractible
pieces may serve several purposes, but our work was moti-
vated almost exclusively by requirements from isogeomet-
ric analysis. In order to perform simulations on a given
object using isogeometric analysis, a parameterization by
NURBS volumes needs to be generated [27]. There exist
numerous constructions of volumetric spline models that
represent contractible solids, e.g. [14, 26, 40, 44]. We
present a novel decomposition algorithm that splits general
solids into pieces that can be dealt with by these existing
methods.

The recent survey article [33] describes the entire pro-
cess, covering boundary surface (re-) construction, solid
segmentation into topological hexahedra, parameteriza-
tion and isogeometric simulation. In the second step of
this process chain, the object has to be split into hexa-
hedral pieces. For the case of contractible solids, such a
splitting is investigated in [17, 28]. In order to extend
the splitting algorithm to more general solids, an initial
segmentation into contractible solids is required. The al-
gorithm, which is described in this paper, provides the
preprocessing step, which was still missing. This has sub-
stantially enlarged the class of feasible input data for the
isogeometric segmentation pipeline [33]. For instance, the
manual preprocessing step needed when dealing with the
TERRIFIC demonstrator (Example A, see Fig. 14 and
Table 1) has become obsolete.

Figure 2: Goals of the decomposition. We want to use few cuts,
avoiding over-segmentation as in the left picture. However, as a
result, the object should be segmented into separate pieces, so if we
insert any of the cutting surfaces shown in the central picture, we
need to insert the others as well. Finally, we try to use high-quality
cutting surfaces, see also Section 3.4.

1.2. Related work

There is a vast literature devoted to the decomposi-
tion of solid objects or their surfaces into (nearly) convex
pieces, or into meaningful parts reflecting the human per-
ception of the object, see [35] for an overview of decom-
position algorithms. These decompositions are typically
computed by repeatedly splitting in concave surface areas
(such as [20, 23]) or by growing surface regions with simi-
lar characteristics [30]. The choice of cuts is often guided

by some distance measures on the surface [19, 39], or using
skeletal structures of the object [22, 24, 34, 39, 43].

Pants decompositions segment a surface into patches of
genus zero with three boundary components [6, 21, 15].
While this is a topological approach as the one presented
in this paper, it decomposes the surface of the object, not
the object itself. It is often possible to extend surface de-
compositions to volume decompositions by inserting cut-
ting surfaces, although this is not the case in general. Even
for a double torus, which possesses two surface decomposi-
tions into pairs of pants, only one of them can be extended
to a volume decomposition, see also Section 2.3.

Morse theory allows to extract topological information
about a manifold by analyzing a scalar-valued function
(called the Morse function), which is defined on it. For
example, Morse (-Smale) complexes decompose an un-
derlying 2-manifold into quadrangular pieces of similar
flow patterns, see e.g. [8, 13, 11, 25, 29]. Even though
these complexes have been employed for generating hex-
dominant meshes of 3-manifolds with boundary [25], the
cells are generic crystals in this situation, thereby limit-
ing the applicability to segmentation into topological hex-
ahedra. Moreover, rather complicated defining functions
(like the eigenfunctions of certain differential operators)
are used in order to produce a meaningful segmentation,
resulting in rather high computational costs of these meth-
ods.

Our aim is to reduce the number of tunnels through a
solid object (and therefore the genus of its boundary sur-
face) by cutting it open along cutting surfaces. To get a
contractible solid it suffices to perform one such cut for
opening each of the tunnels. However, we use additional
cuts in order to obtain pieces that can be separated from
each other. More precisely, we guarantee that the two
copies of each cutting surface belong to different pieces.
We do not aim at generating the minimum number of such
pieces. Instead we select “good” cuts according to a cer-
tain quality measure.

While the volume decomposition algorithms mentioned
above often implicitly create pieces with fewer or no tun-
nels (in fact, convex pieces are necessarily tunnel-free), we
are not aware of many algorithms specifically addressing a
decomposition into contractible pieces. The close relation
between the genus of a surface and its Reeb graph is inves-
tigated in [3]. Extending this idea, Reeb graphs were used
to detect handle and tunnel loops of an object in bound-
ary representation [7]. The present paper is inspired by
two works [10, 38] which insert cutting surfaces in order
to get objects with cycle-free Reeb graphs. This reduces
the genus, but some tunnels may remain in the object.
Also, the quality of the inserted cutting surfaces has not
been considered so far. See Section 2.2 for a more detailed
comparison of our work with these two approaches.

Our decomposition is guided by Reeb graphs (see e.g.
[2, 12, 16, 18, 41]) with respect to one or several Morse
functions. The Reeb graph of object surfaces has been
used repeatedly for analyzing and decomposing the bound-
ary surface [1, 39, 42], typically using the average geodesic
distance function [1, 42] or geodesic distances to feature
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points [39].
Several algorithms are described in the literature that

compute the Reeb graph of a surface for a given surface
description, or the Reeb graph of a volume for a given
volumetric description (e.g. [5, 9, 31, 32, 38]). These algo-
rithms allow for a rather general choice of defining func-
tions. However, if a three-dimensional manifold is given
in a boundary description only, a volumetric description
(such as a tetrahedral mesh) has to be generated first to
compute the Reeb graph of the object using these ap-
proaches. The Reeb graph of the object and the Reeb
graph of its boundary surface are generally different.

To avoid the generation of a volumetric description we
compute both Reeb graphs using an algorithm that works
with the boundary representation, see [36, 37] and Sec-
tion 2.4. This provides substantial computational advan-
tages, since the generation of a volume description is costly,
and a boundary description is, typically, “smaller” with re-
spect to data volume. It should be noted, however, that
the boundary-based construction limits the choice of the
Morse function.

1.3. Overview

We will start by considering the different Reeb graphs of
an object with respect to a given function, their relation
to the genus of the object and how they can be applied
to guide decomposition algorithms. We will also describe
shortly how the Reeb graph of the object volume can be
constructed efficiently from a boundary representation un-
der certain restrictions on the defining Morse function.

After that, we will present our volume decomposition
algorithm in Section 3. For different linear defining func-
tions, level set surfaces up to a certain quality threshold
are repeatedly inserted in order to open tunnels. In con-
trast to other segmentation algorithms which are guided
by Reeb graphs of the object’s boundary surface, we use
the Reeb graph of the volume itself. Otherwise, we would
actually get a decomposition of the object’s surface, and
it may be impossible to extend it to a volume decomposi-
tion, see Section 2.3. Finally we will give some results of
the decomposition algorithm.

2. Reeb graphs

We describe Reeb graphs and discuss their role in our
decomposition algorithm and their construction from a
boundary mesh of an object.

2.1. Definitions

We begin by recalling the definition of Reeb graphs (see
also [2] for a more detailed and general introduction).

Definition 1. Consider a scalar-valued function f defined
on a d-manifold (or a manifold with boundary) M . Points
mapped to the same function value form a level set, con-
nected parts of a level set are called level set components.
The Reeb graph of M with respect to f is obtained by con-
tracting every level set component to a point, maintaining
adjacency between level sets, see Fig. 3.

Reeb graph

Figure 3: Simple example for the Reeb graph. Left: object with
color-encoded height function. Center: level sets at three different
function values. Right: the resulting Reeb graph.

For a solid object, two different Reeb graphs can be con-
sidered, see also Fig. 4. On the one hand, one can consider
a Morse function f defined on the object considered as 3-
manifold with boundary. We will call the Reeb graph gen-
erated by this function the volume Reeb graph (VRG). On
the other hand, consider the restriction of f to the bound-
ary surface of the object. The level set components of that
function consist of curves on the boundary of the object.
The Reeb graph tracing these level set components will be
denoted as boundary Reeb graph (BRG) in the following.
For simplicity we will use the same symbol f both for the
function and for its restriction to the object’s boundary
surface.

We consider only functions f that do not possess critical
points in the interior of the solid, i.e., each of the level
sets intersects the solid’s boundary. For instance, this is
satisfied for all linear Morse functions. The VRG and the
BRG are closely related in this case.

Firstly, every vertex of the VRG is then also a vertex of
the BRG, since whenever two level set components meet,
their outer boundary components become connected also.

Secondly, the edges of the VRG can be labeled by the
edges of the BRG that represent the boundary curves of
the level set component. The boundary components may
change within an edge of the VRG. Thus, edges may con-
sist of several segments with different labels. Similarly, one
could define a labeled boundary Reeb graph where edge
segments are labeled by the corresponding volume-edges.

Definition 2. The boundary component-labeled volume
Reeb graph (VRG+ ) consists of the edges of the VRG
which are subdivided into segments of constant boundary
components and labeled by the edges of the BRG which
represent these boundaries.

This definition is illustrated by Fig. 4.

While the VRG does not recognize tunnels appearing
in level sets, and the BRG does not contain the informa-
tion which boundary components bound the same level set
component, the labeled VRG combines the structural in-
formation of both graphs, see Fig. 5. Thus, it may be an
interesting object for shape analysis in itself.

We will use the labels stored in the VRG+ to access the
boundary components of the level set component that is
represented by an edge of the VRG. In this way, we can
consistently compute cutting surfaces using only a bound-
ary representation of the object, even if these surfaces pos-
sess holes. In the following figures, we will, however, show
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Figure 4: Boundary Reeb graph (BRG), volume Reeb graph (VRG)
and their combination (VRG+ ) with respect to the height func-
tion which maps every point to its last coordinate. The VRG con-
tains only one cycle corresponding to the handle of the bottomless
cup. In the BRG, also the vertical tunnel induces a cycle, since the
boundary curve splits into an inner and an outer component. The
VRG+ combines the information of the other two graphs, see Defi-
nition 2.
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Figure 5: Comparison of the boundary Reeb graph (BRG), the vol-
ume Reeb graph (VRG) and the boundary component-labeled vol-
ume Reeb graph (VRG+ ). The objects in the first line have the
same BRG, the objects of the second line induce the same VRG, and
the objects in the last line cannot be distinguished using either BRG
or VRG. The VRG+ correctly distinguishes the objects in each case,
and thus contains more information than the separate objects.

the VRG without these labels in order not to overload the
pictures.

2.2. Reeb graphs and the genus

Similar to [38], we use the fact that every tunnel in the
object induces a cycle in the BRG. For reducing the genus
of the object, we seek to reduce the number of cycles in the
BRG. For any given Morse function f , there are two types
of tunnels, see also [38]. We denote them as resolvable
tunnels and non-resolvable tunnels:

• Resolvable tunnels induce a cycle in the BRG and in
the VRG, such as the handle of the bottomless cup in
Fig. 4.

• Non-resolvable tunnels only induce a cycle in the
BRG, such as the vertical tunnel in the bottomless
cup.

Similar to [10, 38], we seek to remove the cycles in the VRG
by cutting the object with level sets of the Morse function.

The aim of those works is to reduce the construction of the
(volume) Reeb graph to the much more efficient construc-
tion of the contour tree, its loop-free equivalent. In [38],
the top vertices of loops in the VRG are identified, and
cuts are inserted in a lower incident edge of these vertices.
This approach could easily be adapted to achieve a split-
ting of the object into separate pieces with loop-free Reeb
graphs by cutting all lower incident edges of the loop-top
vertices instead of just one per top vertex, similar to [10].
It should be noted that no attempts were made to opti-
mize the quality of the inserted cuts, since they are only
inserted symbolically. Thus, the algorithm would some-
times generate badly shaped cutting surfaces, see Fig. 6.

Figure 6: Difference between the results following the approach by
Tierny et al. [38] (top row) and our results (bottom row).

Our aim is quite different, since we want to find good
cuts, for which the cutting surfaces create well-defined in-
tersections with the surface of the object, forming near-
orthogonal angles, where possible. Besides, we do not only
want to generate a cycle-free VRG. In order to cut all tun-
nels of the object, we also want to achieve a cycle-free
BRG. However, non-resolvable tunnels cannot be opened
using f -level sets. Whichever horizontal cut we add in the
bottomless cup in Figure 4, the vertical tunnel will still be
present in both resulting pieces. Therefore, we will reduce
the number of cycles in the VRG and repeatedly apply
the same technique to Reeb graphs with respect to several
Morse functions f .

2.3. Reeb graphs for object decompositions

For simple objects, surface decompositions based on the
BRG can often be extended to satisfactory decompositions
of the volume. In general, however, a surface segmentation
may contain patches describing the boundary surfaces of
tunnels or deep cavities, and thus does not induce a valid
volume decomposition, see Figures 7 and 8. In the pre-
sented examples, the height function is used to define the
Reeb graph. While choosing a different function, e.g. the
average geodesic distance function, may lead to better de-
compositions, one cannot rule out the situation that occurs
in the second example in Fig. 7.

In contrast, decomposition algorithms based on the
VRG always give valid volume segmentations, e.g. [43].
However, the computation of the VRG is typically more
expensive than the BRG-construction, requiring a volume
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Figure 7: As demonstrated by an example with respect to the height
function, segmentations of an object’s surface do not necessarily ex-
tend to satisfactory volume segmentations. There are two natural
ways to decompose the BRG shown in the first line (which is the
same for both objects). Each of them leads to meaningful surface
segmentations of both shown objects, which can be used e.g. for pa-
rameterizing the surface. However, only for the first object can these
decompositions be extended to a satisfactory volume segmentation.
For the second object, the tunnel in the object is not resolved in
the induced volume segmentations. Additionally, two different sur-
face patches have to be combined to one volume piece in the second
decomposition.

Figure 8: In this example, the information captured by the BRG
does not suffice to guide a volume decomposition of the cup-object.
It contains no information about the position of the inner boundary
surface relative to the outer surface. Therefore, when inserting a
cut, we do not know which other parts of the boundary have to be
considered.

mesh of the object. Besides, it is not possible to decide
whether an object is tunnel-free using its VRG alone, since
not every tunnel in the object induces a loop in the VRG.

We apply the VRG+ to obtain a decomposition of the
object and we generate the VRG+ from a boundary rep-
resentation. The VRG guides the volume decomposition,
while the edge labels give efficient access to the boundary
components of an inserted cutting surface. While cutting
along level sets of the defining functions as in [10, 38], we
aim at cuts complying with a certain quality criterion to
achieve nicely shaped pieces. Finally, we repeatedly use
this approach for different defining functions, where the
BRG information contained in the VRG+ helps to identify
new defining functions for following iterations by providing
information about remaining tunnels in the object.

2.4. Computing the VRG+ from a boundary representation

The VRG+ is computed efficiently from a triangulated
boundary mesh of the given object, using an adaptation
of the algorithm presented in [37], see Algorithm 1. We
use a sweep algorithm where the status structure contains
all segments of VRG+ -edges at the current function level.
Each segment is represented by one or more points on the
mesh, one for each boundary curve of the associated level

set component for the function on the solid. In particular,
we choose points on edges of the triangulation.

The format of the status structure (i.e., the number of
segments or the number of boundary components for each
segment) changes only at events. These events are the
vertices of the VRG+ and of the BRG. Those always lie in
critical vertices of the mesh, i.e. in local minima, maxima
and saddle points with respect to f , and can thus be lo-
cated by considering their incident triangles. In between
two events, corresponding entries of the status structure
can be connected by a sequence of edges of the surface tri-
angulation with monotonically increasing (or decreasing)
f -values. We will refer to the process of generating such a
connection as “growing of edges”.

Algorithm 1 computeVRG+

for all vertices v of mesh do
if v is critical with respect to f then

trace oriented level set polygons through v
create a VRG+ -vertex V (v)
add V to vertex list

end if
end for
sort vertex list by increasing f -value
initialize the status structure as an empty list
for all V in vertex list do

for all status structure entries do
grow edges until reaching f -value of V

end for
identify influenced edge segments in status structure
update status structure and VRG+

end for

In order to identify whether an edge segment in the sta-
tus structure is influenced by a vertex V , we use the level
set polygons through V . Typically, the level set polygons
are, at some point, intersected by the mesh-edges repre-
senting the edge segment. Only in a minimum V that is
no vertex of the VRG, we trace level set polygons starting
from the edge segments in the status structure and check
which one surrounds V .

It should be noted that this algorithm imposes restric-
tions on the choice of the defining function f , since it re-
quires certain operations inside f -level sets to be available.
For example, we need to be able to determine the orien-
tation of level set polygons and to decide whether a min-
imum is surrounded by a level set polygon or not. Since
we are using linear functions here, this is always satisfied
because all operations in f -level sets are broken down into
operations in the plane.

2.5. The reduced volume Reeb graph ( VRG◦ , VRG+
◦ )

As described in Section 2.2, the number of tunnels
through an object is related to the number of cycles in the
Reeb graphs. Other branches of the Reeb graph which re-
sult in tree subgraphs only complicate the graph without
providing additional topological information. Therefore,
we will simplify the Reeb graph such that it contains only
the cycle-information which we will use in our cutting al-
gorithm. To this end, we perform three steps on the VRG,
see also Fig. 9.

• Iteratively remove all terminal vertices of the VRG.
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• Merge edges if they meet in a vertex of valency two.
This may produce loop edges, i.e. edges with coincid-
ing start- and end-vertex such as the edge from and
to vertex 8 in Fig. 9.

• Split those loop edges by re-inserting a vertex removed
in the previous step. We also split other edges where
the interval of f -values spanned by the edge is much
larger than the interval spanned by its vertices, such
as the lower edge connecting vertices 6 and 7 in Fig. 9.

Note that we will not actually delete and merge edges in
the data structure of the VRG. Instead, a new graph object
is introduced for the VRG◦ , where each edge knows which
edges of the VRG it consists of. Fig. 10 shows an example
where reducing the Reeb graph gives a much more compact
object.

In the shape decomposition algorithm, we will use the
reduced version of the boundary component-labeled vol-
ume Reeb graph, denoted by VRG+

◦ . Since we will allow
only one cut per edge of the VRG+

◦ , the third step is
essential to find sufficiently many candidates for cutting
surfaces and also to improve the quality of the selected
ones.

Figure 9: The three steps of reducing the VRG: Removing terminal
vertices, merging edges and splitting loops.

3. The cutting algorithm

We begin by giving an overview of the overall algorithm,
see Algorithm 2. The algorithm has been fully imple-
mented in C++ based on the Computational Geometry
Algorithms Library CGAL, see www.cgal.org.

In every iteration of the algorithm, we first choose a
function f (see Section 3.1) and a quality bound q. In
the beginning, we will set the quality bound rather high,
aiming at high-quality cutting surfaces (see Section 3.2 for
the description of our quality measure). In subsequent
iterations, we decrease the quality bound to make sure
that sufficiently many cuts are eventually accepted1. The

1Instead of this “greedy” approach it would be an option to em-
ploy more sophisticated strategies also. We did not yet explore this
possibility, since we did not encounter examples where chosen cuts
force the use of low quality cutting surfaces at a later stage of the seg-
mentation algorithm. Currently, the main limitations of the method
are caused by the choice of the Morse functions.

Figure 10: Efficiency of the reduced Reeb graph for the rolling stage
model from the AIMATSHAPE shape repository shown on the top
left. On the right, the volume Reeb graph with respect to the height
function is shown with two zoomed-in areas. Due to small features
on the object surface, the graph consists of 419 vertices and 202
edges. The reduced graph shown on the bottom left contains only 14
vertices and 20 edges while still representing the shape of the object.
This reduction leads to computational advantages when analyzing
connectivity of the graph.

VRG+
◦ is computed using the boundary-based construction

algorithm as described in Section 2.4.
For every edge e of the reduced volume Reeb graph

VRG+
◦ , we compute cutting surfaces at N · ke equally

spaced intermediate f -levels, where the number N is de-
fined by the user and ke is the number of edges of the
VRG+ that have been merged into e. We choose the best
candidate and sort the edges of the VRG+

◦ by the quality
of these candidate cutting surfaces.

Then, we select edges with good cuts if their removal
simplifies the VRG+

◦ . Some of these good cuts are rejected
in the following step if they do not split the object. In these
two decisions, we analyze whether or not the edge forms
part of a cycle in the graph, i.e., if the end vertices of the
edge are connected elsewhere in the graph, see Section 3.3
for details.

Finally, the remaining good cuts are implemented in the
mesh, see Section 3.4.

3.1. Choosing the function f

We will use a combination of three approaches.

• In the beginning, a collection of functions is given, or
estimated from the object (using e.g. the three prin-
cipal axes of the object or the coordinate axes).

• If all given functions have been used and non-
resolvable tunnels remain, we can heuristically esti-
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Algorithm 2 cutObject
while not finished do

//Preparation, see Sections 3.1 and 3.2
Choose next function f from Morse function list M.
Decrease quality bound q if f was used with q before.
Compute VRG+

◦ .
for all edges of VRG+

◦ do
compute a good cut candidate (using the labels).

end for
//Choose cuts, see Section 3.3
sort edges by the quality of their cut candidates.
cut edges ← empty list
for all edges e of VRG+

◦ , starting at best edge do
if quality of e > q and in cycle(e,1) then

add e to cut edges.
end if

end for
//Reject some chosen cuts, see Section 3.3
for all edges e in cut edges do

if in cycle(e,0) then
remove e from cut edges.

end if
end for
//Implement the cuts, see Section 3.4
for all edges e in cut edges do

implement cut candidate of e.
end for
if cut edges is empty then

Generate new Morse function(s) as described in
Section 3.1 and append them to M

end if
end while

mate new functions to specifically cut certain non-
resolvable tunnels. This will be described in more
detail below.

• If there are still unresolved tunnels, it would be possi-
ble to use randomly generated functions, such as lin-
ear functions with randomly chosen gradients. This
option is reported for the sake of completeness but
has not been used in our examples.

• We decrease the quality bound if all functions have
been used with the current one, see Algorithm 2. Al-
ternatively one may also opt to decrease the quality
bound after performing a certain number of iterations.

The success of the decomposition algorithm depends
strongly on the selection of the functions. A simple the-
oretical guarantee can be obtained by considering linear
functions: When considering sufficiently many linear func-
tions, the segmentation is always successful provided that
the object has only straight tunnels (i.e., tunnels where a
straight line can be inserted without touching the object’s
boundary). While it would in principle be possible to rely
on randomly generated functions, we found it more effi-
cient to use a heuristic method to estimate suitable func-
tions using the second approach in the above list. In the
remainder of this section we describe this approach in more
detail and discuss its limitations.

When analyzing the object using a function f , we may
encounter non-resolvable tunnels which cannot be opened
using f -level sets. However, the BRG with respect to f
allows us to access the inner boundary component of the
non-resolvable tunnel and its boundary curves at the top
and bottom end of the corresponding edge of the BRG.
Estimating the centers of these top and bottom curves, we

can thus approximate the axis of the tunnel. We are then
able to cut straight tunnels in the next pass of the algo-
rithm, using a linear function with a gradient orthogonal
to the tunnel axis. Since straight tunnels are frequently
encountered in engineering objects, this heuristic criterion
turns out to be very helpful.

An example is shown in Fig. 11, where we visualize
suitable gradients of linear functions for each of the three
holes. If several straight tunnels are present, we try to use
Morse functions that can deal with at least two of them by
choosing the cross product of the axes’ direction vectors as
gradient. In the example it suffices to use only one linear
function, since the holes’ axis are all parallel to a single
plane.

g hf

Figure 11: Object with three non-resolvable tunnels with respect
to the height function. For each of them, we can generate suitable
functions (f, g, h) for the next iteration.

In the example shown in Fig. 1, this heuristic function
choice criterion is used. First, the given coordinate func-
tions are applied. Thus, the object is split using two hor-
izontal cuts in the first step. For the resulting top and
bottom piece, vertical cuts are able to produce tunnel-free
pieces. In the central piece, however, two tunnels remain
which cannot be resolved using the coordinate functions.
Thus, a linear function is generated whose gradient is si-
multaneously orthogonal to the axes of both tunnels.

Fig. 12 demonstrates the limitation of this approach in
dealing with bent tunnels. In the first column, the axis-
aligned cube contains a horizontal curved tunnel, which
can be resolved using the given height function. The sec-
ond cube contains a similar tunnel which is no longer
aligned with a coordinate plane. Thus, it cannot be re-
solved using the given coordinate axis. Also, since the
tunnel is not straight, the algorithm fails to estimate a
good new function for opening the tunnel, and thus no de-

Figure 12: Limitation of the method in opening curved tunnels in
an axis-aligned cube.
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composition is generated. If, however, a suitable defining
function is included in the given functions (third column),
the cube is decomposed into contractible pieces. The tun-
nel in the cube in the last column cannot be opened using
one planar cut. Therefore, whichever functions would be
given as an input, the presented algorithm cannot decom-
pose this object. In this case, one would either have to
cut the cube a few times to simplify the tunnel, or include
non-linear functions, where finding a suitable function for
the given tunnel would remain a challenging problem.

3.2. The quality of cuts

The object is always cut by a level set of the current
function f . We prefer cuts that form near-orthogonal an-
gles with the object surface. Let Tc be the set of surface
triangles intersected by a cut c. If nt denotes the unit nor-
mal vector of a triangle t and F is the unit vector in the
direction of ∇f , then the quality of the cut c is determined
by

q(c) = 1−max
t∈Tc

(|nt.F |),

where 0 ≤ q ≤ 1 and bigger values of q are preferred: If all
triangles are orthogonal to the cutting surface, then their
normals are orthogonal to F and q(c) evaluates to 1. On
the other hand, if one intersected triangle makes a very
shallow angle with the cutting surface, the scalar product
approaches 1 and q(c) becomes zero.

This specific choice of the quality criterion is motivated
by the ultimate goal of our work, namely to obtain seg-
ments that can be parameterized by NURBS. In this case
it is advantageous to obtain transversal intersections along
the entire intersection curve, since this is beneficial for the
parameterization quality. Even a few places with shallow
intersection angles might spoil the results. Other applica-
tions of the segmentation algorithm may call for a different
choice of the quality criterion. In particular, this also ap-
plies to the case of noisy meshes, where the evaluation
of our quality criterion may be unreliable and using other
measures (based on averaging) will make the method more
robust.

In the initial sorting of the VRG+
◦ -edges by the qual-

ity of their cut candidates, we additionally compare the
number of boundary components of the cutting surface.
We list all cutting surfaces without holes first, sorted by
their cutting quality, then all cuts with one inner boundary
component, etc. In this way, cutting surfaces with inner
boundaries are only used if there is no way to achieve a
similar reduction of the VRG+

◦ using only hole-free cuts of
sufficient quality.

3.3. Choosing the cuts

For k ∈ {0, 1} and an edge e, the test in cycle(e, k)
returns true iff there is a cycle in the VRG+

◦ containing e
and at most k edges (apart from e itself) which have been
marked as cut edges up to this point. This can be checked
using a simple region growing algorithm on the vertices of
the VRG+

◦ .
We first use this test with k = 1 to decide if cutting an

edge e of the VRG+
◦ simplifies the graph. At this point,

Figure 13: Choosing the cuts. First row: Candidate cuts better than
the quality bound are chosen if they are contained in a cycle with
at most one previously cut edge. Second row: Previously chosen cut
edges are rejected if the graph contains a path of non-selected edges
connecting the two ends of the edge. In a second pass of the algo-
rithm, better cutting surfaces are generated to open the remaining
tunnels using a different Morse function.

we check for cycles containing up to one previously cut
edge, since we do not only want to open tunnels, but to
construct separate objects. In a following step, some of the
chosen edges are rejected if they do not split the object,
using the test with k = 0.

We describe the steps of the algorithm for a simple ex-
ample, see Fig. 13. Among the available cuts, we first
test the edge with the highest quality cutting surface, see
second image. Since it is contained in a cycle, we add it
to cut edges, similarly the second and third tested edge.
For the edge tested in the third image, we find a cycle
containing one previously cut edge. Thus, the edge is cut
as well in order to split the object into two pieces. Two
more cuts are chosen, then the algorithm stops because the
subsequent cuts are not better than the quality bound.

In the following step, the in cycle(e, k) test with k =
0 is applied to each of the cut edges. For example, the
edge checked in the fifth image in Fig. 13 is contained in a
cycle containing no other cut edges. Thus, this cut would
insert a surface inside one of the resulting pieces instead
of splitting the object. Therefore, it is rejected, and only
the four central cuts are implemented in the first iteration
of the algorithm2.

After another pass of the algorithm using a different
Morse function f , the final result shown in the last image
of Fig. 13 is obtained. Fig. 14 shows the results obtained
by this procedure for two additional examples.

3.4. Implementing the cuts

We work with a triangulated surface description of the
object and with linear Morse functions. In order to exe-
cute a cut for an edge e of the VRG+

◦ , we choose a func-
tion value in the function span of e and trace all boundary

2If one is only interested in opening the tunnels and does not
require the result to consist of separate objects, the algorithm should
be modified as follows. Firstly, good cuts are only chosen if they are
contained in a cycle without any previously cut objects, so the edge
checked in the third image in Fig. 13 is not cut. Secondly, the step
of rejecting some chosen edges must be skipped, since it would reject
all previously inserted cuts in this case.

8



Figure 14: The effect of using different quality bounds on two more
objects, the TERRIFIC demonstrator, data courtesy of Siemens AG
(left) and the Rolling Stage model from the AIMATSHAPE shape
repository (right). Only resolvable tunnels are detected, so all loops
could be cut using the same function in the first image. If some cuts
are rejected in the first step, a better decomposition is achieved after
another pass of the algorithm with a different function.

polygons of the corresponding level set component, start-
ing from references on the surface which are stored during
the construction of the Reeb graphs.

In every point of such a polygon, an edge of the surface
triangulation is split into two segments. Then, the incident
faces have to be re-triangulated, introducing new edges
into the mesh. If the same facet is intersected by other
intersection polygons that have been computed already,
those polygons may have to be updated before their next
use, adding intersection points on the newly introduced
edges.

Finally, a triangulation of the inserted cutting surface is
generated. Since we use only linear functions so far and the
cutting surfaces are planar, this can be achieved without
adding new vertices to the mesh. We use the algorithm
described in Chapter 3 of [4].

After all chosen cuts have been implemented, the sepa-
rate polyhedron pieces are extracted using a simple surface
flooding algorithm. Implementing the cuts may introduce
very thin or small triangles, for example if the mesh is
cut very close to original mesh vertices. In the resulting
polyhedron pieces, we therefore check for edges and facets
whose size is in the order of machine precision and care-
fully eliminate them from the mesh.

3.5. Results

Fig. 15 visualizes the decomposition procedure for the
Rolling Stage object. First, the height function f1 is used
to insert horizontal cutting surfaces. Four cutting surfaces
comply with the given quality bound q1 = 0.5, decom-
posing the object into two pieces with remaining tunnels.
These are analyzed with a new function f2, which is cho-
sen as an arbitrary function orthogonal to f1. Each part
is decomposed into one contractible piece and one part
with a remaining tunnel. The algorithm tries to estimate
more defining functions f , but does not generate cutting
surfaces complying with the quality bound. Thus the pre-
viously tested functions are used once more on the remain-
ing pieces with a quality bound q2 = 0 (basically accepting
all cuts that simplify the graph). Now, the height func-
tion resolves the remaining tunnels. Note that while the
labels of the VRG+ are not noted here, they are used for
the construction of cutting surface to access all necessary
boundary components.

Fig. 16 visualizes the decomposition of the Stanford
bunny which was pierced four times. Since the tunnels
are all narrow, long and not aligned with a coordinate
plane, none of them can be opened using the coordinate
functions. The algorithm thus automatically determines
the axis of each non-resolvable tunnel and estimates suit-
able functions. Firstly, a function is generated whose gra-
dient is orthogonal to the two non-resolvable tunnels in
the bottom right. Using this function, the blue and green
piece are separated from the magenta piece. Secondly,
for the magenta-colored piece, the algorithm generates an-
other function with a gradient orthogonal to the remaining
tunnels’ axes. Thus, the magenta piece is split into two
more pieces.

The result of the described decomposition algorithm ap-
plied to several different meshes is shown in Table 1. The
first row describes the input data. The given object is
shown along with the number of triangles in its surface
mesh and the number of tunnels of the object which are
resolved by the decomposition. If several values for the
quality bound qi are given, at first the higher value is used
with all given and generated functions, before resorting to
the lower value. If necessary, the same functions are then
used once more with quality bound qi set to zero, accepting
all cuts. Since, in the selection of cutting surfaces, those
with good quality are tested first, the algorithm still gen-
erates reasonable cuts. The given linear functions fj are
depicted by their gradient vector and a level set. The left-
most function of each example is tested first, after using
the rightmost function additional functions may be gen-
erated (e.g. in example G) before returning to the first
function with a smaller quality bound.

The second row describes the output of the decompo-
sition algorithm. Alongside a picture of the decomposi-
tion, the number of contractible pieces and the number of
inserted cutting surfaces is given. Furthermore, the qual-
ity of the worst used cutting surface (qmin) and the aver-
age cutting-quality (qavg) are specified as well as the time
taken for the whole computation.

Examples B and C demonstrate the effect of swapping
the order of the given defining functions. Also examples E
and F describe two different decompositions of one object,
where the decomposition quality in example F is signifi-
cantly better due to the additional given functions. Ex-
amples G and H give additional information about the
decomposition shown in Figures 1 and 16, respectively.

Example I (the “knotty” object from Cindy Grimm’s
web page3) is a failure case, since the non-straight tunnel
in the model’s interior cannot be opened by using a linear
Morse function. The algorithm reduces the genus of the
solid but does not return a decomposition into contractible
pieces. Fortunately, objects of this type do not appear in
typical mechanical engineering applications, but they may
well be present in other fields.

4. Conclusion

We presented a novel algorithm for the decomposition
of solid objects into contractible pieces. Given a Morse

3web.engr.oregonstate.edu/~grimmc/meshes.php
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Figure 15: Decomposition of the Rolling Stage model from the AIMATSHAPE shape repository with approximately 400 000 triangles. The
worst inserted cutting surface has quality q = 0.15, the total computation takes 13 seconds.

Figure 16: Decomposition of a Stanford bunny with four non-resolvable tunnels, using only functions which were generated automatically by
estimating the tunnels’ axes, using the heuristic method described in Section 3.1.
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Table 1: Results of the decomposition algorithm.

example A B C D E F

object

triangles 3672 1088 1088 228 382242 382242
tunnels 2 5 5 2 7 7

qi 0.5, 0 0.5, 0 0.5, 0 0.5, 0 0 0.5, 0

fj

result

pieces 3 4 4 3 6 6
cuts 4 8 8 4 12 12
qmin 0.84 0.85 0.52 0.70 0.08 0.50
qavg 0.87 0.90 0.73 0.76 0.33 0.69
time 0.05s 0.02s 0.01s 0.01s 8.43s 11.14s

G H I

3136 76476 1200
4 4 2
0 0.5, 0 0.5, 0

7 5 2
12 8 2

0.20 0.12 0.19
0.42 0.30 0.23
0.08s 20.05s 0.55s

function f we combine the Reeb graphs of the object’s
volume and of its boundary surface. We then examine all
edges of a reduced version of this graph. If their removal
helps us to split the object – and this can be decided using
the Reeb graph – then we cut it with a level set of f .

In order to optimize the quality of the resulting pieces,
we first compute a good cutting surface for each edge, and
we prefer the edges that provide the best ones. Addition-
ally, cuts are only inserted up to a certain quality bound.
In a final step, some of the chosen cuts are rejected if they
do not split the object.

In principle, this procedure is able to eliminate all re-
solvable tunnels with respect to the given Morse function,
and this would be achieved when using no (or a very low)

quality bound. In practice, not all resolvable tunnels may
be opened since the necessary cuts for opening them may
not pass the quality test. In addition, all non-resolvable
tunnels with respect to the Morse function remain. Typ-
ically, these tunnels can be dealt with by repeating the
procedure with a different function f . When using suffi-
ciently many linear functions, we can guarantee to open all
straight tunnels. In fact, it is possible to segment any ob-
ject without voids when considering sufficiently complex
Morse functions, but the construction of such functions
may be challenging. Also, there is a trade-off between the
complexity of the Morse function f and the computational
difficulties that arise when implementing the operations in
its level sets, which are described in the last paragraph of
Section 2.4. Piecewise linear Morse functions might lead to
a good compromise between the conflicting requirements
of segmentation and Reeb graph computation.

In our examples, the presented method generates very
satisfactory decompositions of the given objects. Using
a heuristic criterion, we can always find suitable cuts to
open straight tunnels. Currently, our implementation au-
tomatically generates segmentations for objects with only
straight tunnels, or tunnels with a very large diameter
compared to their length. Bent tunnels may be opened
automatically as well, if suitable functions are given or
generated. The user can control the quality of the result-
ing shapes by using different starting functions or different
bounds for accepting cutting surfaces.

The choice of suitable Morse functions remains an in-
teresting topic for future research. So far, we have used
only linear functions. In order to allow curved cutting
surfaces, the approach could be generalized to nonlinear
functions, provided that they allow for a boundary-based
construction of the Reeb graphs. In addition, it could be
worthwhile to explore alternative approaches, that are not
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based on Morse theory, using structures such as the medial
axis, which contain more geometric information than the
Reeb graph.
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