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Inf-sup stability of isogeometric Taylor-Hood and SubGrid methods for
the Stokes problem with hierarchical splines
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In this paper we extend the proof of the inf-sup-stability of isogeometric Taylor-Hood (TH) and Sub-Grid
(SG) elements from tensor-product to hierarchical spline spaces.
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1. Introduction

The Taylor-Hood (TH) element is a well known mixed discretization both of incompressible elasticity
and incompressible fluid dynamic. The generalization of the TH method to isogeometric analysis (IGA)
was initially studied by Bazilevs et al. (2006) for C0 discretizations (i.e. isoparametric FEM) and later
extended to smoother function spaces: C1 by Bressan (2011) and Ck discretizations, k > 0 by Bressan
& Sangalli (2013). The latter contains general conditions for stability and two families of inf-sup-stable
pairs: the isogeometric TH, and the isogeometric Sub-Grid (SG) element. In the SG method, stability
is obtained by refining the velocity grid, the same idea was independently proposed by Rüberg & Cirak
(2012). The cited papers deal only with tensor-product spline spaces. In this paper we recall the theory
and extend the stability result to adaptive methods based on hierarchical splines. In our knowledge this
is the first extension of TH and SG methods to non-tensor-product splines. Note that there are also div-
conforming elements for the Stokes problem, which we do not consider in this paper. Div-conforming
methods with tensor-product spline were studied by Buffa et al. (2011); Evans & Hughes (2013a,b).
Then they were extended to T-splines (Buffa et al., 2014), to LR-splines (Johannessen et al., 2015) and
hierarchical splines (Evans et al., 2015).

In order to make the paper self-contained, we recall the structure of the proof for tensor-product
splines in Section 2. In Section 3 we quickly introduce hierarchical splines, we prove the properties
required by the results recalled in Section 2 and conclude that a discretization based on hierarchical
splines is stable under mild assumptions on the mesh structure (Theorem 3.1). In Section 4 we report
numerically computed inf-sup constants for meshes that conform and do not conform to the hypothesis
of the stability result. In Section 5 we report the results of the application of a simple adaptive method
based on hierarchical splines to a problem having corner singularities.

2. Preliminaries

This section is composed of three independent parts: the description of the inf-sup theory in the context
of the Stokes problem, a quick description of isogeometric analysis, and a summary of the techniques
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used for assessing stability of the TH element in FEM and the TH and SG method in IGA.

2.1 Stokes problem and inf-sup stability

The Stokes system of equations is a linearized model of the stationary flow of a nearly incompressible
fluid under the assumption of negligible inertia. The unknowns are the velocity of the fluid u and the
pressure p in the domain Ω ⊂ Rn. The data are the fluid viscosity ν , the volume forces f, the boundary
forces uN on ΓN ⊆ ∂Ω and the velocity values uD on ΓD = ∂Ω \ΓN . We also include a source term g
that is usually absent in physical models. The Stokes system is

−ν∆u+grad p = f

−divu = g

u = uD on ΓD

gradu ·n−np = uN on ΓN .

(2.1)

Note that if ΓN = /0, then p is determined solely up to a constant because only its gradient grad p appears
in (2.1). Similarly if ΓD = /0 then u is determined only up to a constant vector. These degenerate cases
can be handled by constraining the mean value of p or u respectively.

In order to simplify the notation we fix ν = 1 and write the formulas for the case uD = 0 and uN = 0.
The general case can be reduced to this by the following strategies:

• If uD 6= 0, then it is possible to choose z : Ω → Rn such that z|ΓD = uD and solve for ũ = u− z
with data f̃ = f−∆z and g̃ = g−divz;

• If uN 6= 0, then the boundary term can be included in the force term in the weak formulation of
the problem.

The Stokes problem can be written as a mixed formulation by setting

a(w,u) =
∫

Ω

gradw : gradu, b(w,q) =−
∫

Ω

divw q.

Then (2.1) becomes: find (u, p) ∈V ×P such that ∀(w,q) ∈V ×P{
a(u,w)+b(w, p) = f (w)

b(u,q) = g(q),
(2.2)

where V and P are function spaces, a : V ×V →R and b : V ×P→R are continuous bilinear forms and
f ∈ V ∗, g ∈ P∗ represent both the source and the boundary data. The kernel of B : V → P∗ defined by
B(w)(q) = b(w,q) plays an important role in the analysis of problem (2.2) as described in Theorem 1.1
of Brezzi & Fortin (1991). A specialization for symmetric a and kerB = {0} is reported below:

THEOREM 2.1 There exists a unique solution (u, p) of (2.2) if

i) ∃α > 0 : ∀w ∈ kerB, a(w,w)> α‖w‖2
V

ii) ∃β > 0 : ∀q ∈ P, ∃w ∈V : b(w,q)> β‖w‖V‖q‖P.
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Moreover the solution satisfies:

‖u‖V 6 α
−1‖ f‖V ∗ +β

−1(1+α
−1‖a‖)‖g‖P∗ (2.3)

‖p‖P 6 β
−1(1+α

−1‖a‖)‖ f‖V ∗ +β
−2‖a‖(1+α

−1‖a‖)‖g‖P∗ . (2.4)

Condition (i) is called coercivity on the kernel and condition (ii) is called inf-sup condition.

A conformal discretization of (2.2) is a restriction to a finite dimensional subspace: find (uh, ph) ∈
Vh×Ph ⊆V ×P such that ∀(w,q) ∈Vh×Ph{

a(uh,w)+b(w, ph) = f (w)

b(uh,q) = g(q)
(2.5)

Theorem 2.1 applies to (2.5), but the validity of conditions (i) and (ii) for the pair V,P does not imply
their validity for the pair Vh,Ph. The main result concerning the discretization error is Theorem 2.1 in
Brezzi & Fortin (1991) which in our case can be written as:

THEOREM 2.2 The difference between the solutions (u, p) of (2.2) and (uh, ph) of (2.5) is bounded by

‖u−uh‖V 6
(

1+
‖a‖
αh

)(
1+
‖b‖
βh

)
inf

w∈Vh
‖u−w‖V +

‖b‖
αh

inf
q∈Ph
‖p−q‖P; (2.6)

‖p− ph‖P 6

(
1+
‖b‖
βh

)
inf

q∈Ph
‖p−q‖P +

‖a‖
βh
‖u−uh‖V (2.7)

provided that conditions (i) and (ii) hold with constants αh,βh for the pair Vh,Ph.

Appropriate spaces for the Stokes problem are

V =

{
{w ∈ H1(Ω)n : w|ΓD = 0} ΓD has positive n−1 dimensional volume
{w ∈ H1(Ω)n :

∫
Ω

w = 0} otherwise
(2.8)

with norm ‖w‖V = |w|H1(Ω)n = a(w,w)
1
2 and

P =

{
L2(Ω) ΓN has positive n−1 dimensional volume
{q ∈ L2(Ω) :

∫
Ω

q = 0} otherwise
(2.9)

with norm ‖q‖P = ‖q‖L2 . Then α = αh = ‖a‖= 1, ‖b‖= 1 and (i) is fulfilled for all pairs Vh,Ph.
Condition (ii) for V,P depends on the shape of the domain. A positive β as in (ii) exists if Ω is

a John domain (Acosta et al., 2006; Costabel et al., 2015) and thus, in particular, if Ω is a Lipschitz
domain. The discrete inf-sup condition depends on the choice of Vh,Ph. When it holds, Theorem 2.2
provides the following error estimates:

‖u−uh‖V 6 2
1+βh

βh
inf

w∈Vh
‖u−w‖V + inf

q∈Ph
‖p−q‖P; (2.10)

‖p− ph‖P 6 2
1+βh

β 2
h

inf
w∈Vh
‖u−w‖V +

2+βh

βh
inf

q∈Ph
‖p−q‖P. (2.11)
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The above inequalities show the competing behaviour of the approximation properties of Ph and
the inf-sup condition. On one hand, choosing a larger space Ph decreases the approximation error
infq∈Ph‖p− q‖P, on the other hand, it can simultaneously decrease the inf-sup constant βh. Vice-versa
choosing a smaller space Ph provides weaker approximation properties and can increase the inf-sup
constant. These inequalities also show that the existence of a common lower bound β0 6 βh for all the
pairs Vh,Ph defined by a method implies the quasi-optimality of the error for the method.

2.2 Isogeometric Analysis

Isogeometric Analysis (IGA) is a framework that tries to streamline the design process of technological
products. It was introduced by Hughes et al. (2005), it is described in the monograph of Cottrell et al.
(2009) and analyzed mathematically in Beirão da Veiga et al. (2014). It aims at integrating the Computer
Aided Design (CAD) and Computer Aided Engineering (CAE) by sharing the same geometry represen-
tation techniques. In the traditional approach the geometry provided by CAD must be converted to a
mesh on which the simulation can be performed. Then, in case of geometry optimization, the result is
re-imported into the CAD system. Experience suggests that the conversions of the geometry represen-
tation is responsible for significant percentage of the product development time. IGA tries to optimize
the complexity of the whole process, by reducing the conversion cost.

IGA uses common industrial technology: in particular NURBS functions and parametrizations. The
physical domain Ω is assumed to be the image of a NURBS map G : Ω̂ = [0,1]n → Rk. This is the
most common method to represent a domain in CAD. Then the isoparametric approach is applied:
the discretization is constructed on the parametric domain Ω̂ and pushed to the physical domain Ω .
Following the IGA convention, quantities related to the parametric domain are marked with a hat: .̂

The discretization spaces in IGA are the push-forward of spline (or NURBS) spaces defined in the
parametric domain

Vh =
{

w = ŵ◦G−1 : ŵ ∈ V̂h

}
∩V (2.12)

Ph =
{

q = q̂◦G−1 : q̂ ∈ P̂h

}
∩P. (2.13)

The approximation error is studied in the parametric domain and then the result is transferred on the
physical domain (Beirão da Veiga et al., 2014). This requires the following norm equivalences: for each
φ : Ω → R

‖φ̂‖H1 ∼= ‖φ̂ ◦G−1‖H1 = ‖φ‖H1 (2.14)

‖φ̂‖L2 ∼= ‖φ̂ ◦G−1‖L2 = ‖φ‖L2 . (2.15)

The equivalences above depend on the regularity of G. In particular they are implied by the following
assumptions:

• G : Ω̂ →Ω is a homeomorphism: a continuous bijective map with continuous inverse.

• Both gradG and gradG−1 are continuous and bounded on their respective domains,

• The discrete spaces have the same (or lower) local smoothness than the parametrization G. This
means that the spline spaces must allow for discontinuities of the k derivatives at x if G is not Ck

at x.
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The second condition can be weakened to piecewise continuity of gradG and gradG−1, but then the
inf-sup-stability must be proved on each domain on which these are continuous. This allows to consider
multipatch domains.

2.3 Discrete inf-sup

The inf-sup stability of the Taylor-Hood discretizations in FEM was studied by Engelman & Bercovier
(1979); Verfürth (1984) and Stenberg (1990). Stenberg combined the previous results and proved the
stability of the generalized Taylor-Hood elements. The proof is based on the inf-sup stability of the
pair V,P, an approximation operator ℘ : V →Vh, the trick from Verfürth (1984) and the macro-element
technique.

LEMMA 2.1 (Verfürth’s trick) The inf-sup condition (ii) for the pair Vh,Ph is implied by the following
two auxiliary conditions:

∀q ∈ Ph, ∃w1 ∈Vh : b(w1,q)>
(
c1−η(q)

)
‖w1‖V‖q‖P (2.16)

∀q ∈ Ph, ∃w2 ∈Vh : b(w2,q)> c2η(q)‖w2‖V‖q‖P (2.17)

where c1,c2 > 0 and η(q)> 0.

Proof. By choosing either w = w1 or w = w2 it follows that (ii) holds for the pair Vh,Ph with

βh >min
q∈Ph

max{c1−η(q),c2η(q)}> min
t∈R+

max{c1− t,c2t}= c1c2

1+ c2
. (2.18)

�

LEMMA 2.2 (approximation) The condition in (2.16) holds with

c1 =
β

‖℘‖
and η(q) =

‖ρgradq‖L2(Ω)

‖q‖L2(Ω)

(2.19)

provided that there exists ℘ : V →Vh such that

‖ρ−1(w−℘w)‖L2(Ω) 6 |w|H1(Ω) (2.20)

where ρ : Ω → R is a multiple of the mesh size: on each element E, ρ(E) = cR(E) for some c > 0.

LEMMA 2.3 (macro-elements) The condition in (2.17) holds for η(q) as in (2.19) with constant

c2 >
cSD

m
(2.21)

if the domain can be covered by subdomains {M1, . . . ,MN} such that

• at most m subdomains overlap (each point p ∈Ω is contained in at most m sets intMi);

• on each Mi the following local inf-sup condition holds:

∀q ∈ Ph, ∃wi ∈Vh∩H1
0 (Mi)

n : b(wi,q)> cSD‖ρgradq‖L2(Mi)
|wi|V . (2.22)

THEOREM 2.3 If there exists a continuous approximation operator ℘ : V → Vh as in Lemma 2.1 and a
subdomain covering of Ω as in Lemma 2.3, then the inf-sup condition holds with

βh >
βcSD

(m+ cSD)‖℘‖
> 0. (2.23)

Proof. Combine Lemmas 2.1, 2.2 and 2.3. �
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The strategy to use Theorem 2.3 effectively is to consider subdomains that are images through a
similarity of macro-elements in some catalog C of stable macro-elements. Each macro-element in C is a
triplet (Mσ ,Vσ ,Pσ ), where Mσ ⊂Rn, Vσ ⊂H1

0 (Mσ )
n is a velocity space and Pσ ⊂ L2(Mσ ) is a pressure

space. A macro-element is stable if exists Cσ > 0 such that:

∀q ∈ Pσ , ∃w ∈Vσ : b(w,q)>Cσ‖ρgradq‖L2(Rn)|w|H1(Rn)n .

The macro-elements in the catalog C are indexed by a shape parameter σ ∈ Rs. The constant Cσ is
preserved under similarities and depends continuously on σ . If the shape parameter σ varies in a
compact set S, then Theorem 2.3 applies and condition (ii) holds with

βh >
βCS

(m+CS)‖℘‖
(2.24)

where CS = min
σ∈S
{Cσ}.

The macro-element collection approach does not apply directly to IGA because of the distortion
caused by the parametrization of the domain. The solution is to use a macro-element collection C on
the parametric domain Ω̂ and to transfer the result to the physical macro-elements. The effect of the
mapping on the inf-sup was studied by Bressan (2011) by decomposing G in an affine part F and a
reminder term T :

G(x̂) = F(x̂)+T (x̂). (2.25)

F(x̂) is given by the averages of G and gradG on the parametric macro-element M̂. It preserves the
inf-sup up to a factor that depends on the regularity of G. The reminder T can be bounded in terms of
the size of the parametric macro-element M̂.

The compactness of S is obtained by requiring shape-regularity of the elements of the parametric
macro-elements (and thus of the mesh). The shape regularity of a set S is the ratio between its radius
R(S) and that of the biggest in-circle r(S). A mesh M is shape regular if there is Cshape such that for all
elements E ∈M

R(E)
r(E)

6Cshape. (2.26)

A consequence of shape-regularity is local quasi-uniformity of the macro-elements. A mesh M is
locally quasi-uniform if there is Cuniform such that for each pair of neighbouring elements E1,E2 ∈M

R(E1)

R(E2)
6Cuniform. (2.27)

As seen later, local quasi-uniformity is required for the construction of the approximation operator
presented here.

LEMMA 2.4 (Bressan (2011)) The local inf-sup condition of Lemma 2.3 for the pair Vh,Ph holds with a
constant CS,G provided that

• the parametric mesh can be covered with parametric macro-elements of a stable collection C
whose shape parameter is in the compact set S;

• the parametric macro-element diameters are smaller than a constant hS,G depending on S and G.
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Bressan & Sangalli (2013) proposed two types of stable parametric macro-elements: the Taylor-
Hood type and the SubGrid type. Both depend on four parameters: the degrees and smoothnesses of the
velocity and pressure. These parameters will be denoted according to the following table:

Vσ Pσ

degree dV dP
smoothness sV sP

In both types the equality dV = dp+1 ensures the same order of the approximation error for the velocity
and for the pressure space, so this is the preferred choice. In both cases the shape parameter σ contains
the normalized knot-values of the knot vectors associated to the tensor-product spline space used to
discretize the components of the velocity space.

TH-type macro-elements are stable provided that

dV − sV > dP− sP.

A parametric macro-element is described by n (L+1)-tuples of break points

Θi = [θi,1, . . . ,θi,L+1], i = 1, . . . ,n

with θ1,1 = 0,θ1,L+1 = 1 where

L =

⌈
sV + sP +2

(dV − sV )− (dP− sP)

⌉
. (2.28)

The knot vectors of the tensor-product spline spaces for the velocity and pressure are obtained by re-
peating the break points according to dV ,sV ,dP,sP. The multiplicity of each break point in the velocity
knot vectors is dV − sV . The multiplicity of internal break point in the pressure knot vectors is dP− sP
and that of end knots is dP +1. The shape parameter is

σ = (θ1,2, . . . ,θ1,L,θ2,1, . . . ,θn,L+1).

SG-type macro-elements are stable provided that

2(dV − sV )> dP− sP.

Again a parametric macro-element is described by n (L+1)-tuples of break points with

L = 2
⌈

sV + sP +2
2(dV − sV )− (dP− sP)

⌉
. (2.29)

The knot vectors of the velocity space are obtained as in the TH-case. Those of the pressure space
by using every other break point so that every element of the pressure contains 2n elements of the
velocity. The shape parameter is as in the TH-type. The SG-type macro-elements can achieve maximal
smoothness for both the velocity and the pressure spaces.

3. Application to hierarchical splines

Hierarchical spline spaces were introduced by Forsey & Bartels (1988). They have been studied ex-
tensively by Giannelli et al. (2012); Giannelli & Jüttler (2013b); Mokriš et al. (2014); Giannelli et al.
(2014); Berdinsky et al. (2014); Giannelli & Jüttler (2013a). The application of hierarchical splines
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to IGA is under study by many authors Vuong et al. (2011); Kuru et al. (2014); Bornemann & Cirak
(2013); Buffa & Giannelli (2016); Buffa et al. (2016).

The main idea of hierarchical spline basis is to enrich a tensor-product spline basis by adding func-
tions from finer spaces while, simultaneously, removing redundant functions. Let Ŝ0, . . . , Ŝ` be a se-
quence of tensor-product spline spaces (of the same degree) such that Ŝi ⊆ Ŝi+1 and B̂0, . . . ,B̂` be the
corresponding bases. Let

Ω̂0 = Ω̂ ⊇ ·· · ⊇ Ω̂` ⊇ Ω̂`+1 = /0

be a sequence of domains such that for i = 1, . . . , ` the set Ω̂i is a union of elements of the mesh M̂i−1

associated to Ŝi−1. The hierarchical basis Ĥ is defined by

Ĥ = {ψ̂ : ψ̂ ∈ B̂i, suppψ ⊆ Ω̂i and supp ψ̂ * Ω̂i+1, i = 0, . . . , `}. (3.1)

and the hierarchical space is Ĥ = spanĤ . The truncated basis ĤT is a modification of the standard
basis. Each function ψ̂ ∈ Ĥ is replaced by its truncated version ψ̂T . The truncated basis has two
important properties: it is a partition of unity and it preserves polynomial coefficients. This means that
the coefficients of the expansion of a polynomial ĝ in the truncated basis are the same as with respect of
the tensor bases:

∀i = 0, . . . , `, ĝ = ∑
ψ̂∈B̂i

cψ̂ ψ̂ ⇒ g = ∑
ψ̂T∈ĤT

cψ̂ ψ̂T . (3.2)

This property is important in the construction of the approximation operators. In the following M̂ and
M will refer to the parametric and physical meshes, i.e., to the collection of the elements of the space.

3.1 Approximation operator for hierarchical splines

We describe an approximation operator ℘ that fulfills the requirements of Lemma 2.2. The operator is
defined on the parametric domain and then it is pushed to the physical domain:

℘(φ) =℘̂(φ̂)◦G−1 =℘̂(φ ◦G)◦G−1.

The approximation operators on spline spaces are often described by providing the coefficients with
respect to a basis. To avoid heavy notation we set the analysis directly in the physical domain and we
detail the construction for scalar valued functions; the extension to vector valued functions is obtained
by applying the operator component-wise.

Let HT be the push-forward of the truncated basis, then ℘ : H1(Ω)→H can be written as

℘φ = ∑
ψ∈HT

λψ(φ)ψ, (3.3)

where the λψ are in H1(Ω)∗. Speleers & Manni (2016) showed that a set of λ̂ψ for hierarchical bases can
be constructed from those for the spaces Ŝ0, . . . , Ŝ`. Moreover following their construction the following
properties hold (rewritten in the physical domain):

• ℘ reproduces constant functions: ∀g constant function, ∑
ψ∈HT

λψ(g)ψ = g.
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• The operators λψ can be represented as function in L2(Ω) with local support and bounded norms.
More precisely with support included in suppψ and norm

‖λψ‖L2(Ω) 6C|suppψ|−1/2.

The above imply the quasi-optimal approximation estimates with respect to L∞ norm (Speleers & Manni,
2016, Theorem 6). Here the result is rewritten for the Sobolev norms of interest, and a global estimate
is derived as a corollary.

LEMMA 3.1 If M is shape-regular the approximation error of ℘ on a mesh element K is bounded by

‖φ −℘φ‖L2(K) 6CapphK |φ |H1(K̃), (3.4)

where:

K̃ is the union of the supports of the basis functions in HT that are active on K;

Capp is a constant that depends on the regularity of the parametric mesh (2.26), (2.27) and of the
parametrization G.

Proof. From the reproduction of constants we deduce

‖℘φ −φ‖L2(K) = ‖℘(φ − c)− (φ − c)‖L2(K)

6 inf
c∈R

(
‖℘(φ − c)‖L2(K)+‖φ − c‖L2(K)

) (3.5)

then, since ℘(φ − c)|K depends only on (φ − c)|K̃ ,

‖℘φ −φ‖L2(K)|6 (‖℘‖+1) inf
c
‖φ − c‖L2(K̃)

6 (‖℘‖+1)CP(K̃)hK̃ |φ |H1(K̃),
(3.6)

where:

CP(K̃) is the Poincaré constant of K̃ and depends on the shape of K̃ ;

hK̃ is the diameter of K̃;

‖℘‖ is the norm of ℘ as an operator L2(K̃)→ L2(K).

Eq. (3.4) follows from Eq. (3.6) if CP(K̃)hK̃
∼= hK and ‖℘‖ is uniformly bounded. The former is implied

by the regularity assumptions on G and the mesh. The latter is a consequence of the assumptions on the
λψ and of the partition of unity property of the truncated basis. �

COROLLARY 3.1 The approximation error of ℘ is bounded by:

‖ρ(φ −℘φ)‖2
L2(Ω) 6 |φ |H1(Ω), (3.7)

where ρ =C−1
apph−1

K C−1/2
over and Cover = max

K∈M
#{ψ ∈H : suppψ ⊇ K} max

ψ∈HT
#{K ⊆ suppψ}.
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Proof. Rewrite (3.4) as ‖C−1
apph−1

K (φ −℘φ)‖2
L2(K)

6 |φ |2H1(K̃)
and sum over all elements in the mesh

‖C−1
apph−1

K (φ −℘φ)‖2
L2(Ω) = ∑

K∈M
‖C−1

apph−1
K (φ −℘φ)‖2

L2(K)

6 ∑
K∈M
|φ |2H1(K̃) = ∑

K∈M
∑

Q∈M :
Q⊆K̃

|φ |2H1(Q)

= ∑
Q∈M

#{K ∈M : Q⊆ K̃}|φ |2H1(Q)

6 ∑
Q∈M

#{i : Q⊆ suppψi}#{K ⊆ suppψi}|φ |2H1(Q)

6Cover|φ |2H1(Ω)

(3.8)

�
In the common case of levels corresponding to dyadic refinement in the parametric domain the mesh

regularity assumptions are equivalent to the fact that the boundaries of Ωi and Ωi+ j are disjoint for
j > log2(Cuniform). Unfortunately this is not sufficient for a common upper bound of Cover. All the
required conditions are implied by admissibility of the mesh as defined by Buffa & Giannelli (2016).

3.2 TH- and SG-type methods with hierarchical splines

Let V̂0 ⊂ ·· · ⊂ V̂` and P̂0 ⊂ ·· · ⊂ P̂̀ be two hierarchies of tensor-product spline spaces on Ω̂ such that
the pairs Vi,Pi are either all of type TH or all of type SG. Then let ĤV and ĤP be respectively the
hierarchical spline spaces associated spaces {V̂i} and {P̂i} and a common hierarchy of nested domains
Ω̂0 ⊇ ·· · ⊇ Ω̂` ⊆ Ω̂`+1 = /0. The discretization spaces are the push-forward of ĤV and ĤP:

Vh =Hn
V ∩V = {ŵ◦G−1 : ŵ ∈ Ĥn

V}∩V,

Ph =HP∩P = {q̂◦G−1 : q̂ ∈ ĤP}∩P.
(3.9)

For these spaces stability follows from Theorem 2.3 if Ω can be covered by macro-elements.

THEOREM 3.1 If the parametric mesh can be covered by macro-elements of type SG or TH in a collec-
tion S defined by shape regularity and local quasi-uniformity and such that the diameter of the covering
macro-elements is less then hS,G (see Lemma 2.4) then the method is inf-sup stable and the inf-sup
constant βh depends only on S, G and Cover. Consequently the a-priori estimates for the error (2.10)
and (2.11) hold.

The request of a macro-element covering constrains the class of meshes to which the result can be
applied. Indeed, TH and SG macro-elements have a tensor-product structure and thus it is necessary
that each ring

∆i = Ωi \Ωi+1 (3.10)

is covered separately. In practice, given a sequence of domains Ω ′0 ⊇ ·· · ⊇ Ω ′` ⊇ Ω ′`+1 = /0 that does
not satisfy the condition above, for instance the result of a refinement step, it is possible to construct a
corresponding sequence Ω0 ⊇ ·· · ⊇Ω` ⊇Ω`+1 = /0 that satisfies Theorem 3.1.

A possible solution for dyadic refinement is to associate to each level i a partition Pi of Ω into non-
overlapping closed macro-elements. The different partitions must be compatible, meaning that each
macro-element in Pi is the union of 2n macro-elements in Pi+1.
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LEMMA 3.2 For any Ω ′0 ⊇ ·· · ⊇Ω ′` the sequence defined as follows. For i = 1, . . . , `

Ωi = Ei−1(Ωi+1∪Ω
′
i ) (3.11)

where Ei(Q) =
⋃
{M ∈ Pi : M ∩ Q̄ 6= /0} has rings ∆i = Ωi \Ωi+1 that can be covered by macro-

elements from Pi. Moreover each element of M is contained in exactly one macro-element (m = 1 in
Lemma 2.3).

Proof. By construction both Ωi and Ωi+1 are unions of macro-elements of Pi. Since the macro-
elements are non-overlapping then ∆i is covered by the⋃

{M ∈Pi : M ⊆Ωi and M 6⊆Ωi+1}.

�
The construction in Lemma 3.2 ensures that on each element K of level i are active only func-

tions ψ ∈B j with j = i, i− 1. This means that the resulting mesh is 2-admissible according to Buffa
et al. (2016). Moreover, in the common case of dyadic refinement the construction implies both shape-
regularity and local-quasi-uniformity.

In conclusion, we showed that it is possible to construct and refine a pair of discretization spaces in
such a way that the hypotheses of Theorem 3.1 are fulfilled with a common lower bound on βh. Thus
the convergence discretization error is controlled by the best approximation error up to a constant factor.

4. Numerical stability tests

The inf-sup constant βh can be computed numerically by solving the following eigenproblem:

BhN−1
V BT

h q = λNPq, (4.1)

where Bh : Vh→ P∗h , NV : Vh→V ∗h and NP : Ph→ P∗h are respectively the matrices corresponding to bh,
the scalar product on V and the scalar product on P. Let λmin be the smallest eigenvalue of problem
(4.1) then, as described in (Brezzi & Fortin, 1991),

βh =
√

λmin.

The tests focus on the the dependence of βh on the polynomial degree (dP), on the number of
levels of the hierarchical space (`) , on the type of discretization (TH or SG) and on the hypothesis of
Theorem 3.1. In particular βh is computed on meshes both fulfilling and not fulfilling the hypothesis
of Theorem 3.1. In all tests the domain is Ω = Ω̂ = [0,1]2 parametrized by the identity, the spaces are
balanced and of maximum smoothness (dV = dP +1, sP = dP−1) and the refinement of the spaces Si is
dyadic.

4.1 Macro-element inf-sup

As a first test we computed the inf-sup on a single 2D macro-element. The results can be read in Table 1.
We observe that the inf-sup constant βh decreases fast as a function of the degree (and the smoothness).
The result can be interpreted by observing that on the macro-element the velocities are constrained to
decrease to zero with CsV smoothness toward the boundary. This condition is unnatural in H1(Ω)n and
can be enforced only on the discrete space. The effect of the degree and of the smoothness can be made
clearer by the following 1D example.
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dP 2 3 4 5 6

TH 4.68 10−1 4.86 10−2 4.96 10−4 1.72 10−6 3.23 10−9

SG 1.73 10−1 2.98 10−3 8.90 10−6 1.06 10−8 7.00 10−12

Table 1. Numerically computed inf-sup on 2D macro-elements for various pressure degrees dP, dV = dP +1. For macro-elements
of type TH both pressure and velocity are CdP−1 while for SG-type the pressure is CdP−1 and velocity CdP .

dP 2 3 4 5 6 7 8

2 0.4600 0.4574 0.4568 0.4562 0.4562 0.4562 0.4562
3 0.4537 0.4521 0.4514 0.4511 0.4508 0.4508 0.4508
4 0.4500 0.4485 0.4479 0.4477 0.4475 0.4475 0.4475

Table 2. Computed inf-sup constant on graded mesh for the TH method depending on degree and number of levels. The parameters
are dV = dP +1,sV = sP = dP−1.

EXAMPLE 4.1 Consider a 1D element of length 1, K = [0,1]. Now let M = [0,L] be a macro-element
and let

q =

{
(1− x)dP x6 1
0 x > 1

be the pressure. Then

b(w,q) = cdP

(
dP + rV +1

dP

)−1

,

where c is the coefficient of xrV in w|[0,1]. This is not compensated by the behavior of the norms:

‖ρgradq‖L2(M) = dP(2dP−1)−1/2, ‖w‖L2(M) > ‖w‖L2([0,1]) = c(2rV +1)−1/2.

4.2 Graded meshes

The meshes of this test are refined at the center in such a way that the Ωi are almost-concentric squares
and the ∆i = Ωi \Ωi+1 are rings with a thickness of at least 2dP +1 pressure elements. In this way each
∆i can be covered with macro-elements. See the meshes in Fig. 1. The results are reported in Table 2
for the TH element and in Table 3 for the SG element. Observe that the discrete inf-sup constant is
independent of the number of level as predicted by the theory. An interesting fact is that the computed
discrete inf-sup constants exceed the continuous inf-sup constant that, according to Costabel & Dauge
(2015); Costabel et al. (2015), is contained in[

sin(
π

8
),

√
1
2
− 1

π

]
.

4.3 Non macro-element-covered meshes

The meshes of this test are refined similarly to those in the previous test, but the thickness of the ∆i is
not enough to allow for a macro-element covering. See Figure 2. As a consequence Theorem 3.1 does
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Figure 1. Graded meshes. First row: the meshes of velocity (left) and pressure (right) for the SG method with parameters
dv = 3,dP = 2,sV = 2,sP = 1 and 5 levels. Second row: the meshes of velocity (left) and pressure (right) for the TH method with
parameters dv = 4,dP = 3,sV = sP = 2 and 4 levels.

dP 2 3 4 5 6 7 8

2 0.4664 0.4632 0.4623 0.4616 0.4616 0.4616 0.4616
3 0.4578 0.4558 0.4549 0.4546 0.4542 0.4542 0.4542
4 0.4531 0.4513 0.4506 0.4504 0.4502 0.4502 0.4502

Table 3. Computed inf-sup constant on graded mesh for the SG method depending on degree and number of levels. The parameters
are dV = dP +1,sV = dP,sP = dP−1.
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Figure 2. Non-macro-elements-covered meshes. On the left the velocity mesh for the SG method with parameters dv = 5,dP =
4,sV = 4,sP = 3 and 7 levels; on the right the velocity mesh for TH method with the same parameters.

dP 2 3 4 5 6 7 8

2 0.4705 0.4705 0.4705 0.4705 0.4705 0.4705 0.4705
3 0.4604 0.4593 0.4593 0.4593 0.4593 0.4593 0.4593
4 0.4564 0.4564 0.4564 0.4564 0.4564 0.4564 0.4564

Table 4. Computed inf-sup constant on non-macro-elements-covered meshes for the TH method depending on degree and number
of levels. The parameters are dV = dP +1,sV = sP = dP−1.

not apply. The results are reported in Table 4 for the TH element and in Table 5 for the SG element.
Surprisingly the inf-sup constant in this case is greater (and thus better) than in the previous case. Our
interpretation is that this refinement increases the dimension of the velocity space compared to that of
the pressure space even more, hence the inf-sup constant increases.

4.4 Non-graded meshes

In this test the meshes are refined only in half of the domain so that ratio between the size of neigh-
bouring elements increases geometrically on the number of levels (Fig. 3). In this case, not only the

dP 2 3 4 5 6 7 8

2 0.4817 0.4817 0.4817 0.4817 0.4817 0.4817 0.4817
3 0.4661 0.4645 0.4645 0.4645 0.4645 0.4645 0.4645
4 0.4610 0.4610 0.4610 0.4610 0.4610 0.4610 0.4610

Table 5. Computed inf-sup constant on non-macro-elements-covered graded meshes for the SG method depending on degree and
number of levels. The parameters are dV = dP +1,sV = dP,sP = dP−1.
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dP 2 3 4 5 6 7 8

1 0.4683 0.4716 0.4690 0.4631 0.4627 0.4623 0.4621
2 0.4685 0.4728 0.4713 0.4629 0.4628 0.4559 0.4559
3 0.4757 0.4669 0.4599 0.4599 0.4536 0.4536 0.4536
4 0.4557 0.4598 0.4570 0.4567 0.4516 0.4516 0.4516

Table 6. Computed inf-sup constant on non-graded meshes for the TH method depending on degree and number of levels. The
parameters are dV = dP +1,sV = sP = dP−1.

dP 2 3 4 5 6 7 8

1 0.5256 0.4981 0.4985 0.4804 0.4804 0.4804 0.4804
2 0.4952 0.4827 0.4827 0.4703 0.4703 0.4614 0.4614
3 0.4901 0.4759 0.4648 0.4651 0.4577 0.4577 0.4577
4 0.4764 0.4707 0.4614 0.4615 0.4551 0.4551 0.4551

Table 7. Computed inf-sup constant on non-graded meshes for the SG method depending on degree and number of levels. The
parameters are dV = dP +1,sV = dP,P = dP−1.

macro-element covering is missing, but also the approximation properties of ℘ deteriorates as the num-
ber of levels increases. The results are presented in the tables 6 and 7. Again we observe that the inf-sup
constant is stable on both degree and the number of levels.

4.5 Observation on the numerically computed inf-sup constants

The computed inf-sup constant on macro-elements shows that the lower bound obtained by the theory
is very pessimistic. The strong dependence on the smoothness is not observed and the lack of a macro-
element cover does not influence the inf-sup constant. Instead, the computed inf-sup constant of the TH-
and SG-type methods are close to the continuous inf-sup constant, sometimes even greater, regardless
of the degree, the mesh grading and the macro-element covering.

5. Adaptive implementation

The main motivation for the extension of the inf-sup stability to hierarchical splines is adaptivity. In
this section we report a numerical experiment based on the TH adaptive IGA scheme. We solved a 2D
flow inside a T-shaped pipe (Fig. 4). The forcing term is constant and directed along the x axis. The
homogeneous Dirichlet condition is imposed on the boundary except for the inlet Γin and the outlet Γout
where homogeneous Neumann conditions are enforced.

The regularity of the continuous solution is ruined by the presence of two concave corners in the
domain. More precisely, the solution can be decomposed in a regular part ureg, whose regularity depends
only on (f and g), and a singular part using, whose regularity depends on the geometry of the domain.
The behaviour of the singular part in the neighbourhood a concave corner is described by

using =
Q

∑
0=q

rλ
ψq(θ) log(r)q, (5.1)
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Figure 3. Non graded meshes. Pressure meshes for dP = 2,sP = 1 with 2 levels (left), and 8 levels (right).

where λ and Q can be computed from the geometry (Dauge, 1989). In the test case (a corner singularity
in 2D with an angle of 3

2 π) the exponent λ is the smallest positive solution of

sin
(3

2
πλ

2
)
−λ

2 = 0 (5.2)

which approximately equals 0.54448.... This means that the solution (u, p) is at most in Hλ+1(Ω)2×
Hλ (Ω) because higher order derivatives are not square-integrable. Consequently the highest order of
convergence that can be achieved with uniform refinement is

dofs−
λ
2 ≈ dofs−0.272....

The domain is represented by a 4-patch geometry as shown in Fig. 4. Each patch corresponds
to a different parametrization, in this case the parametrizations are four different translations. The
discretization spaces on each patch are of TH-type with parameters dV = 3,dP = 2,sV = sP = 1. The
spaces on the multipatch domain are obtained by gluing the patch-local spaces using the technique
proposed by Buchegger et al. (2016). In this way the basis functions are C1 on the whole domain.

The error is estimated using the standard residual-based estimator, but due to the C1 continuity of
the basis function the jump terms are 0 and can be ignored. Elements are marked according to Dörfler’s
technique with parameter 1/5, i.e., the error estimates of the refined elements sum up to a 1/5 of the
total estimated error.

The mesh was correctly refined near the singularities as can be observed in Fig. 5. The convergence
of the error estimator for both uniform and adaptive refinement is reported in Fig 7. Uniform refinement
achieves the predicted order of convergence (0.27...) while adaptive refinement achieves an order of
0.94... on average and in line with a theoretical convergence rate of 3

2 in the last two iterations. Fig. 6
shows the magnitude of the velocity.
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Γin Γout

Figure 4. The domain and its subdivision in 4 patches.

Γin Γout

Figure 5. Mesh after 10 refinements steps.
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Figure 6. Magnitude of the computed velocity field.
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Figure 7. Convergence plot of the adaptive and uniform refining strategy for the problem on the T-shaped domain.
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6. Summary

This paper extends the stability result of the isogeometric TH- and SG-type methods to hierarchical
splines. This is achieved by defining an appropriate approximation operator and then following the
same techniques used by Bressan & Sangalli (2013). The inf-sup stability can be achieved for domains
of any dimension and the method is thus applicable to both 2D and 3D problems. The convergence of
a corresponding adaptive TH scheme was tested numerically on a 2D problem with corner singularities
giving good results.

Numerical experiments hint that the lower bound for the discrete inf-sup constant βh is independent
of the degree, mesh-quasi-uniformity and other parameters appearing in the theoretical analysis. From
this point of view the theory is not completely satisfactory.
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RÜBERG, T. & CIRAK, F. (2012) Subdivision-stabilised immersed b-spline finite elements for moving
boundary flows. Comput. Methods Appl. Mech. Engrg., 209/212, 266–283.

SPELEERS, H. & MANNI, C. (2016) Effortless quasi-interpolation in hierarchical spaces. Numer.
Math., 132, 155–184.

STENBERG, R. (1990) Error analysis of some finite element methods for the Stokes problem. Math.
Comp., 54, 495–508.
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VUONG, A.-V., GIANNELLI, C., JÜTTLER, B. & SIMEON, B. (2011) A hierarchical approach to
adaptive local refinement in isogeometric analysis. Comput. Methods Appl. Mech. Engrg., 200, 3554–
3567.


