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Abstract

This paper is motivated by the geometry reconstruction process for aircraft engines. In
order to improve the overall smoothness of the resulting spline surface, we consider the si-
multaneous approximation of point and normal data. If the normal data to be approximated
by one patch is taken from the boundary of its neighbors, this controls the behavior of the
resulting spline patch along the boundary and ensures approximate G1-smoothness of the
composite surface. We show that for every mesh size there exists a solution to the resulting
optimization problem. Optimal convergence is achieved based on an appropriate choice of the
weight controlling the relative influence of points and normals, taking the distinct approxi-
mation order of splines for points and derivatives into account. In addition we investigate the
effect of using norm-like functions for measuring the errors.

1 Introduction

Spline surface fitting is a well-established technique for surface reconstruction from point data
(Hansford and Farin, 2002; Dierckx, 1995). It is frequently used in industrial applications, where
the scanning of mechanical components results in point cloud data. For subsequent processes it is
often necessary to find a surface that represents the point data. Typically, the triangulated data
sets are segmented and the resulting pieces are parameterized and fitted individually. After the
fitting step, the collection of the approximating patches forms the geometric model that is now
suitable for further processing.

The importance of fitting in an industrial context, i.e., as a part of the so-called reverse
engineering (Varady, 1997), is evident from the substantial number of publications on this topic.
Besides algebraic and implicit surfaces (Jüttler and Felis, 2002) as well as subdivision surfaces (see
Ma, 2005; Marinov and Kobbelt, 2005), which appear to be not fully supported by all existing
software tools (Shi et al., 2004), B-spline and NURBS surfaces are discussed in the literature. We
restrict ourselves to this class of surfaces.

There are various ways to approach the fitting problem. The intuitive least squares method
for B-splines, which reduces to solving a linear system of equations, depends on finding a valid
parameterization and knot vectors, which requires powerful optimization methods (Gálvez et al.,
2012). When using NURBS, one also has the possibility to choose the weights, although this is
hardly done in practice.

Advanced techniques include iterative methods for B-splines such as applying a Quasi-Newton
method for active curves and surfaces (Pottmann et al., 2002), adaptations of iterative geometric
interpolation and approximation algorithms (Kineri et al., 2012), iterative approaches for NURBS
that avoid solving a linear system at all (Lin et al., 2004), formulations of the fitting problem as
more general constrained optimization problems (Flöry, 2009) and hybrid optimization algorithms
for NURBS (Xie et al., 2012). Several publications also focus on improving the computational
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efficiency, such as (Brujic et al., 2011). Finally we mention that progressive iterative approximation
(Deng and Lin, 2014; Delgado and Peña, 2010) is a common technique.

Achieving smoothness across patch interfaces is of primary importance for generating a high-
quality geometric model. Approximate methods for the coupling of patches across interfaces are
treated e.g. by Shi et al. (2004); Milroy et al. (1995), whereas exact methods are discussed in the
recent book of Kiciak (2016).

We consider the spline fitting problem on a single patch including boundary conditions which
makes our approach also suitable for generating multi-patch models, in which the boundary con-
ditions may arise from data of neighboring patches. In this context, it is often more important to
achieve approximate G1 smoothness across interfaces between patches than to approximate given
point data along interfaces as good as possible. Also, real-world data most likely will contain
measurement errors, making it less reasonable to enforce a highly precise fitting result along the
interfaces.

Since all patches are considered separately, a geometric model produced by our fitting procedure
will be only approximately G0 (and, in addition to it, approximately G1) smooth. In certain
applications, such as numerical flow simulations, it is desirable to maintain global C0 smoothness;
this can be achieved by simply identifying boundary control points of adjacent patches and solving
the fitting problem on all patches simultaneously.

We formulate the problem as an optimization problem, which combines point and normal errors
with the use of norm-like functions, thereby generalizing the standard least squares fitting. The
paper is organized as follows: In Section 2, we state the problem, introduce the used notation and
present our computational approach. Section 3 is devoted to the existence of a series of solutions to
the problem described in Section 2 and to analyzing the behavior of their convergence. In Section
4 we present numerical examples both with artificial and industrial data. Section 5 concludes the
paper and identifies directions for future work.

2 Simultaneous approximation of point and normal data

Consider the data depicted in Figure 1 (bottom right), which shows a part of a turbine and a
turbine blade model. This point cloud is to be approximated by a spline surface. The parameter
values shown on top are generated by a standard parameterization method (Floater and Hormann,
2005) for meshes, applied to a triangulation of the data. In order to ensure smooth connections
to the neighboring surfaces, we need to enforce approximate G1-smoothness by additionally ap-
proximating the prescribed normal data along the red boundaries. We do not consider normals
along the remaining two boundaries, since the associated neighboring surface patches (blends) are
created in a subsequent step.

We realize the fillet surface construction by performing a minimization of the objective function

F (s) =

D∑
j=1

ν(|xs(tj)− fj |) + γ

K∑
k=1

ν(|Nxs(t̂k)− nk|) → min . (1)

In detail,

• | · | denotes the standard Euclidean norm, ν : R+ → R+ ∈ C2 is a norm-like function1 as
described by Aigner and Jüttler (2009),

• the approximating spline surface

xs(t) =

n∑
i=1

ciBi(t), t ∈ [0, 1]2,

1In particular, choosing ν(x) = x2 results in a standard least squares fitting problem. Please note that we
consider a more restricted class of norm-like functions than in the original paper, see the assumptions (4) at the
end of this section.
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Figure 1: Turbine component (top left) and point cloud: Parametric (top right) and measured
physical data (bottom right) of the fillet belonging the central part of the marked area of the
turbine blade (bottom left).
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of control points, which are multiplied with either tensor-product B-splines or THB-splines
(Kiss et al., 2014) Bi,

• the surface approximates the given points fj at parameter values tj ∈ [0, 1]2, and the unit
normal vectors nk at parameter values t̂k,

• the operator N transforms the surface into the associated field of unit normal vectors, and

• the non-negative weight γ controls the relative influence of points and normals.

In the example shown in Figure 1, the distribution of the parameter values tj is often quite
non-uniform, and the values t̂k are located on the patch boundary.

Due to the presence of the unit normals and for general norm-like functions, the minimization
of (1) leads to a non-linear optimization problem. A necessary condition for s to be a minimizer
of (1) is ∇F (s) = 0. We solve this equation approximately by a Gauss-Newton-type method, i.e.
a simplified Gauss-Newton method, where in the `-th iteration we solve the linear system

HF (s`)∆s = −∇F (s`) (2)

and update the current solution s` via s`+1 = s` + (∆s)T . The solution of the standard least
squares point fitting problem is used as start value. More precisely, we approximate the Hessian
of the objective function by

HF (s) =

D∑
j=1

ω(|Rj |)∇RTj (s)∇Rj(s) +

K∑
k=1

ω(|R̂k|)∇R̂Tk (s)∇R̂k(s),
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where Rj = xs(tj)− fj and R̂k = Nxs(t̂k)− nk are the point and normal residuals, respectively,
and

ω(x) = ν′(x)/x, (3)

cf. (Aigner and Jüttler, 2009). The latter function is called the weight function associated with the
norm-like function ν. The exact computation of the Hessian is costly, therefore the aforementioned
approximation is chosen. In (Aigner and Jüttler, 2009) it is shown that in the zero-residual case
this expression converges to the true Hessian with respect to the spectral norm.

Besides the obvious choice ν(x) = x2, it is potentially useful to consider other types of norm-
like functions, since they may enhance the performance of the method in the presence of outliers
or improve the approximation result. However, for the analysis we restrict ourselves to norm-like
functions that satisfy ν(0) = 0 and whose weight functions possess the following properties:

• They have a global lower bound ωmin, i.e., ω(x) ≥ ωmin holds for all x ∈ R+, and

• they possess an upper bound ωmax(F ) on each interval [0, F ], i.e., ω(x) ≤ ωmax(F ) holds for
all x ∈ [0, F ].

We will refer to these as norm-like functions with positive and partially bounded weights. They
satisfy

1

2
ωminx

2 ≤ ν(x) ≤ 1

2
ωmax(F )x2 on any interval [0, F ]. (4)

It has been shown that in the zero-residual case, the method (2) achieves local quadratic conver-
gence for this class of norm-like functions under certain technical assumptions, see (Aigner and
Jüttler, 2009, Theorem 5).

3 Existence of a Solution and Convergence Rates

In order to gain some insight into the behavior of the solution to the minimization problem (1),
we consider the continuous version

F̂ (s) = ‖ν(|xs − f |)‖L1 + γ‖ν(|Nxs −Nf |)‖L1 → min, (5)

where
f : [0, 1]2 → R3 (6)

is a given smooth surface that we want to approximate. We derived it by replacing the sums with
integrals.

It should be noted that the presence of L1 norms in (5) is caused by the use of the norm-like
function ν. In the simplest possible case ν(x) = x2 one obtains

F̂ (s) = ‖xs − f‖2L2 + γ‖Nxs −Nf‖2L2 .

In this section we restrict the exposition to spline surfaces xs defined by tensor-product B-
splines Bi of degree (p, p), which are defined over two quasi-uniform open knot vectors Ξ = (Ξ1,Ξ2)
on [0, 1]2. As usual we use h to denote the mesh size, i.e., the maximum length of the resulting
elements.

We recall two basic facts from spline theory:

• Stability of a B-spline basis {Bi} (de Boor, 1976, Theorem 4.1; Schumaker, 1981, Theorem
12.5): There exists a constant 0 < Dp ≤ 2(p+ 1)9p such that

1

D2
p

|s|∞ ≤ ‖
∑
i

ciBi‖L∞ ≤ |s|∞. (7)

These inequalities are valid for splines with scalar coefficients. They can be generalized to
spline surfaces by defining

‖xs‖L∞ = max
t∈[0,1]2

|xs(t)|
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and exploiting the equivalence
|v|∞ ≤ |v| ≤

√
3|v|∞,

of the Euclidean norm | · | and the maximum norm | · |∞ in R3.

• Approximation power of splines with scalar coefficients (de Boor and Fix, 1973): There exist
quasi-interpolation operators ΠΞ that transform any given function φ ∈ Hp+1 into a spline
function ΠΞφ. More precisely, the error satisfies

||φ−ΠΞφ||L2 ≤ C · hp+1||φ||Hp+1 , (8)

and
||φ−ΠΞφ||H1 ≤ C · hp||φ||Hp+1 , (9)

where the constant C does not depend on Ξ, h, or f , i.e., points are approximated with order
p + 1, while derivatives are approximated with order p. The result carries over to splines
with values in R3 by applying ΠΞ componentwise.

These observations will be used to derive a result about the existence of solutions and the conver-
gence rate as h tends to zero. We consider a regular surface f , see (6), and a norm-like function
ν satisfying ν(0) = 0 with positive and bounded weight function, cf. (3) and (4).

Theorem 1. The problem (5) has a solution for all pairs Ξ of knot vectors. The sequence of
solutions realizes the optimal approximation order if γ = γ0h

2 for some positive constant γ0.

Before proving Theorem 1 we state an auxiliary result.

Lemma 2. There exists constants CN = CN (f) and h0 = h0(f), which depend on the given
surface f , such that

‖NΠΞf −Nf‖L2 ≤ CNhp

holds whenever h < h0, where ΠΞf is applied to the elements of f , i.e.

ΠΞf =

 ΠΞf
1

ΠΞf
2

ΠΞf
3

 .

The proof of this Lemma 2 follows from the approximation order of the derivatives and the
fact that the normal depends continuously on the derivatives, taking the regularity of the para-
meterization into account. We present the details of this proof in the appendix.

Proof of Theorem 1. First, we show that a solution exists for any pair of knot vectors. We restrict
the ‖ · ‖L∞- and the ‖ · ‖L2 -norm to the spline space span{Bi|i ∈ Ih} which has finite dimension.
Consequently, the two norms are equivalent, i.e., there exists a constant Cnorm such that

‖
∑
i∈Ih

ciBi‖L∞ ≤ Cnorm‖
∑
i∈Ih

ciBi‖L2 . (10)

We combine this observation with (7) and obtain

1

Cnorm

1

D2
p

|s∗|∞ ≤ ‖xs∗‖L2 = ‖xs∗ − f + f‖L2 ,

where s∗ is the solution of (5). Now using the triangle inequality, the first inequality in (4) and
the identity

‖ · ‖L2 =
√
‖(·)2‖L1

gives
1

Cnorm

1

D2
p

|s∗|∞ ≤
√

2

ωmin
‖ν(|xs∗ − f |)‖L1 + ‖f‖L2 . (11)
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The L1 norm on the right-hand side is bounded by F̂ (s) for any choice of s. In particular we may
choose s as null vector and obtain

1

Cnorm

1

D2
p

|s∗|∞ ≤
√

2

ωmin
(‖ν(|f |)‖L1 + γ‖ν(|Nf |)‖L1) + ‖f‖L2 . (12)

Consequently, it suffices to consider the objective function (5) on the closed ball with radius

CnormD
2
p

(√
2

ωmin
(‖ν(|f |)‖L1 + γ‖ν(|Nf |)‖L1) + ‖f‖L2

)
,

which is a compact domain. The continuity of the objective function thus ensures the existence
of the minimum.

In order to establish the optimality of the approximation order, we consider a sequence of knot
pairs Ξ = Ξh with decreasing element size h and show that the point and normal errors of the
solutions to (5) satisfy√

‖ν(|xh − f |)‖L1 ≤ C ′hp+1 and
√
‖ν(|Nxh −Nf |)‖L1 ≤ C ′hp (13)

for some constant C ′, which is independent of h.
As

‖ΠΞf − f‖L∞([0,1]2)

is bounded and since

|(ΠΞf − f)(t)| ≤ ‖ΠΞf − f‖L∞([0,1]2) for almost all t ∈ [0, 1]2

we choose
F = max{2, ‖ΠΞf − f‖L∞([0,1]2)}

and obtain

‖ν(|ΠΞf − f |)‖L1 + γ0h
2‖ν(|NΠΞf −Nf |)‖L1

≤

∥∥∥∥∥
√
ωmax(F )

2
|ΠΞf − f |

∥∥∥∥∥
2

L2

+ γ0h
2

∥∥∥∥∥
√
ωmax(F )

2
|NΠΞf −Nf |

∥∥∥∥∥
2

L2

.

Thus, the value of objective function at the coefficients of the surfaces ΠΞf has the upper bound

ωmax(F )

2
(C2 + γ0C

2
N )h2p+2,

where the constants C and CN are taken from (8) and Lemma 2, respectively. This implies that
the solution of (5) satisfies (13) with

C ′ = max


√
ωmax(F )

2
(C2 + γ0C2

N ),

√
ωmax(F )

2

C2 + γ0C2
N

γ0

 .

This result is equivalent to the simple observation that – under a suitable regularity assumption
– the unit normals possess the same approximation order as the derivatives. It carries over to the
considered class of norm-like functions, which satisfy (4) and ν(0) = 0.

It should be noted that the choice of γ, which is described in the above theorem, is similar
to the weights that appear in the jump and average terms used in the discontinous Galerkin
discretization of partial differential equations, cf. Seiler and Jüttler (2017).

6



Figure 2: One- (left) and two-dimensional (right) synthetic data for the numerical tests.

4 Numerical Experiments

This section has three parts. First, we verify the theoretical results of the previous section by
considering synthetic data sets. Second, we apply the fitting technique to the industrial data set
representing the fillet surface. Finally, we explore the effects of using norm-like functions.

4.1 Least-squares fitting: Synthetic data

We demonstrate the theoretical findings concerning the convergence rates by applying the fitting
procedure with the trivial norm-like function ν(x) = x2 to two synthetic data sets. First, we
generated point and normal data by uniformly sampling 104 points and normals from the graph
of the trigonometric curve cos(20t), t ∈ [0, 1]. Second we consider another data set obtained by
evaluating 2012 points and normals on a uniform grid in the domain of the ellipsoidal patch

(t1, t2) 7→

 3
2 · cos(π3 t1 −

π
6 ) · cos(π2 t2 + 5π

4 )
4
5 · cos(π3 t1 −

π
6 ) · sin(π2 t2 + 5π

4 )
6
5 · sin(π3 t1 −

π
6 )

 , t ∈ [0, 1]2, (14)

see Figure 2, highlighted patch.
We computed the approximation result by using Gauss-Newton method described in Section 2.

The iterative procedure was terminated when the gradient of the objective function satisfied
|∇F (s`)| ≤ 10−8 or when the iteration count reached 500 (but this was never the case for the two
synthetic data sets). The basis functions Bi were chosen as (bi-) cubic (tensor-product) B-splines.
We consider uniform open knot vectors with mesh size h varying between 1 and 2−8 or 2−5 for
curves and surfaces, respectively.

Figures 3 and 4 report the resulting sum of squared errors with respect to the Euclidean norm
for γ = hk, k = 0, 1, 2, 3 and for γ = 0. Among the considered choices of the weight γ, the optimal
rates of convergence (4 for the point data and simultaneously 3 for the normals) are achieved for
γ = h2, γ = h3 and for γ = 0. The first case is covered by the theoretical results in the previous
section, while the other ones confirm that standard L2 approximation also provides the optimal
rate of convergence of the derivatives. Consequently, using the normal vectors does not provide
any advantages for synthetic data. However, the example in the next section will demonstrate the
benefits for an industrial application.

Figures 5 and 6 demonstrate the influence of the constant γ0. It can be seen that the fitting
result is fairly robust with respect to variations of this weight. Note that the effects of changing
γ0 are not invariant under scaling. This issue can be resolved by performing a suitable scaling of
the data.
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Figure 3: Synthetic curve data: Point (left) and normal (right) error for various choices of weight
γ and mesh size h.

Figure 4: Synthetic surface data: Point (left) and normal (right) error for various choices of weight
γ and mesh size h.

4.2 Least-squares fitting: Industrial data

Next we apply the fitting procedure to the fillet data shown in Figure 1, which consists of 3280
point and 214 normal samples. The normal data is available only at top and bottom of the
fillet, in order to ensure a smooth connection to the adjacent patches. First we consider tensor-
product discretizations with varying mesh size h (up to 1225 control points) obtained by dyadic
refinement. We regularized the objective function by introducing a quadratic surface energy with
weight λ = 10−5, see Kiss et al. (2014) for details. This also has a fairing effect.

Figure 7, light and dark blue curves, visualizes the resulting sum of squared errors with respect
to the Euclidean norm for γ = 10−3h2 and for γ = 0 (without normals). It can be seen that using
the normal data is essential, since the normals do not converge for γ = 0. Clearly, one cannot
expect to achieve the same convergence rate as for the synthetic data, due to measurement errors.
Also, the normals were sampled from neighboring patches, not from the fillet.

Figure 8 depicts the resulting fillet patches with (right) and without (left) approximating
normal vectors for the finest tensor-product spline discretization. We added reflection lines to
visualize the surface quality. On the one hand, the use of normal data (right) clearly improves
the G1 smoothness across the patch boundaries, since the reflection lines are continuous. This
is especially visible in the marked areas, which are shown again in Figure 9, where there are
discontinuities in the reflection lines of the left plot and smoother transitions in the reflection lines
of the right plot. However, even at the finest discretization with 1225 control points, the normal
error was still relatively large (sum of squared errors 6.1 · 10−7 and maximum angle 1.65 · 10−2

degrees for γ = 10−3h2).
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Figure 5: Synthetic curve data: Point (left) and normal (right) error for various choices of the
constant γ0 where γ = γ0h

2.

Figure 6: Synthetic surface data: Point (left) and normal (right) error for various choices of the
constant γ0 where γ = γ0h

2.

A further improvement – even when using a much smaller number of degrees of freedom – can
be obtained by employing THB-spline discretizations instead of tensor-product splines, similar
to the techniques reported by Kiss et al. (2014); Giannelli et al. (2016). We use the absolute
threshold refinement strategy with ε = 10−6 and compare the results obtained without (left) and
with (right) using normal data in Figure 10. Both surfaces have acceptable quality, but the use of
normal data again improves the G1 smoothness (see close-up views). The leftmost reflection line
is discontinuous without normal information.

Table 1 reports the resulting errors for the two THB-spline approximations. In particular,
while the use of normal data does not compromise the point error, it significantly improves the
approximate G1 smoothness. Here, h refers to the mesh size of the finest discretization level.

The finest THB-spline discretization with 841 control points leads to a significantly smaller
normal error than the finest uniform discretization (sum of squared errors norm 2.01 · 10−8 and
maximum angle 3.24 · 10−3 degrees for γ = 10−3h2).

The sum of squared errors with respect to the Euclidean norm for γ = 10−3h2 and for γ = 0
(without normals) for different numbers of control points is shown in Figure 7, dark and light
red curves. Here, again, the effect of reaching a smaller normal error with less control points is
evident.

Clearly, we obtain different THB meshes for γ = 0 and γ = 10−3h2, which are visualized in
Figure 11. The two surfaces have 556 and 841 control points. The use of the normal data led to
additional refinement near the boundaries.
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Figure 7: Point (left) and normal (right) error for tensor-product (blue) and THB-spline (red)
approximations of the fillet data.

Figure 8: Tensor-product spline approximations of the fillet data without (left) and with (right)
using normal information.

Figure 9: The details shown in the marked areas from left to right.

4.3 Norm-like functions

Now we consider the influence of different choices of ν while neglecting the normal data approxima-
tion term, using the data previously introduced (Figure 1 and 2, right). We artificially introduce
outliers to the ellipsoidal patch values in order to illustrate the effects of different alternatives
of ν. More precisely, we set the value of the third component of three of the 2012 samples to
1.5 instead of 1.02083, 1.02901 and 0.979487, respectively. Thus, the outliers have a distance of
0.64977, 0.65063 and 0.67656 from the original data points. We do not have further information
about the industrial data from Figure 1, but most likely there will be some noise in the data.

Following Aigner and Jüttler (2009), we select the norm-like functions

• ν1(x) = 1− exp(−η2x2),

• ν2(x) = x2, which corresponds to a standard least-squares fitting problem, and

• ν3(x) = exp(η2x2)− 1.

10



Figure 10: Top: THB-spline approximations of the fillet data without (left) and with (right) using
normal information.

Figure 11: Control nets of the THB-spline surfaces approximating the fillet data without (left)
and with (right) using normal information.

The constant η was chosen as described in Aigner and Jüttler (2009). Minimizing the first and
the third function, which are motivated by the statistics literature, has been observed to have a
beneficial effect on outliers and on the maximum error, respectively.

The latter two functions are norm-like functions with positive and partially bounded weights,
since they fulfill the assumptions specified in Section 2. In contrast, the weight function associated
with ν1(x) is not globally bounded from below. One may replace the weight by a constant for all
arguments exceeding some threshold, in order to satisfy the assumptions.

For the results in Table 2 we used a tensor-product B-spline discretization with B-splines of
degree (3,3) and mesh size h = 0.03125, as in the previous experiments, and we set γ = 0. As
expected the `1-error is minimal when using ν1 and an analogous outcome is visible for the other
two norms. Note that the differences between the error values are more distinct for the ellipsoidal
patch data than for the fillet data set which is due to the presence of very few strong outliers. The
influence of the choice of ν is not visible for the fillet data where the error appears to have a more
uniform distribution.

5 Conclusion

We considered the simultaneous approximation of point and normal data using norm-like functions.
This leads to a non-linear optimization problem, which has been solved by a Gauss-Newton-type
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without normals with normals
γ = 0, 3× 556 dofs γ = 10−3h2, 3× 841 dofs∑

j ‖xs,h(tj)− fj‖22 8.15 · 10−10 7.48 · 10−10∑
k ‖Nxs,h(t̂k)− nk‖22 1.32 · 10−2 2.01 · 10−8

maximum angle between normals in degree 0.94 3.24 · 10−3

Table 1: Error values of the THB-spline approximations.

Ellipsoid data with outliers Fillet data
ν1(x) ν2(x) ν3(x) ν1(x) ν2(x) ν3(x)∑

j ‖Rj‖2 6.1 7.17 7.86 0.001242 0.001242 0.001248√∑
j ‖Rj‖22 1.1 1.0942 1.095 2.42 · 10−5 2.42 · 10−5 2.43 · 10−5

maxj ‖Rj‖2 0.66 0.65 0.64 1.514 · 10−6 1.514 · 10−6 1.513 · 10−6

Table 2: Error values in different `p norms for approximations of the ellipsoidal patch and fillet
data.

technique, based on the earlier results reported by Aigner and Jüttler (2009). We used an industrial
data set to illustrate the advantages of fitting point and normal data simultaneously. In this
context we combined our approach with the mathematical technology of truncated hierarchical
B-splines (THB-splines), which provided again a significant improvement of the fitting results. As
observed in our experiments, the use of normal information helps greatly to maintain approximate
G1 smoothness across patch boundaries.

In our future research we plan to explore applications in isogeometric analysis, in particular
concerning isogeometric multi-patch discretizations possessing approximate geometric smoothness.
So far, the construction of smooth multi-patch discretizations in isogeometric analysis (which is of
vital interest, e.g., when considering high-order problems) is almost exclusively based on the notion
of exact geometric continuity, see e.g. Kapl et al. (2015); Groisser and Peters (2015); Kapl et al.
(2018). Approximate methods may help to overcome the resulting limitations of approximation
power and geometric flexibility, and this motivates us to investigate them further.

A further improvement of the fitting results could be achieved by performing an optimization
of the parameters also, using methods such as parameter correction (Hoschek, 1988). This is
beyond the scope of the present paper. Last, but not least, it might be possible to generalize the
observations made in Section 3 to hierarchical splines, based on the recent results of Speleers and
Manni (2016) on quasi-interpolation operators for THB-splines.

Appendix: Proof of Lemma 2.

For p > 3
2 and for sufficiently small element size, the derivatives of given surface f and of its spline

approximation ΠΞf satisfy

‖∂1f‖L∞ ≤M, ‖∂2f‖L∞ ≤M, (15)

‖∂1ΠΞf‖L∞ ≤M, ‖∂2ΠΞf‖L∞ ≤M, (16)

|∂1f(t)× ∂2f(t)| ≥ m, |∂1ΠΞf(t)× ∂2ΠΞf(t)| ≥ m ∀t ∈ [0, 1]2 (17)

for some constants M,m > 0 (see Adams and Fournier, 2003). Note that the latter two inequalities
are induced by the regularity assumption for the surface f .

We consider the difference of the unit normals,∥∥∥∥ ∂1f × ∂2f

|∂1f × ∂2f |
− ∂1ΠΞf × ∂2ΠΞf

|∂1ΠΞf × ∂2ΠΞf |

∥∥∥∥
L2

. (18)

The subtrahend of the difference can be rewritten as(
|∂1ΠΞf×∂2ΠΞf |2
|∂1f×∂2f | ∂1f + |∂1ΠΞf × ∂2ΠΞf |∂1ΠΞf − |∂1ΠΞf×∂2ΠΞf |2

|∂1f×∂2f | ∂1f
)
× (∂2f + ∂2ΠΞf − ∂2f)

|∂1ΠΞf × ∂2ΠΞf |2
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After substituting the rewritten subtrahend into (18), we expand the cross product and use the
triangle inequality to expand the result into four terms.

The first term ∥∥∥∥ ∂1f × ∂2f

|∂1f × ∂2f |
− ∂1f × ∂2f

|∂1f × ∂2f |

∥∥∥∥
L2

is equal to zero. The second term satisfies∥∥∥∥ 1

|∂1f × ∂2f |
(∂1f × (∂2ΠΞf − ∂2f))

∥∥∥∥
L2

≤ 1

m
·M · C · hp · ‖f‖Hp+1 .

The third term takes the form∥∥∥∥∥
(
|∂1ΠΞf × ∂2ΠΞf | |∂1f × ∂2f |∂1ΠΞf − |∂1ΠΞf × ∂2ΠΞf |2∂1f

)
× ∂2f

|∂1ΠΞf × ∂2ΠΞf |2|∂1f × ∂2f |

∥∥∥∥∥
L2

.

The first factor of the numerator can be rewritten as

|∂1ΠΞf × ∂2ΠΞf | · |∂1f × ∂2f |∂1ΠΞf − |∂1ΠΞf × ∂2ΠΞf |2∂1f

+ |∂1ΠΞf × ∂2ΠΞf | · |∂1f × ∂2f |∂1f − |∂1ΠΞf × ∂2ΠΞf | · |∂1f × ∂2f |∂1f.

This helps us to obtain an upper bound for the third term,

M

m
‖∂1ΠΞf − ∂1f‖L2 +

M2

m2
‖(∂1f × ∂2f)− (∂1ΠΞf × ∂2ΠΞf)‖L2 .

Using the properties (9) of the spline projector confirms that this can be bounded by

M

m
C · hp · ‖f‖Hp+1 + 4

M2

m
C · hp · ‖f‖Hp+1 ,

where we used the observation that

‖(∂1f × ∂2f)− (∂1ΠΞf − ∂2ΠΞf)‖L2

= ‖(∂1f × ∂2f)− ((∂1f + ∂1ΠΞf − ∂1f)× (∂2f + ∂2ΠΞf − ∂2f)) ‖L2

= ‖(∂1f × ∂2f)− (∂1f × ∂2f)− ((∂1ΠΞf − ∂1f)× ∂2f)

− (∂1f × (∂2ΠΞf − ∂2f))− ((∂1ΠΞf − ∂1f)× (∂2ΠΞf − ∂2f)) ‖L2

≤M‖∂1ΠΞf − ∂1f‖L2 +M‖∂2ΠΞf − ∂2f‖L2 + 2M‖∂2ΠΞf − ∂2f‖L2 .

Finally, the expansion generates a fourth term, which is equal to∥∥∥∥∥∥
(
|∂1ΠΞf × ∂2ΠΞf |∂1ΠΞf − |∂1ΠΞf×∂2ΠΞf |2

|∂1f×∂2f | ∂1f
)
× (∂2ΠΞf − ∂2f)

|∂1ΠΞf × ∂2ΠΞf |2

∥∥∥∥∥∥
L2

and can be dealt with in the same way as for the third one.
Summing up, all four terms are bounded by terms of the form 1

4CNh
p for a suitable choice of

the constant CN (which depends on f). This completes the proof.
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