
An evolution–based approach for approximate

parameterization of implicitly defined curves

by polynomial parametric spline curves

Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

Abstract. We propose a novel approach for the approximate parameteriza-
tion of an implicitly defined curve in the plane by polynomial parametric
spline curves. The method generates the parameterization of the curve (which
may consist of several open and closed branches) without using any a priori
information about its topology. If needed the topology of the approximate
parameterization can be certified against the initial curve in a simple way.

Keywords. Evolution, approximate parameterization, implicitly defined curves.

1. Introduction

Two major approaches for describing curves and surfaces in Computer Aided De-
sign and Geometric Modeling exist: parametric representations, such as NURBS
curves and surfaces, and implicit representations. In many geometric algorithms,
such as the computation of surface-surface intersections, combining these two rep-
resentations helps to improve the quality of results and computational perfor-
mance.

This observation has motivated research on conversion algorithms between
parametric representation and implicit representation. In particular, approximate

techniques for implicitization [9, 10, 11, 15, 16, 17, 24, 36] and parameterization
[3, 4, 5, 22, 30] may be useful for applications in Computer Aided Design, since they
are able to deal with input specified by floating point numbers and they are more
flexible than exact, symbolic–computation based methods (see, e.g., [12, 13, 33]).
In addition, approximate techniques can be adapted so as to produce a represen-
tation within a certain region of interest, which is a very natural requirement in
applications.

This paper is devoted to the case of implicitly defined planar curves, where
the region of interest is a certain box. These curves arise naturally when discussing

2 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

Figure 1. Surface-surface intersection.

surface–surface intersections between an implicitly defined and a parametric sur-
face. This configuration accounts for 90% of the surface–surface intersections oc-
curring in practice [26, 29]. As an example, Fig. 1 shows the intersection between
a cylinder and a biquadratic surface. Depending on the relative positions of the
two surfaces, one obtains one or two components, or even a curve with a singular
point. We used the algorithm described in this paper in order to represent the
intersection curves.

Typically, the methods for analyzing and parameterizing an implicitly defined
curve consist of two stages. In the first step, the topology is analyzed, by detecting
singular points, closed loops and intersections with the boundaries of the box
[23, 26]. In particular, most algorithms identify a collection of characteristic points,
which may include singularities and points with vertical and horizontal tangents.
This step requires robust numerical solvers for systems of polynomial equations.
In the next step, predictor–corrector methods are used to trace the segments in
between the characteristic points. This produces a piecewise linear representation
of the curve, which can then be approximated by splines.

This paper proposes an all–at–once approach, which relies on an evolution
process (see Figure 2): Starting from the bounding box of the domain of interest,
a closed B-spline curve is moved gradually towards the given implicit curve. The
evolution is governed by a differential equation which is derived from the function
defining the given curve. The evolving parametric B-spline curve may split itself
into multiple B-spline curves, thereby adapting its topology to the given implicitly
defined curve. Our method can produce the parameterization result of a planar
implicitly defined curve (not necessarily algebraic) within a bounding box, without
knowing any a priori information about its topology.

The idea of breaking a parametric curve into multiple pieces for topologi-
cal adaptation has also been used in other areas. In the field of image processing,

An evolution–based approach for approximate parameterization 3

(a) Initial B-spline curve (b) Intermediate result

(c) Before post-processing (d) After post-processing

(a) (b) (c) (d)
spline curves 1 1 3 4
control points 40 40 42 46
Average error 1.753× 10−1 1.434× 10−2 6.687 × 10−4 1.662 × 10−4

Maximum error 3.632× 10−1 1.185× 10−1 5.453 × 10−3 9.646 × 10−4

Figure 2. Approximate parameterization of an implicitly de-
fined curve by cubic spline curves. The computation took 57ms.

topologically adaptive snakes [27], or ’T-snakes’ [28], are proposed to segment some
complex-shaped biological structures from medical images. In [31, 32], B-spline ac-
tive contours with handling of topology changes are used for video segmentation.
To our knowledge, no one has yet applied this idea to the approximate parametriza-
tion of implicitly defined curves.

The remainder of this paper is organized as follows. The basic evolution
process is given in Section 2. Then we discuss how to handle different components

4 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

of the implicit curve in Section 3. The algorithm and some implementation details
are given in Section 4, and the post-processing and the final refinement process are
also described in this section. After presenting some test examples in Section 5,
we conclude the paper with suggestions for further research.

2. The evolution process

We use an evolution process for generating an approximate parameterization of
an implicitly defined curve by parametric spline curves. This process is inspired
by similar techniques in the field of Image Processing and Computer Vision [6, 8,
25, 37].

The implicitly defined curve is given as the zero level set

Z(f) = { (x, y) ∈ D | f(x, y) = 0 } (1)

of a function f , which is assumed to be at least C3 and to have at most finitely
many singularities within the domain of interest D ⊂ R

2. In order to simplify the
method, we assume that the curve has only four kinds of order two singularities
in the domain D: crunodes (ordinary double points), acnodes (isolated points),
tacnodes and cusps. Moreover, in many cases the function f is assumed to be a
polynomial, which then defines an algebraic curve Z(f).

2.1. Evolution equation

The evolution of the spline curve x is governed by

∂x(u, τ)

∂τ
· ~n ≈ v(x(u, τ)), (2)

where x(u, τ) is any point on the spline curve, u is the corresponding parameter
value, τ is the time variable, and v(x(u, τ)) is a scalar-valued velocity function (or
speed function) along the normal direction ~n of the spline curve at the point x.

From the definition of a spline curve

x(u, τ) =

n
∑

i=1

Bi(u)Ci(τ), (3)

or x(u, τ) = c(τ)⊤b(u), where b = [B1, B2, ..., Bn]⊤ for all B-splines Bi, and
c = [C1, C2, ..., Cn]⊤ for all B-spline control points Ci, we get

∂x(u, τ)

∂τ
= ċ(τ)⊤b(u). (4)

Note that the number and positions of control points, and therefore also the num-
ber of knots of the spline curve, are changed during the evolution process. We use
uniform knots and (almost always) periodic spline curves in all examples presented
in this paper.

An evolution–based approach for approximate parameterization 5

Figure 3. Type I speed function.

Since the condition (2) cannot be satisfied exactly in general, we adopt a
least-squares approach to compute the time derivative ċ of the B-spline control
points. More precisely, we choose ċ by solving

E =

∫

I

[(ċ(τ)⊤b(u)) · ~n − v(x(u, τ))]2 du → min
ċ

, (5)

where I is the parameter domain of the curve, which leads to a non-negative def-
inite quadratic function of the unknowns ċ = [Ċ1, Ċ2, ..., Ċn]⊤. Numerical quad-
rature is used to evaluate the integral. For each value of c, we compute the time
derivatives by solving (5), or possibly a regularized version of this problem (e.g.,
one may use a simple Tikhonov regularization, see [20]).

2.2. Speed function

We use two types of evolution speed functions. The “type I” speed function drives
the spline curve toward the implicit curve, which is used for approximately param-
eterizing each individual component (cf. Section 3). The “type II” speed function
drives the spline curve towards the ridge/valley contour of the implicit curve,
which is used for detecting nested components. In this section, we will describe
the type I speed function only. The type II speed function will be discussed later
in Section 3.1.

The type I speed function is defined as follows:

vI(x) = ξ · f(x), (6)

vector ∇f on the implicit curve Z(f). Except for isolated points, the zero level set
Z(f) is located at the boundary between positive and negative regions of f . During
the evolution, all components of the implicitly defined curve are represented by
simple closed curves (cf Section 3). Then, for each component Zi, we choose ξ = +1
if ∇f is pointing to the outside of Zi. Otherwise, we choose ξ = −1. Thus, the
sign of the speed function is equal to the sign of −f within Zi.

6 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

Figure 3 shows an example of type I speed function with ξ = +1. By using
this kind of speed function, the evolving spline curve will stop at the corresponding
component of the implicitly defined curve.

In order to capture nested components of the implicitly defined curve, the
type I speed function will be temporarily changed to type II, which will be dis-
cussed later in Section 3.1.

2.3. Time step size for the numerical integration

For each evolution step of the spline curve (see Equation (5)), the time derivatives
ċ(τ) are computed by solving a sparse linear system of equations, ∇E = 0. We
then generate the updated B-spline control points

c(τ + ∆τ) = c(τ) + ċ∆τ (7)

simply by using an explicit Euler method with step size ∆τ . In order to prevent
the spline curve from moving across the implicitly defined curve Z(f), the step
size is chosen as

∆τ = min
u

{ δ(x(u, τ))/|ċ(τ)⊤b(u)| }, (8)

where δ(x) is a lower bound for the Euclidean distance from the point x to the
implicitly defined curve.

Here we use the method proposed by Taubin [34] to compute this lower
bound. By using the kth-order Taylor series expansion and the Cauchy-Schwarz
inequality, Taubin gives an exact lower bound δk for any polynomial f of degree
≤ k. In practice, we found that the using of the second-order approximate lower
bound δ2 (cf. [34]) produces satisfying results for our method.

It is also proved in [34] that the lower bounds δ2(x) and δk(x) converge to
the exact Euclidean distance d(x) between x and the implicitly defined curve Z(f)
when d(x) → 0, which ensures the convergence of the evolving spline curve to the
implicitly defined curve.

3. Handling different domponents

The implicitly defined curve Z(f) may have different types of components with
various topological structures in the domain of interest D. These different compo-
nents can be classified as follows:

1. Open branches, which are always due to the trimming by the boundary of
the domain D.

2. Closed curves, which include both simple closed curves and self-intersecting
closed curves.

3. Isolated points, which are corresponding to the isolated singularities.

Furthermore, these different components may be nested, i.e., one component can be
inside another. Figure 4 illustrates the various possible components of an implicitly
defined curve in a rectangular domain.

An evolution–based approach for approximate parameterization 7

Figure 4. Different components of an implicitly defined curve.

During the evolution process for approximate parameterization of Z(f), each
component of Z(f) will be represented by one or several simple closed spline curves.
These closed spline curves will be denoted with Γi

For a simple closed component, one simple closed spline curve is used to
represent it. For a closed component with self-intersections, one or more simple
closed spline curves are used for the evolution, which will be reconfigured in a
post-processing step (see Section 4.3) in order to produce a single self-intersecting
spline curve. For an isolated point, a surrounding spline curve keeps evolving until
it shrinks to this point. For open branches, a special treatment is needed, which
makes it possible to treat them as closed components. This will be be discussed in
Section 3.2.

We assume that the evolution process is initialized with a spline curve which
contains all components of Z(f). The next three sections discuss how we deal with

• nested components, i.e., components of Z(f) which are contained within other
components,

• open branches, and
• the adaptation of the spline curves to several non-nested components of Z(f).

Based on these preparations, the entire parameterization algorithm will be formu-
lated later in Section 4.

3.1. Handling nested components

We consider the following situation: During an evolution process driven by the
type I speed function, a spline curve Γi has stopped at a component of the zero
level set Z(f). In the general case, Z(f) may have some interior components inside
this component contour (Fig. 5 shows such an example). In order to capture these

interior components, we make a copy Γ̂i of the stopped spline curve Γi, and apply

the following “type II” speed function for the evolution of Γ̂i,

8 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

(a) (b) (c)

Figure 5. Handling nested components. In (a), the spline curve
Γi stops at the outer contour after the type I evolution. In (b),

the duplicated curve Γ̂i stops at the valley contour after the type
II evolution. In (c), Γ̂i stops at the inner contour after resuming
the type I evolution again.

(a) (b)

(c) (d)

Figure 6. Handling nested components with multiple
ridge/valley contours in between. The implicit curve is de-

fined the function f = cos(2π
√

x2 + 5y2)+ 0.6 cos(4π
√

x2 + 5y2)
with the cross-section view shown in (a). In (b), the spline curve
Γi stops at the outer contour after the type I evolution. In (c),

the duplicated curve Γ̂i stops the type II evolution as soon as
its area is not decreased any more. In (d), Γ̂i stops at the inner
contour after resuming the type I evolution again.

An evolution–based approach for approximate parameterization 9

vII(x) = ξ̂i∇f(x) · ~n, x ∈ Γ̂i. (9)

Note that ξ̂i = −ξi, since the orientation of ∇f changes between neighboring
nested components (cf. Section 2.2 and Figure 5). By using the type II speed

function, usually Γ̂i will stop at some ridge/valley contour of Z(f), as illustrated

in Figure 5 (b). Then we change back to the type I evolution for Γ̂i, such that Γ̂i

will stop at the desired interior contour (cf. Figure 5 (c)). Due to choice of the sign
of the type 1 speed function, the evolution process drives the spline curve towards
the interior contour.

When there are multiple loops or branches of ridge/valley contours between
neighboring components of Z(f), the type II evolution stops at the first ridge/valley
contour. But that does not matter, since an arbitrary closed curve in between the
two neighboring components of Z(f) is sufficient to capture the inner component.
We then turn back to the type I evolution. In practice, we do so as soon as the area
of Γ̂i is not decreased any more. Figure 6 shows an example of nested components
with multiple ridge/valley contours in between.

This strategy of alternating between type I and type II speed functions can
be iteratively applied to the evolution process, until the spline curve shrinks to a
point. In this way, we can always capture all interior components in the domain
of interest, no matter how many nested layers exist in Z(f).

The step size should be chosen carefully for the type II evolution, such that
the updated spline curve will not move into the interior component. In our case, we
assume that the distance between nested components has a lower bound β, which
is called the feature size of nested components of Z(f). We then choose the time
step size ∆τ = minu{ β/|ċ(τ)⊤b(u)| }, in order to make sure that no component
will be missed.

In our method, some self-intersecting components are also regarded as a spe-
cial case of nested components, as shown in Figure 7. For this case, we first detect
singular points on the stopped spline curve Γi (this detection process is done for all
nested components before the type II evolution starts, and Section 4.2 will describe
how to detect singularities). For example, we get a crunode p0 (the self-intersection
point) in Figure 7 (a). Then we fix the point p0 during the type II evolution of

Γ̂i. Here some points near p0 may easily move into the interior component, but
that does not matter since the type II speed function will pull them back to the
ridge/valley contour (cf. Figure 7 (b)).

3.2. Handling open branches

For open branches of the implicitly defined curve Z(f), which are always due to
the trimming by the boundary of the domain D, we also use simple closed spline
curves to represent them. The basic idea is to connect each open branch with the
trimmed segments of the boundary ∂D, such that a closed curve is obtained. Then
during the evolution process, in order to attract the corresponding spline curve to

10 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

(a) (b) (c)

Figure 7. Handling self-nested components. The implicitly de-
fined curve is defined by the zero set of f = (x2 + y2 − 1)(0.1 −
(x−0.3)2−y2)−0.0564 in the bounded domain D = [−1.2, 1.2]×
[−1.2, 1.2], which has a crunode. In (a), the spline curve Γi stops
at the outer contour after the type I evolution. In (b), the dupli-

cated curve Γ̂i stops at the ridge contour after the type II evolu-
tion. In (c), Γ̂i stops at the inner contour after resuming the type
I evolution again.

Figure 8. An open branch is represented by a closed spline curve.

this closed curve, we modify the type I speed function as follows

ṽI(x) =

{

(q − x) · ~n, if x is outside of D
sign(vI(x)) · min(|δ(x)|, ‖x − s‖), otherwise

(10)

where q is the closest point on the boundary ∂D to the point x, s is the first
intersection point between the ray R(∆t) = x + sign(vI(x))∆t · ~n, ∆t ≥ 0 and the
boundary ∂D, and δ(x) is as given in Section 2.3.

As shown in Figure 8, by using the modified version of type I speed function,
the evolving spline curve will stop at the closed contour, which is consisting of
an open branch and partial boundary segments. The included boundary segments

An evolution–based approach for approximate parameterization 11

self-intersections

implicit curve
()

()+

(a) Before the topology change (b) After the topology change

Figure 9. Handling topology changes.

will be removed from the result in a post-processing step, which is described later
in Section 4.3.

3.3. Handling topological changes

In general, the implicitly defined curve divides the region of interest is into multi-
ply connected regions. Thus, the evolving spline curve has to split itself in order
to adapt its topology to the implicitly defined curve. This is done when self-
intersections occur on the evolving spline curve. After each evolution step, the fol-
lowing procedure is applied to check and handle topology changes for each spline
curve

1. Check if the spline curve has self-intersections. If no self-intersections, exit.
2. Split the self-intersecting spline curve into multiple simple closed curves,

which are separated by the self-intersection points.
3. Remove the redundant curves, whose interior is completely scanned by the

movements of spline curves.

Figure 9 shows an example of the topology change. Due to the time step
constraint, the interior of a redundant curve does not contain any zero point of
the function f , and thus can be safely removed without missing any component of
the implicitly defined curve Z(f). After the change of topology, the original spline
curve is split into multiple ones, which correspond to the different components of
Z(f).

4. Algorithm and implementation

In this section, we present the algorithm and discuss some implementation details.
The algorithm takes as input an implicit function f , the domain of interest D
and a user-specified error tolerance ǫ0. The given function f is at least C3 and
the implicitly defined curve has at most a finite number of four kinds of order
two singularities (crunodes, acnodes, tacnodes and cusps) in the domain D. The
implicit curve Z(f) has the feature size β (cf. Section 3.1) in the domain D.

The algorithm produces a set of spline curves, which approximately param-
eterize the implicit curve Z(f) in the domain D, and the approximation error
is bounded by ǫ0. Here the approximation error ǫ is measured by the one-sided

12 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

Hausdorff distance from the sample points on the spline curves to the implicit
curve

ǫ = max
i=1,2,...,N

‖xi − pi‖, (11)

where {xi}i=1,2,...,N are a set of uniformly sampled points on the spline curves,
and pi is the closest point on Z(f) to xi.

4.1. Algorithm

The entire parameterization algorithm consists of 6 steps.

1. Initialize the spline curve Γ0 as the boundary contour ∂D of the domain D.
Initialize the set of spline curves as Γ = {Γ0}. Initialize the output as Γ̃ = ∅.

2. Check if Γ0 intersects the implicit curve. If not, then set ξ0 = sign(f(x0))
(x0 ∈ Γ0) for the type I evolution of Γ0, with the speed function vI (cf.
Equation (6)). Otherwise, set ξ0 = +1 for the type I evolution of Γ0, with
the speed function ṽI (cf. Equation (10)) for handling open branches.

3. While Γ 6= ∅ do
3.1. Choose a spline curve Γi ∈ Γ.
3.2. Apply one step of the type I evolution of Γi. If topology changes happen

(cf. Section 3.3), then add each generated non-redundant curve into the
set Γ, and delete Γi from it, go to step 3.1.

3.3. Repeat step 3.2. until Γi stops evolution.
3.4. Detect singularities in the vicinity of Γi, and identify the type of each

singular point (cf. Section 4.2). The detected crunodes as shown in Fig-

ure 7 will be fixed for the type II evolution of Γ̂i in step 3.7.
3.5. If the area of Γi is sufficiently small (< πβ2), then delete Γi from Γ, and

continue with step 3.

3.6. Make a copy Γ̂i of Γi with ξ̂i = −ξi. Set Γ = (Γ \ Γi) ∪ {Γ̂i}, and

Γ̃ = Γ̃ ∪ Γi.
3.7. Apply the type II evolution of Γ̂i, until it stops evolution (cf. Section 3.1)

and continue with step 3.1.
4. Apply the post-processing of Γ̃, which produces the desired singular features

and open branches of Z(f). (cf. Section 4.3)

5. Apply the final refinement of Γ̃, such that the approximation error is smaller
than the user-specified tolerance ǫ0. (cf. Section 4.4)

6. Output Γ̃ as the parameterization result.

4.2. Detection and classification of singularities

A singularity of f is a point x∗ which satisfies f(x∗) = fx(x∗) = fy(x
∗) = 0. In

order to detect and classify the singularities of f in the domain D, we propose the
following process.

Firstly, we uniformly sample a set of points {xi | i = 1, 2, ..., N} on each
spline curve. We choose those points {xk | 1 ≤ k ≤ N, and |∇f(xk)| < εg} (εg

is a predefined small constant) as potential singular points, in which consecutive
sample points are counted only once.

An evolution–based approach for approximate parameterization 13

Then for each potential singular point xk, we use it as the initial value for
applying the Newton-Raphson method to compute the root of equation f2(x) +
f2

x(x) + f2
y (x) = 0. If a root x∗

k is found, then we add it to the list of singularities.
The points representing the same singularity are merged together.

Finally, by analyzing the determinant ‖H(f)‖ of the Hessian matrix and

g(f) = 1/6fxxxf
3

yy + 1/2fxxyfxyf
2

yy + 1/2fxyyf
2

xyfyy + 1/6fyyyf
3

xy

at each singular point x∗

k, the detected singularities are classified into four types:

1. Crunodes, if ‖H(f)‖ < 0. (cf. Figure 10 (a))
2. Acnodes, if ‖H(f)‖ > 0. (cf. Figure 10 (b))
3. Tacnodes, if ‖H(f)‖ = 0 and g(f) = 0. (cf. Figure 10 (c))
4. Cusps, if ‖H(f)‖ = 0 and g(f) 6= 0. (cf. Figure 10 (d))

The expression g(f) is used to distinguish between tacnodes and cusps. Note that
the computation of third derivatives of f is needed if and only if ‖H(f)‖ = 0 at
the considered singular point.

4.3. Post-processing

After the singularities have been detected and classified, we reconfigure the corre-
sponding spline curves for each singular point x∗

k, according to the type of x∗

k:

1. If x∗

k is a crunode, then we reconfigure the corresponding spline curves, such
that the desired self-intersection feature is produced. (cf. Figure 10 (a)).

2. If x∗

k is an acnode, then we replace the surrounding spline curve with this
point. (cf. Figure 10 (b)).

3. If x∗

k is a tacnode, then we measure the difference between the tangent ts of
the spline curve and the tangent tf of the two osculating branches of Z(f).
If ts is quite different from tf , then we change the connections between the
corresponding spline curve branches accordingly. (cf. Figure 10 (c)).

4. If x∗k is a cusp, then we use multiple control points at this point to produce
the sharp feature. (cf. Figure 10 (d)).

For those spline curves which correspond to open branches of Z(f), we split
them along the intersection points with the boundary contour ∂D, and remove the
curve segments on the boundary, such that the resulting open spline curves are
representing the open branches only.

4.4. Final refinement

The final refinement is also achieved by using an evolution process, which is driven
by the speed function

vrefine(x) = (p − x) · ~n, (12)

where p is the closest point (foot point) on the implicit curve to x. Robust methods
for computing foot points on implicitly defined curves have been studied in [1].

After each step of evolution, we compute the approximation error ǫ (cf. Equa-
tion (11)). If ǫ is not reduced any more but still ≥ ǫ0, then we add new control
points into the spline segments having a large approximation error. The iterative
refinement continues until the user-specified error tolerance is satisfied, i.e., ǫ < ǫ0.

14 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

(a) (b)

(c) (d)

Figure 10. Handling singularities.

5. Experimental results and Discussion

We present some test examples to demonstrate the effectiveness and discuss the
limitations of our method. The maximum error mentioned below is the maximum
of the distances of the sample points {xi}i=1,2,...,N on the spline curves to the
implicit curve, i.e., the one-sided Hausdorff distance given in (11). The average

error is the average of the distances of the sample points xi to the implicit curve.
The error tolerance is set to ǫ0 = 1 × 10−3 for all the presented examples. All
experiments were performed on a PC with AMD Opteron(tm) 2.20GHz CPU and
3.25G RAM. The execution time shown does not include that of final refinement
process in Section 4.4.

5.1. Examples

Example 1. (cf. Figure 11) The implicit curve is defined by the zero set of f =
4y4 +17x2y2−20y2 +4x4−20x2 +17, which has four components in the bounded
domain of [−2.75, 2.75]× [−2.75, 2.75]. Figure 11 (a) shows an initial order-4 spline
curve which is containing all the four components of the implicit curve. Then the
spline curve is guided by the evolution to get the intermediate result in (b), and the
final result in (c) (after topology changes). The approximation errors are reported
in the table below the figure.

Example 2. (cf. Figure 12) The implicit curve is defined by the zero set of f =
x3+3x2y+x2−y2, which has a crunode in the bounded domain of [−1, 1]× [−1, 1].
Figure 12 (a) shows the initial order-4 spline curve. Then the evolution result after
14 iterations is shown in (b). Finally, after post-processing, the improved result is
given in (c). The approximation errors are reported in the table.

An evolution–based approach for approximate parameterization 15

(a) 0 iterations (b) 11 iterations (c) 15 iterations

(a) (b) (c)
spline curves 1 1 4
control points 36 36 32
Average error 3.178× 10−1 3.504 × 10−2 3.484 × 10−4

Maximum error 4.530× 10−1 2.161 × 10−1 8.027 × 10−4

Figure 11. Approximate parameterization of the implicit curve
with multiple components. The execution time is 32ms.

(a) Initial spline curve (b) Before post-processing (c) After post-processing

(a) (b) (c)
spline curves 1 1 1
control points 36 33 28
Average error 1.769× 10−1 6.502 × 10−4 4.435 × 10−5

Maximum error 7.351× 10−1 7.943 × 10−3 8.361 × 10−4

Figure 12. Approximate parameterization of the implicit curve
with a crunode. The execution time is 15ms.

Example 3. (cf. Figure 13) The implicit curve is defined by the zero set of f =
x3 − xy2 − 3x2 + 2y2 + 3x − 1, which has a cusp in the bounded domain of
[−3.55, 3.55] × [−3.55, 3.55]. Figure 13 (a) shows the initial order-4 spline curve.
Then the evolution result after 36 iterations is shown in (b). Finally, after post-
processing, the improved result is given in (c).

16 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

(a) Initial spline curve (b) Before post-processing (c) After post-processing

(a) (b) (c)
spline curves 1 3 3
control points 40 30 37
Average error 1.643× 10−1 7.136 × 10−4 1.681 × 10−4

Maximum error 7.269× 10−1 4.586 × 10−3 9.092 × 10−4

Figure 13. Approximate parameterization of the implicit curve
with a cusp. The execution time is 47ms.

(a) Initial spline curve (b) Before post-processing (c) After post-processing

(a) (b) (c)
spline curves 1 4 4
control points 40 34 43
Average error 1.974× 10−1 2.000 × 10−3 8.692 × 10−5

Maximum error 7.157× 10−1 2.816 × 10−2 9.342 × 10−4

Figure 14. Approximate parameterization of the implicit curve
with an acnode. The execution time is 31ms.

Example 4. (cf. Figure 14) The implicit curve is defined by the zero set of f =
3x3 − 5xy2 − 4x2 − 10xy + 10y2 − 6x + 20y + 12, which has an acnode in the
bounded domain of [−6, 6]× [−6, 6]. Figure 14 (a) shows the initial order-4 spline
curve. Then the evolution result after 23 iterations is shown in (b). Finally, after
post-processing, the improved result is given in (c).

An evolution–based approach for approximate parameterization 17

(a) 0 iterations (b) 22 iterations (c) 100 iterations

(a) (b) (c)
spline curves 1 2 5
control points 24 48 60
Average error 8.921× 10−2 3.415 × 10−2 6.232 × 10−5

Maximum error 9.173× 10−2 1.182 × 10−1 7.367 × 10−4

Figure 15. Approximate parameterization of the implicit curve
with nested components. The execution time is 125ms.

Example 5. (cf. Figure 15) The implicit curve is defined by the zero set of f =
(x2+y2−0.7225)×[(x+0.45)2+y2−0.04]×[x2+(y−0.45)2−0.09]×[((x−0.75)2+
y2)((x + 0.75)2 + y2)− 0.3136], which has three-layered nested components in the
bounded domain of [−1, 1]× [−1, 1]. Figure 15 (a) shows the initial order-4 spline
curve, which will first stop at the outermost contour by using the type I evolution
for 7 iterations. Then the spline curve stops at the valley contour after applying
the type II evolution for 15 iterations, as shown in (b). Figure 15 (c) shows the
approximation result after the whole evolution stops (100 iterations in total). The
feature size we used is β = 0.01 for the type II evolution.

Example 6. (cf. Figure 16) The implicit curve is defined by the zero set of f =
(x2+y2−3x)2−4x2(2−x), which has both a crunode and a tacnode in the bounded
domain of [−1.25, 3.75]× [−2.5, 2.5]. Figure 16 (a) shows the initial order-4 spline
curve, which will first stop at the outermost contour by using the type I evolution
for 21 iterations. Then the spline curve stops in (b) after applying the type II
evolution for 24 iterations. Figure 16 (c) shows the final result after handling
singularities. The feature size we used is β = 0.1 for the type II evolution.

Example 7. (cf. Figure 2) The implicit curve is defined by the zero set of f =
−3 + 12y2 + 2y4 − 12y6 + y8 + 12x2 − 28y2x2 + 12y4x2 + 4y6x2 − 18x4 + 20y2x4 +
2y4x4 + 12x6 − 4x6y2 − 3x8 = 0, which has two closed components and two open
branches (including two crunodes) in the domain of [−5, 5]× [−5, 5]. Figure 2 (a)
shows the initial order-4 spline curve. An intermediate result after 8 iterations is
shown in (b). The evolution result after 51 iterations is shown in (c). Finally, after
post-processing, the improved result is given in (d).

18 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

(a) Initial spline curve (b) Type II evolution (c) After post-processing

(a) (b) (c)
spline curves 1 2 1
control points 12 22 19
Average error 6.270× 10−2 4.715 × 10−2 1.203 × 10−4

Maximum error 1.249× 10−1 1.688 × 10−1 4.357 × 10−4

Figure 16. Approximate parameterization of the implicit curve
with both a crunode and a tacnode. The execution time is 67ms.

5.2. Limitations

Currently, our algorithm is only able to handle second order singularities, since we
use the second-order approximation of Taubin’s lower bound for efficient determi-
nation of time step sizes during the evolution (cf. Section 2.3). Handling higher
order singularities is possible by using higher order approximations of the lower
bound, but there is still much work to do for dealing with different types of more
complicate singularities based on the classification.

The feature size β (cf. Section 3.1) of the implicit curve Z(f) has to be
known a priori such that all nested components of Z(f) can be correctly detected.
However, in practice, this information is not easy to be exactly obtained in advance.
If β is not small enough, then some components of Z(f) will not be detected and
the approximation result will be topologically wrong only because of these missing
components. Figure 17 shows a failure example of this kind.

Example 8. (cf. Figure 17) In this failure example, the implicit curve is defined by
the zero set of f = (x2+y2−0.72)×(x2+y2−0.68)×(x2+y2−0.64)×(x2+2y2−0.4),
which has four-layered nested components in the bounded domain of [−1, 1] ×
[−1, 1]. Figure 17 (a) shows the initial order-4 spline curve, which will first stop
at the outermost contour by using the type I evolution. Since the parameter (β =
0.15) we used is much larger than the real feature size of the implicit curve Z(f),
the type II evolution has overshot the two components between the outermost and
the innermost contours, as shown in (b). Finally, the approximation result only
contains two-layered components, as shown in (c). By using a sufficiently small
value β = 0.01, the correct result with all components can be obtained.

An evolution–based approach for approximate parameterization 19

(a) Initial spline curve (b) Type II evolution (c) Failure result

Figure 17. A failure example with a bad feature size.

6. Conclusion and future work

We have proposed an evolution–based approach for approximately parameterizing
an implicitly defined curve by parametric B-spline curves. The proposed algorithm
does not require in advance any information about the topology of the considered
curve (as required in the approach presented in [22]).

In order to guarantee that the final result is topologically correct and that no
component of the considered curve is missing, more information is needed about
how to define the so–called feature size which moreover guides the time step size
choice of the evolution, cf. Section 3.1. Thus if a posteriori analysis detects that
some component is missing then the feature size will be decreased and the algo-
rithm applied back again.

One possibility for dealing in advance with this question about the right
feature size to start with will be to explore the use of the root bounds presented
in [38] where an explicit lower bound for the feature size is presented in terms of
the degree and coefficient vector 2–norm of the polynomial defining the considered
implicit curve. Nevertheless, this lower bound is in practice very small and, if
used, the evolution will be very slow. More useful lower bounds could be probably
obtained by analyzing locally this lower bound (the one in [38] is global) and
revising how it is derived since the above mentioned lower bound is presented
concerning the minimal distance between the components of two different implicit
curves while, in our case, only one implicit curve is involved.

A different possibility for providing a guarantee for the topology of the ap-
proximate parametrization obtained is to use the algorithms in [23, 18] to verify
a posteriori that the topology of the obtained output agrees with the topology
of the considered implicit curve. Again, the application of the whole algorithm is
not required: it is enough to know, for example, the number of connected compo-
nents and the topological nature of the singular points in order to certify that the
topology of the computed approximate parameterization fits with the topology of
the considered implicit curve. Note that the approach presented in [22] requires

20 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

to know in advance the topology of the considered implicit curve in order to com-
pute the approximate parametrization, in this case, by rational quadratic B–spline
curves (arcs of conic sections).

Finally, one may use the techniques described in [2] in order to obtain a bound
on the (one–sided) Hausdorff distance between a curve and its approximation. Es-
sentially, the maximum distance between the points of the spline curve and the
corresponding closest points of the algebraic curve Z(f) can be bounded by V/G,
where V is the maximum value of f on the spline curve and G is the minimum
length of the gradient in the (suitably chosen) subregion of the region of interest.
Both an upper bound of V and a lower bound of G can be generated by exploit-
ing the convex–hull property of the Bernstein–Bézier representation. Clearly, this
bounds fails if the subregion contains singularities of the curve.

Acknowledgments. The first author has been supported by a Marie Curie Incoming
International Fellowship of the European Commission (project no. 022073 ISIS).
The second author has been supported by the Austrian Science Fund through
the national research network on “Industrial Geometry” (subproject S9202). The
third author has been supported by the Spanish Ministry of Science and Innova-
tion through the research grant MTM2008-04699-C03-03. The second and third
authors were also supported by the 7th Framework Programme of the European
Commission through the Marie Curie Initial Training Network “Shapes, Geometry
and Algebra” (SAGA, PITN-GA-2008-214584). All authors would like to thank the
anonymous referees for their comments which have helped to improve the paper.

References

[1] M. Aigner and B. Jüttler, Robust computation of foot points on implicitly defined
curves, in: M. Dæhlen, K. Mørken, and L. Schumaker, eds., Math. Meth. for Curves

and Surfaces, 1–10. Nashboro Press, 2005.

[2] M. Aigner, I. Szilagyi, J. Schicho, and B. Jüttler, Implicitization and distance bounds,
in Algebraic Geometry and Geometric Modelling (B. Mourrain, M. Elkadi, R. Piene,
eds.), Springer, 2006, 71–86.

[3] D. A. Aruliah and R. M. Corless. Numerical parameterization of affine varieties using
ODEs. In J. Gutierrez, editor, Proc. ISSAC, pages 12–18. ACM Press, New York,
2004.

[4] C. L. Bajaj and A. V. Royappa. Parameterization in finite precision. Algorithmica,
27 (2000), 100–114.

[5] C. L. Bajaj and G. L. Xu. Piecewise rational approximations of real algebraic curves.
J. Comput. Math., 15 (1997), 55–71.

[6] A. Blake and M. Isard, Active contours, Springer, 2000.

[7] J. Caravantes, L. Gonzalez-Vega, Computing the topology of an arrangement of
quartics, in IMA Conference on the Mathematics of Surfaces, LNCS, 4647 (2007),
104–120.

An evolution–based approach for approximate parameterization 21

[8] V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Int. J. of Computer

Vision, 22 (1997), 61–79.

[9] F. Chen and L. Deng. Interval implicitization of rational curves. Comput. Aided

Geom. Design, 21 (2004), 401–415.

[10] J. Chuang, C. Hoffmann: On local implicit approximation and its applications. ACM
Trans. Graphics, 8 (1989), 298–324.

[11] R. Corless, M. Giesbrecht, I. Kotsireas, and S. Watt: Numerical implicitization of
parametric hypersurfaces with linear algebra. In: AISC’2000 Proceedings, Springer,
LNAI 1930.

[12] D. Cox, J. Little, D. O’Shea: Ideals, Varieties and Algorithms, Springer, New York
1997.

[13] D. Cox, J. Little, D. O’Shea: Using algebraic geometry, Springer, New York 1998.

[14] D. Cox, R. Goldman and M. Zhang: On the validity of implicitization by moving
quadrics for rational surfaces with no base points, J. Symbolic Computation, 29
(2000), 419–440.

[15] T. Dokken: Approximate Implicitization, in: Lyche, T., Schumaker, L. (eds.), Math-
ematical methods in CAGD, Nashboro Press, 2001, 1-25.

[16] T. Dokken and J. Thomassen, Overview of Approximate Implicitization, in: Topics
in Algebraic Geometry and Geometric Modeling, AMS Cont. Math. 334 (2003), 169–
184.

[17] T. Dokken and J. Thomassen: Weak approximate implicitization, in Algebraic Ge-
ometry and Geometric Modelling (B. Mourrain, M. Elkadi, R. Piene, eds.), Springer,
2006.

[18] A. Eigenwillig, M. Kerber, and N. Wolpert: Fast and Exact Geometric Analysis of
Real Algebraic Plane Curves. Proceedings of the 2007 International Symposium on
Symbolic and Algebraic Computation (2007), 151–158, ACM Press.

[19] M. Elkadi and B. Mourrain: Residue and Implicitization Problem for Rational Sur-
faces, Applicable Algebra in Engineering, Communication and Computing, (2004),
361-379.

[20] H. Engl, M. Hanke and A. Neubauer: Regularization of inverse problems, Kluwer,
Dordrecht 1996.

[21] G. Farin: Curves and Surfaces for Computer Aided Geometric Design, Academic
Press, 2002.

[22] X.-S. Gao and M. Li. Rational quadratic approximation to real algebraic curves,
Comput. Aided Geom. Des., 21 (2004), 805–828.

[23] L. Gonzalez-Vega, I. Necula. Efficient topology determination of implicitly defined
algebraic plane curves. Comput. Aided Geom. Design 19 (2002), 719–743.

[24] B. Jüttler, A. Felis: Least-squares fitting of algebraic spline surfaces, Advances in
Computational Mathematics, 17 (2002), 135–152.

[25] M. Kass, A. Witkin, and D. Terzopoulus, Snakes: active contour models, Int. J. of

computer vision, 1 (1988), 231–233.

[26] Kunwoo Lee: Principles of CAD/CAM/CAE Systems, Prentice Hall, 1999.

[27] T. McInerney and D. Terzopoulos. Topologically adaptable snakes. ICCV ’95: Pro-
ceedings of the Fifth International Conference on Computer Vision (1995), 840–845.

22 Huaiping Yang, Bert Jüttler and Laureano Gonzalez–Vega

[28] T. McInerney and D. Terzopoulos. T-snakes: topology adaptive snakes. Medical Im-
age Analysis 4 (2000), 73–91.

[29] N. M. Patrikalakis and T. Maekawa. Chapter 25: Intersection problems. In G. Farin,
J. Hoschek, and M.-S. Kim, editors, Handbook of computer aided geometric design.
Elsevier, 2002.

[30] S. Perez-Diaz, J. R. Sendra, J. Sendra. Parametrization of approximate algebraic
curves by lines. Theoret. Comput. Sci. 315 (2004), 627–650.

[31] F. Precioso and M. Barlaud. B-spline active contour with handling of topology
changes for fast video segmentation. EURASIP J. Appl. Signal Process. 2002 (2002),
555–560.

[32] F. Precioso, M. Barlaud, T. Blu, M. Unser. Robust real-time segmentation of im-
ages and videos using a smooth-spline snake-based algorithm. IEEE Transactions on
Image Processing 14 (2005), 910–924.

[33] J. R. Sendra. Normal parametrizations of algebraic plane curves. J. Symb. Comp.,
33 (2002), 863–885.

[34] G. Taubin, Distance approximation for rasterizing implicit curves, ACM Transac-

tions on Graphics, 13 (1994), 3–42.

[35] T.W. Sederberg and F. Chen: Implicitization using moving curves and surfaces. Proc.
Siggraph 1995, 301–308.

[36] L. Gonzalez-Vega: Implicitization of parametric curves and surfaces by using multi-
dimensional Newton formulae. J. Symb. Comput. 23 (1997), 137-151.

[37] H. Yang, M. Fuchs, B. Jüttler, and O. Scherzer, Evolving T-spline level sets, Shape
Modeling and Applications 2006, IEEE, pp. 247–252. Extended version available as
an FSP report at http://www.ig.jku.at

[38] C. K. Yap. Complete subdivision algorithms, I: intersection of Bezier curves. SCG
’06: Proceedings of the twenty-second annual symposium on Computational Geom-
etry (2006), 217–226, ACM Press.

Huaiping Yang
Institute of Applied Geometry
Johannes Kepler University
Altenberger Str. 69
4040 Linz, Austria

e-mail: yang.huaiping@jku.at

Bert Jüttler
Institute of Applied Geometry
Johannes Kepler University
Altenberger Str. 69
4040 Linz, Austria

e-mail: bert.juettler@jku.at

An evolution–based approach for approximate parameterization 23

Laureano Gonzalez–Vega
Departamento de Matematicas
Universidad de Cantabria
Avenida de los Castros s/n
39005 Santander, Cantabria, Spain
e-mail: laureano.gonzalez@unican.es

