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Abstract

This paper is devoted to techniques for adaptive spline projection via quasi-interpolation, enabling the efficient
approximation of given functions. We employ local least-squares fitting in restricted hierarchical spline spaces to
establish novel projection operators for hierarchical splines of degree p. This leads to efficient spline projectors
that require O(pd) floating point operations and O(1) evaluations of the given function per degree of freedom,
while providing essentially the same accuracy as global approximation. Our spline projectors are based on a
unifying framework for quasi-interpolation in hierarchical spline spaces. We present a detailed comparison with
the scheme of Speleers and Manni (2016).
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1. Introduction

Geometric modeling relies on the extensive use of spline technology for the description and manipulation of
arbitrary shapes (Farin, 2002). More recently, the introduction of Isogeometric Analysis (IgA) by Hughes et al.
(2005) proved the effectiveness of splines also in the context of numerical simulation, where it has been noted
that this technology leads to a better accuracy per degree of freedom than classical finite element methods.

The standard approach to multivariate spline functions – both in geometric modeling and isogeometric
simulation – relies on the use of the tensor-product construction. As a major drawback, this construction
prevents any possibility of employing adaptive (rather than uniform) refinement strategies. This fact has
triggered intense research on adaptive spline refinement, resulting in a substantial number of publications.
These include the rich literature on T-splines that were introduced by Sederberg et al. (2003) as a generalization
of NURBS. The problem of missing adaptivity is addressed by control grids with T-junctions. Properties such
as linear independence and suitability for IgA were further analyzed by Li et al. (2012). The related approach
of polynomial splines over hierarchical T-meshes (PHT-splines) was introduced by Deng et al. (2008) and has
subsequently been employed both in geometric modeling and isogeometric analysis. Another approach was
proposed by Dokken et al. (2013), resulting in the framework of LR-splines.

We focus our attention on the hierarchical spline refinement originally introduced by Forsey and Bartels
(1988). These spline spaces are constructed in terms of a sequence of subdomains representing different refine-
ment levels, and they can be equipped with the basis of hierarchical B-splines (HB-splines) that was introduced
and analyzed by Kraft (1998). Even though HB-splines do not form a partition of unity (PoU), several impor-
tant properties such as linear independence and approximation power were established in Kraft’s seminal work.
In order to restore the PoU property, HB-splines were modified via the truncation mechanism described by
Giannelli et al. (2012), resulting in the construction of truncated hierarchical B-splines (THB-splines). Besides
PoU, these splines provide properties such as strong stability (Giannelli et al., 2014), algebraic completeness
under certain assumptions (Mokrǐs et al., 2014), and better conditioning of the resulting system matrices
(Giannelli et al., 2016).

Local and global methods for adaptive spline fitting with hierarchical splines have been an active topic of
research ever since the pioneering work of Forsey and Bartels (1995). In particular, global fitting methods were
investigated by Greiner and Hormann (1997) and subsequently extended and applied to relevant industrial
applications (Kiss et al., 2014).

In this work, we focus on adaptive spline fitting via local schemes for quasi-interpolation (QI). These
schemes enable the efficient approximation of given functions. Quasi-interpolants for tensor-product splines
were extensively analyzed by de Boor and Fix (1973) and Lyche and Schumaker (1975) and subsequently
studied by Sablonnière (2005), while the first extension to hierarchical splines was presented already in the
aforementioned work of Kraft (1998), based on a telescopic construction.

Lee et al. (2005) were the first that made use of a QI operator to perform multilevel spline surface reconstruc-
tion from scattered data sets. More recently, Speleers and Manni (2016) and Speleers (2017) showed how to
construct efficient QI schemes for THB-splines. These results led to renewed interest in quasi interpolants and
paved the way to different theoretical and practical results. Bracco et al. (2017, 2018) originally proposed an
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adaptive scattered data fitting for given data sets and subsequently extended the results to suitable industrial
applications. The QI schemes found applications to IgA-related issues such as the formulation of reliable error
indicators (Buffa and Giannelli, 2017) and the derivation of efficient quadrature rules (Calabró et al., 2018).

The most advanced QI schemes for hierarchical splines were established in two articles by Speleers and Manni
(2016) and Speleers (2017). The first one introduces THB-spline projectors that require O(pd) floating point
operations and O(pd) evaluations of the given function per degree of freedom. The authors also note that these
projectors are equivalent to Kraft’s HB-spline projector under certain conditions. The second article (Speleers,
2017) derives QI schemes that are no spline projectors but require fewer evaluations (only O(1) per degree of
freedom) of the input function, where polynomial reproduction is used to ensure optimal approximation power.

QI schemes with and without the spline projector property were compared in Table 2 of the article by
Speleers and Manni (2016), leading the authors of that paper to conclude that “On average, the projector
Qs performs slightly better than the less complicated quasi-interpolant Qp”. In addition, spline projectors for
hierarchical splines are useful for generating (T)HB-spline representations of functions that are known to belong
to the hierarchical spline space, such as the Jacobian determinant of domain parameterizations. In principle,
these representations could be derived by employing rules for derivatives and products of splines, but the use
of a QI scheme is more convenient in practice. Clearly, only QI schemes that are spline projectors guarantee
the exact reproduction of these functions.

In this paper, we focus on spline projectors and employ local least-squares fitting in restricted hierarchical
spline spaces to establish novel QI schemes for hierarchical splines of any degree p. This leads to efficient spline
projectors that require O(pd) floating point operations and O(1) evaluations of the given function per degree
of freedom, while providing essentially the same accuracy as global approximation. Numerical and theoretical
results are presented in order to compare our spline projectors, which are based on a unifying framework for
quasi-interpolation in hierarchical spline spaces, with the scheme of Speleers and Manni (2016). In particular,
we establish spline projector QI schemes that require only O(1) evaluations of the given function per degree of
freedom.

The remainder of the paper is organized as follows. Section 2 recalls some known concepts related to
hierarchical splines and quasi-interpolation operators. In order to prepare the construction of the fitting-based
spline projector, Section 3 presents some results relating to hierarchical splines on full and restricted domains.
Based on these observations, Section 4 describes the construction, providing also a detailed analysis of the
corresponding computational complexity. The resulting adaptive refinement algorithm is discussed in Section
5, along with the derivation of the approximation order of the projector. In Section 6 we describe some
experimental tests that illustrate relevant features of our construction. Finally, Section 7 concludes the paper
with some remarks and a summary of the achieved results.

2. Preliminaries

We recall the construction of hierarchical spline bases and the use of the truncation mechanism. We also
summarize several known results related to quasi-interpolation methods in this context.

2.1. Hierarchical B-splines

In order to define hierarchical B-splines (HB-splines) on a bounded domain Ω0 ⊂ Rd, we consider d-variate
tensor product spline spaces V ` satisfying

V 0 ⊂ V 1 ⊂ · · · ⊂ V N ,

where the upper index ` = 0, . . . , N is called the level. All spline spaces have the same degree p, and they
are defined by d univariate bi-infinite knot sequences 2−`Z at level `, one per coordinate direction. The spline
spaces are spanned by uniform tensor-product B-splines

B` = {β`i , i ∈ Zd}

of degree p possessing maximum smoothness Cp−1. The restrictions of the spline functions in V ` to cells of
level `

2−`(Zd + [0, 1]d)

are simply tensor-product polynomials of degree p. While the results presented below can be extended to a
more general setting (such as splines with non-uniform knot vectors), we try to keep the exposition simple by
restricting ourselves to the uniform setting.
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Figure 1: Sequence of subdomains and corresponding hierarchical mesh. From left to right: Ω0, Ω1, Ω2 and final hierarchical mesh

In addition, we consider a sequence of subdomains Ω` ⊂ Rd satisfying

Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN ,

see Fig. 1. Moreover, it is assumed that Ω̄` is created by forming the union of finitely many square blocks
(which are not required to be mutually disjoint) containing dp+1

2 e cells of level `− 1 per coordinate direction.
Consequently, the subdomain Ω` is a union of the (set-theoretic, i.e., without boundaries) supports of a finite
number of B-splines β`. Note that this includes the assumption that Ω0 is the union of square blocks of cells
of level −1 .

The level ` cells contained in
Ξ` = Ω` \ Ω`+1

are said to be active. These cells cover Ξ`, since there are no cells that are only partially refined. The
corresponding hierarchical mesh (cf. Fig. 1) is formed by all the active cells of all levels.

Hierarchical B-splines (HB-splines) are based on the selection mechanism devised by Kraft (1998): A level `
B-spline is selected, i.e., it is included into the hierarchical basis, if its support is contained in the associated
domain but not in the next finer one. We obtain the basis

H = {β`i : i ∈ J`, ` = 0, . . . , N}

with the index sets
J` = {i ∈ Zd : suppβ`i ⊆ Ω` ∧ suppβ`i * Ω`+1} (1)

where we set ΩN+1 = ∅ and we consider supports with respect to the domain Ω0 (on which we approximate the
given function). The selected B-splines are denoted as active basis functions. Any active cell of level ` belongs
to the support of at least one function of that level, since Ω` is assumed to be the union of supports of level `
B-splines.

For future reference we state an assumption that we will need in Theorem 5 (see Section 4.2).

Assumption I (Mesh grading). Only elements of two consecutive levels are present in the support of any
selected basis function β`i . Consequently, the active cells in the support of any selected basis function
• have level `, or
• have either level ` or level `+ 1.

Hierarchical B-splines form a non-negative basis of the hierarchical spline space

H = span H = {σ ∈ V N : σ|Ω0\Ω`+1 ∈ V `|Ω0\Ω`+1 ∀` = 0, . . . , N}, (2)

but they do not form a partition of the unity. This property can be restored by the truncation mechanism of
Giannelli et al. (2012). We define the single-level truncation operator trunc` : V ` → V ` as

trunc`(σ) =
∑

i∈Zd\J`
c`iβ

`
i = σ −

∑
i∈J`

c`iβ
`
i if σ =

∑
i∈Zd

c`iβ
`
i , (3)

and the corresponding multi-level version Trunc` : V ` → V N

Trunc`(
∑
i∈Zd

c`iβ
`
i ) = truncN

(
truncN−1

(
. . .
(
trunc`(

∑
i∈Zd

c`iβ
`
i )
)
. . .
))

(4)

Clearly, in order to apply the single level operators to different levels, the output of each operator has to be
represented with respect to the basis of the next level. This can be done easily by the spline refinement rules,
due to the nestedness of the spaces V `.

Truncated hierarchical B-splines (THB-splines) are obtained by applying multi-level truncation (4) to the
basis functions of H,

T = {τ `i = Trunc`+1(β`i ) : i ∈ J`, ` = 0, . . . , N} .
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They form another basis, which is a non-negative partition of unity, of the hierarchical spline space.
In addition, they possess the preservation of coefficients (PoC) property: By definition, any function σ ∈ H

of the hierarchical spline space has local representations

σ|Ω0\Ω`+1 =
∑
i∈Zd

d`iβ
`
i |Ω0\Ω`+1 , ` = 1 . . . , N (5)

on each subdomain Ω0 \Ω`+1. All coefficients of the representation of σ with respect to the truncated basis are
simply inherited from these representations,

σ =

N∑
`=0

∑
i∈J`

d`iτ
`
i . (6)

In other words, the coefficient of each THB-spline τ `i coincides with the coefficient of its mother B-spline β`i in
the local representation (Giannelli et al., 2014).

2.2. Quasi-interpolation in hierarchical spline spaces

We consider linear functionals λ`i : C(Rd)→ R, the construction of which will be discussed below. For any
index set J ⊆ Zd and level `, these define operators

Q`J(f) =
∑
i∈J

λ`i(f)β`i (7)

that transform a continuous function f into a tensor-product spline. In particular, choosing J = Zd gives a
scheme that generates an approximation in the full tensor-product spline space V `.

Each value λ`i(f) depends on the values of f in a certain subdomain, which is called the support of the
linear functional λ`i . More precisely, we have that

λ`i(f) = 0 if suppλ`i ∩ supp f = ∅,

and suppλ`i is the smallest set with this property. In order to benefit from the PoC property, linear functionals
that satisfy the condition

suppλ`i ⊆ suppβ`i ∩ (Ω` \ Ω`+1) if i ∈ J` (8)

have been considered (Speleers and Manni, 2016). The functionals λ`i are said to define tensor-product spline
projectors if Q`Zdf = f for all f ∈ V `. Given functionals λ`i with this property, two particular QI schemes for
hierarchical splines have been studied:

• Kraft (1998) proposed to use the telescopic construction

K0f = Q0
J0f,

K`f = K`−1f +Q`J`(f −K
`−1f), ` = 1, . . . , N ,

Kf = KNf .

• Speleers and Manni (2016) exploit the PoC property and define their scheme, which we will call the
Speleers-Manni scheme (SMS), in terms of THB-splines,

Sf =

N∑
`=0

∑
i∈J`

λ`i(f)τ `i .

These authors also noted that both schemes are equivalent, i.e., they generate the same1 spline function Kf =
Sf for any given f , provided that the one level QI schemes (7) are spline projectors with coefficient functionals
that fulfill the condition (8). This condition also ensures that both schemes perform spline projection.

However, both constructions involve the rather strong restriction (8) on the support of the linear functionals
λ`i . Fig. 2 (left) shows the support of a cubic (T)HB-spline whose support is refined, except for the top left
cell. The associated coefficient is determined by the values of the function in that cell. This cell covers only a
small portion of the support of the function, and does not even contain its maximum. Nevertheless, the two
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Figure 2: Left: Support of a cubic HB-spline (entire box) and of a THB-spline (grey) of level 0 on a hierarchy with two levels,
N = 1. The associated coefficient functional is supported on the larger cell (that belongs to Ω0 \Ω1) in the top left corner. Right:

Hierarchy of 2 levels Ω0 and Ω1, subdomain ∆ = Ω̂0 highlighted in red. We have Ω̂0 = Ω1, hence Ĵ0 = ∅ and Ĵ1 * J1.

spline projectors evaluate the associated coefficient solely by examining the value of the given function within
that cell.

We employ local fitting (Section 4) based on restricted hierarchical spline spaces (Section 3) for the con-
struction of spline projectors for the hierarchical space H. These will take the form

Pβf =

N∑
`=0

∑
i∈J`

µ`i(f)β`i and Pτf =

N∑
`=0

∑
i∈J`

ν`i (f)τ `i (9)

with linear functionals µ`i(f) and ν`i (f) for HB- and THB-splines, respectively. For future reference we note
that

ν`i (s) = d`i for s ∈ H (10)

where d`i is the coefficient appearing in the associated local representation (5), according to PoC (6).

3. Hierarchical splines on restricted domains

We consider the restricted domain, which is a subset ∆ ⊂ Ω0 formed by active cells, i.e., by cells of the
hierarchical mesh. We also associate with ∆ the nested restricted subdomains Ω̂` = ∆ ∩ Ω`, in particular
Ω̂0 = ∆. Analogously to (2), the restricted spline spaces and subdomains define the restricted hierarchical
spline space Ĥ. Note that this space Ĥ is not simply the restriction of the original one to the restricted domain
∆, see Fig. 2 (right). Still we have the following result:

Lemma 1. The restriction of the hierarchical spline space H to the restricted domain ∆ is a subspace of the
restricted hierarchical spline space Ĥ, i.e., H|∆ ⊆ Ĥ.

Proof. Consider s ∈ H. By definition, it satisfies

s|Ω0\Ω`+1 ∈ V `|Ω0\Ω`+1 ∀` = 0, . . . , N,

see (2). Since
Ω̂0 \ Ω̂`+1 = (∆ ∩ Ω0) \ (∆ ∩ Ω`+1) = ∆ ∩ (Ω0 \ Ω`+1) ⊆ Ω0 \ Ω`+1,

it also satisfies
s|Ω̂0\Ω̂`+1 ∈ V `|Ω̂0\Ω̂`+1 ∀` = 0, . . . , N,

and thus it is an element of the restricted hierarchical spline space Ĥ.

We denote with β̂`i and τ̂ `i the HB- and THB-splines defined by the restricted spline bases with respect to

the restricted subdomains Ω̂`. Their indices form the sets

Ĵ` = {i ∈ Zd : ŝuppβ`i ⊆ Ω̂` ∧ ŝuppβ`i * Ω̂`+1},

which are defined analogously to (1), but based on the hierarchy of nested restricted subdomains Ω̂` and using
the supports (which are denoted by ŝupp) with respect to Ω̂0.

It should be noted that the index sets J` and Ĵ` are generally not nested, i.e., J`+Ĵ` in general. Thus,
the restricted index sets are not simply the restrictions of their un-restricted counterparts, see Fig. 2 for a
counterexample.

1although represented with respect to THB-splines for S and HB-splines for K
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Clearly, the HB-splines are identical on ∆, i.e.

β̂`i = β`i |∆, (11)

if i ∈ J` ∩ Ĵ`. This, however, is not valid for THB-splines. Nevertheless, the THB-splines satisfy

τ̂ `i |Ω̂`\Ω̂`+1 = τ `i |Ω̂`\Ω̂`+1 = β`i |Ω̂`\Ω̂`+1

We have the following simple result.

Lemma 2. A selected B-spline β`i , i ∈ J`, is present in the restricted hierarchical basis, i.e., i ∈ Ĵ`, if its
support is contained in the restricted domain, suppβ`i ⊆ ∆. This also applies to the associated truncated
hierarchical B-spline.

In addition to the spline projectors introduced in (9), we will need the restricted spline projectors with
respect to restricted domains ∆. The coefficient functionals will be denoted by µ̂`i(f) and ν̂`i (f) for HB- and
THB-splines, respectively.

Given a THB-spline τ `i , i ∈ Ĵ`, we identify a simple sufficient condition2 on the restricted domain ∆, which
guarantees that the coefficients of any hierarchical spline function s ∈ H are identical.

Proposition 3. Consider the coefficient of a level ` THB-spline τ `j with index j ∈ J`. The original and
restricted THB-spline coefficients are identical,

ν`j (s) = ν̂`j (s|∆) for all s ∈ H,

if the restricted domain ∆ contains the support of the associated HB-spline, i.e., if suppβ`j ⊆ ∆.

Proof. According to Lemma 2, the index j ∈ J` also belongs to Ĵ`, since the support of β`j is contained in the
restricted domain ∆.

Any spline function s ∈ H possesses local representations

s|Ω0\Ω`+1 =
∑
i∈Zd

d`iβ
`
i |Ω0\Ω`+1 , and s|Ω̂0\Ω̂`+1 =

∑
i∈Zd

d̂`i β̂
`
i |Ω̂0\Ω̂`+1 ,

on the “rings” of the original and the restricted hierarchical spline space, respectively. The local linear indepen-
dence of the B-splines, combined with (11), implies that the coefficients are identical, d`i = d̂`i , if the associated

basis functions contribute to this representation, i.e., if β̂`i |Ω̂0\Ω̂`+1 6= 0 (which implies β`i |Ω0\Ω`+1 6= 0). In

particular, this condition is satisfied for the considered index j ∈ J`, hence

d`j = d̂`j . (12)

Indeed, the support of the associated basis function satisfies suppβ`j ⊆ ∆ = Ω̂0 according to the assumption,

and supp β̂`j 6⊆ Ω̂`+1 since j ∈ Ĵ`, thus β̂`j |Ω̂0\Ω̂`+1 6= 0. Finally we combine (12) with the PoC property, see

(10), to conclude

ν`j (s) = d`j = d̂`j = ν̂`j (s|∆).

We define the extended support of a HB-spline,

supp?β`j = aabb
(⋃
{suppβki : suppβki ⊃ suppβ`j , i ∈ Jk, k = 1, . . . , `− 1}

)
,

where aabb denotes the axis-aligned bounding box. For future reference we state an assumption that we will
need in Theorem 6 (see Section 4.3).

Assumption II (Strong mesh grading). Only elements of two consecutive levels are present in the extended
support of any selected basis function β`i . Consequently, the active cells in the extended support of any selected
basis function
• have level `, or
• have either level ` or level `− 1, or
• have either level ` or level `+ 1.

2While the detailed investigation of weaker conditions is beyond the scope of the present paper, we note that it suffices if ∆
contains at least one active cell of level ` that belongs to suppβ`

j , according to PoC.
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Now we extend the sufficient condition3 stated in the previous proposition to HB-splines.

Proposition 4. Consider a level ` HB-spline β`j with index j ∈ J`. The original and restricted HB-spline
coefficients are identical,

µ`j(s) = µ̂`j(s|∆) for all s ∈ H, (13)

if the restricted domain ∆ contains the extended support of the HB-spline, i.e., if supp? β`j ⊆ ∆.

Proof. According to Lemma 2, the index j ∈ J` also belongs to Ĵ`, since the support of β`j , which is a subset
of the extended support, is contained in the restricted domain ∆. Any given function s ∈ H possesses two
representations on ∆,

s|∆ =

N∑
k=0

∑
i∈Jk

νki (s)τki |∆ and s|∆ =

N∑
k=0

∑
i∈Ĵk

ν̂ki (s|∆)τ̂ki , (14)

with respect to the restrictions of the globally defined THB-splines and with respect to the THB-splines defined
by the restricted spline bases, respectively. The previous result guarantees the equality νki (s) = ν̂ki (s|∆) of the
coefficients whenever the associated B-splines satisfy suppβki ⊆ ∆.

Both versions of the THB-splines admit representations in terms of HB-splines, from which they are con-
structed via truncation, see (3). These representations take the form

τki |∆ = βki |∆ −
N∑

k′=k+1

∑
i′∈Jk′

ck,k
′

i,i′ β
k′

i′ |∆ and τ̂ki = β̂ki −
N∑

k′=k+1

∑
i′∈Ĵk′

ĉk,k
′

i,i′ β̂
k′

i′ (15)

with certain truncation coefficients ck,k
′

i,i′ and ĉk,k
′

i,i′ The following observations are in order.

(i) The corresponding truncation coefficients are identical, i.e. ck,k
′

i,i′ = ĉk,k
′

i,i′ , if the support of the associated

HB-spline satisfies suppβki ⊆ ∆.

(ii) The truncation coefficients ck,k
′

i,i′ and ĉk,k
′

i,i′ are non-zero only if the supports satisfy suppβk
′

i′ ⊆ suppβki
and supp β̂k

′

i′ ⊆ supp β̂ki , respectively,

Substituting (15) into (14) transforms the THB-spline representation into the HB-spline representation. After
re-arranging the sums we arrive at

s|∆ =

N∑
k=0

∑
i∈Jk

µki (s)βki |∆ and s|∆ =

N∑
k=0

∑
i∈Ĵk

µ̂ki (s|∆)β̂ki .

In particular, the two coefficients considered in (13) evaluate to

µ`j(s) = ν`j (s)−
`−1∑
k=0

∑
i∈J`

ck,`i,j ν
k
i (s)︸ ︷︷ ︸

(?)

and µ̂`j(s|∆) = ν̂`j (s|∆)−
`−1∑
k=0

∑
i∈Ĵ`

ĉk,`i,j ν̂
k
i (s|∆)

︸ ︷︷ ︸
(?)

In both sums, the two coefficients ck,`i,j and ĉk,`i,j are nonzero only if

suppβki ⊇ suppβ`j and supp β̂ki ⊇ supp β̂`j ,

according to (ii). Moreover, under these conditions, the coefficients even take the same values, ck,`i,j = ĉk,`i,j ,

since suppβki ⊆ supp?β`j ⊆ ∆, as noted in (i). Finally we note that the latter condition also ensures that the

associated THB-spline coefficients are identical, νki (s) = ν̂ki (s|∆), according to Proposition 3. These three ob-
servations imply that the two double sums (?) take the same value. We complete the proof by using Proposition
3 once more, which confirms ν`j (s) = ν̂`j (s|∆).

3Again we note that the investigation of necessary and sufficient conditions is beyond the scope of this paper.
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4. Defining spline projectors by local fitting

We recall the local fitting procedure and use it for defining THB- and HB-spline projectors.

4.1. Local fitting

We consider a linearly independent system of functions Φ = {φk : k ∈ K} defined on a given restricted
domain ∆, where K is a finite index set. We assume that the domain is equipped with nodes (i.e., sampling
points) us ∈ ∆ with associated positive weights ws, s ∈ S, where S is another finite index set.

Discrete least-squares fitting considers the over-constrained linear system Ac = f with

A = (
√
wsφk(us))s∈S,k∈K , c = (ck)k∈K , and f = (

√
wsf(us))s∈S ,

which is solved in the least-squares sense, resulting in c = (ATA)−1AT f . A unique least-squares solution exists
for certain configurations of nodes that are determined by the system Φ. The resulting function

σ =
∑
s∈S

csφs

minimizes the Euclidean norm of the residual vector ‖(√ws
(
f(us)− σ(us))s∈S‖ among all functions in span Φ.

Two specific cases will be considered in the next two sections. Clearly, the result depends on the choice of
nodes and weights. If we consider spline functions φk, then the resulting function is the best approximation
with respect to the L2 norm if the quadrature rule defined by nodes and weights exactly integrates the products
φkφk′ and fφk, and it produces an approximation otherwise.

We focus on two possibilities to define the nodes and weights:

(a) We consider the Gauss points and weights on the restricted mesh. More precisely, we choose (p + 1)d

Gauss points per element, and we scale the Gauss weights by the volume of the element.

(b) We consider a tensor-product grid of interpolation points, which is unisolvent for the finest tensor product
space that is active on ∆. All the weights are set to 1.

Appendix A describes the smart sampling method, which efficiently generates the points needed for the second
choice (b). It will be shown that the total number of required function evaluations does not exceed 10d|H|.

4.2. The THB-spline projector

We define the functionals ν`i that generate the coefficients of the THB-spline projector. Given a fixed level
`0 and an index i0 ∈ J`0 , we choose the restricted domain ∆ = suppβ`0i0 and we consider the THB-splines

τ̂ `i defined on it. These functions form the system Φ. Now, given a function f , we perform local fitting as
described in the previous section and assign the value of the coefficient associated with τ̂ `0i0 to ν`0i0 (f).

For the first choice (a) of nodes, the least-squares solution of the linear system is unique, since the matrix
ATA is simply the mass matrix of the system Φ. The uniqueness is also given for the second choice (b), since
one may consider the inner product defined by the tensor-product grid of interpolation points instead of the
L2 inner product. This procedure defines a spline projector (9) according to Proposition 3.

We analyze the computational costs per coefficient, focusing on the second choice (b) of nodes: The restricted
domain ∆ consists of at most (p + 1)d cells of level `0. The active cells belong to the levels `0 and `0 + 1 of
the subdomain hierarchy, due to Assumption I about the mesh grading. The number of possible cases is thus

bounded by 2(p+1)d , since cells of level `0 + 1 are created by refining blocks of cells of level `0.
Figure 3 lists the 44 possible configurations for p = d = 2. The upper bound is rather pessimistic.
Assumption I also implies that the grid of nodes can be chosen such that it contains no more than Cg p

d

points, where the constant Cg does not depend on the polynomial degree p. See Appendix A for more details.
We may assume that all the matrices (ATA)−1AT that may occur have been pre-computed and stored in

a look-up table. In fact, it suffices to store the row vectors that correspond to the coefficients ν`0i0 (f). In each

specific situation, finding the right entry in the table via binary search requires not more than log 2(p+1)d =
O(pd) steps.

In addition, we need to evaluate f at a tensor-product grid of nodes containing O(pd) nodes, and to compute
the inner product with the pre-computed row vector. If smart sampling is employed, then the total number of
function evaluations (which are assumed to take constant time) is O(|H|).

We summarize the results:

Theorem 5. Consider the functionals ν`i defined by local fitting with respect to the restricted domain suppβ`i ,
using a unisolvent set of nodes.

8



Figure 3: Possible configurations of the restricted domain ∆ for p = 2 in the case of THB-splines (up to symmetries).

(i) The linear operator Pτ is a THB-spline projector.

(ii) When using the second choice of nodes, the evaluation of the spline coefficients requires O(pd) flops and
O(1) function evaluations per degree of freedom if Assumption I is satisfied.

In contrast to this, the first choice (a) leads to higher computational costs, since the values of f at O(p2d)
nodes are used. Even though the first choice should give a better approximation of the (local) L2 projection,
our experiments did not lead us to observe significant differences between the computational results for the two
different choices of the nodes.

In addition to this result, we also obtain a bound

|ν`i0(f)| ≤ Cτ‖f‖∞,supp β`i
(16)

with the constant
Cτ = Cg p

d max
all cases

‖(ATA)−1AT ‖∞

where ‖.‖∞ is the element-wise maximum norm of a matrix. Recall that Cg p
d is an upper bound on the number

of evaluation points.

4.3. The HB-spline projector

Now we define the functionals µ`i that generate the coefficients of the HB-spline projector.
Given a fixed level `0 and an index i0 ∈ J`, we choose the restricted domain ∆ as the extended support

supp? β`0i0 and we consider the HB-splines β̂`i defined on it. These functions form the system Φ. Similar to the
previous case, we have the two main possibilities (a) and (b) for defining interpolation nodes and weights.

Now, given a function f , we perform local fitting as described in the previous section and assign the value
of the coefficient associated with β̂`0i0 to µ`0i0 (f). The same arguments as for THB-splines prove the uniqueness
of the solution. This procedure defines a spline projector (9) according to Proposition 4.

We analyze the computational costs per coefficient, focusing on the second choice of nodes. Any restricted
domain ∆ contains at most two levels, due to Assumption II. We distinguish between two cases: First, if
∆ = suppβ`0i0 , only cells of levels `0 and `0 + 1 are present. The number of possible cases does not exceed

2(p+1)d , since there are (p + 1)d cells of level `0. Second, if ∆ 6= suppβ`0i0 , only cells of levels `0 and `0 − 1

are present. In this situation, the number of cells of level `0 − 1 does not exceed d 3p+3
2 e

d. Consequently, the

number of possible cases does not exceed 2d
3p+3

2 ed .
Again, Assumption II also implies that the grid of nodes can be chosen such that it contains no more than

Cg p
d points, where the constant Cg does not depend on the polynomial degree p. See Appendix A for more

details.
Once more, we may assume that all possible matrices (ATA)−1AT (more precisely, the row vectors that

corresponds to the coefficient µ`0i0 (f)) have been pre-computed and stored in a look-up table. In each specific

situation, finding the right entry in the table via binary search requires O(pd) steps. In addition, we need
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to evaluate f at a tensor-product grid containing O(pd) nodes, and to compute the inner product with the
pre-computed row vector.

We summarize the results:

Theorem 6. Consider the functionals µ`i defined by local fitting with respect to the restricted domain supp? β`i ,
using a unisolvent set of nodes.

(i) The linear operator Pβ is a HB-spline projector.

(ii) When using the second choice of nodes, the evaluation of the spline coefficients requires O(pd) flops and
O(1) function evaluations per degree of freedom if Assumption II is satisfied.

Similar to the case of THB-splines, we additionally obtain a bound

|µ`i(f)| ≤ Cβ‖f‖∞,supp∗β`i
. (17)

with the constant
Cβ = Cgp

d max
all cases

‖(ATA)−1AT ‖∞.

5. Approximation using adaptive refinement

Given a function f : Ω0 → R, we compute a hierarchical spline approximation as follows:

1. The number of levels is initialized by N = 0.
2. Compute the spline approximation Pγf with respect to one of two bases, i.e., for γ = β and γ = τ , see

(9). The coefficient functions are defined by local fitting, see Section 4.
3. Mark the elements e ∈ E of the hierarchical mesh associated with Pγ that are identified by the refinement

indicator and collect the marked elements, and the elements in the neighborhood whose size is specified
by the extension parameter, in the set E?.

4. Terminate the iteration if E? = ∅. Otherwise create the refined subdomain hierarchy, as follows:

• Increase N by 1 and initialize ΩN by the empty set.

• Increase the level of each marked element e ∈ E? by one. More precisely, add e to Ωlevel(e)+1 where
level(e) = max{` : e ⊆ Ω`}.

• Restore the mesh grading by applying a suitable closure operation to the subdomain hierarchy.
See Buffa et al. (2016) for a detailed discussion of mesh refinement algorithms.

5. Continue with Step 2.

The refinement is driven by the maximum error. Given a tolerance ε, we mark an element e if

‖f − Pγf‖∞,e ≥ ε, (18)

where either γ = β or γ = τ . In addition, the refinement depends on the extension parameter, which controls
the locality of the refinement process. While the refinement region needs to be large enough to create sufficiently
many new degrees of freedom, it should also remain as local as possible in order to keep the data volume small.
Moreover, it is desirable to avoid the frequent re-computation of individual coefficients. A more detailed analysis
of the choice of the refinement strategies is beyond the scope of the present paper, see also Kiss et al. (2014).

Given a hierarchical mesh, which is defined by a subdomain hierarchy, we define for each element e the
index sets that contains indices of active basis functions,

J`,eγ = {i ∈ J` : γ`i |e 6= 0}, ` = 0, . . . , N

for the cases of HB-splines (γ = β) and THB-splines (γ = τ). Clearly we have J`,eτ ⊆ J`,eβ . We use these sets
to define the support extension

ext(e) =
⋃

`=0,...,N

i∈J`,eτ

suppβ`i ,

and the extended support extension

ext?(e) =
⋃

`=0,...,N

i∈J`,eβ

supp? β`i .

Again we get e ⊆ ext(e) ⊆ ext?(e). After these preparations we can now state our result concerning the
approximation order, which is based on the fact that spline projectors reproduce polynomials:
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Theorem 7. Given a function f ∈ Cp+1(Ω), the element-wise maximum error can be estimated by

‖f − Pγf‖∞,e ≤ Cdiam(e)p+1 max
|α|=p+1

‖Dαf‖∞,ext[?](e) (19)

where either γ = β for HB-splines or γ = τ for THB-splines, where the maximum norm on the right-hand
side considers the restriction to the extended support extension ext?(e) or to the (standard) support extension
ext(e), respectively.

Proof. Denoting by Tef the Taylor polynomial of degree p of f at the center of e, the triangle inequality gives

‖f − Pγf‖∞,e ≤ ‖f − Tef‖∞,e + ‖Pγ(f − Tef)‖∞,e

since Pγ reproduces polynomials of degree p. A bound for the first term is obtained by the standard error
estimate for Taylor expansions,

‖f − Tef‖∞,e ≤ Cp diam(e)p+1 max
|α|=p+1

‖Dαf‖∞,e

where the constant is independent of f .
We now analyze the second term in the case of THB-splines, obtaining

‖Pτ (f − Tef)‖∞,e = ‖
N∑
`=0

∑
i∈J`

ν`i (f − Tef)τ `i ‖∞,e ≤ max
`=0,...,n

max
i∈J`,eτ

|ν`i (f − Tef)|

since the THB-splines form a convex partition of unity. Using (16) and again the standard estimate for Taylor
series gives

|ν`i (f − Tef)| ≤ Cτ‖f − Tef‖∞,ext(e) ≤ CτCpdiam(ext(e))p+1 max
|α|=p+1

‖Dαf‖∞,ext(e)

According to Assumption I (mesh grading), the support extension satisfies

diam(ext(e)) ≤ (4p+ 2)diam(e).

Combining this observation with the previous four inequalities confirms (19) for THB-splines with

C = Cp(1 + (4p+ 2)p+1Cτ ).

The case of HB-splines can be dealt with similarly: Analyzing the second term gives

‖Pβ(f − Tef)‖∞,e = ‖
N∑
`=0

∑
i∈J`

µ`i(f − Tef)β`i ‖∞,e ≤ 2 max
`=0,...,n

max
i∈J`,eτ

|µ`i(f − Tef)|

since B-splines of no more than two levels are present in each cell (according to the mesh grading assumptions)
and the B-splines within each level form a convex partition of unity. Using (17) and the standard result for
Taylor series gives

|µ`i(f − Tef)| ≤ Cβ‖f − Tef‖∞,ext?(e) ≤ CβCpdiam(ext?(e))p+1 max
|α|=p+1

‖Dαf‖∞,ext?(e)

According to the Assumption II (strong mesh grading), the extended support extension satisfies

diam(ext?(e)) ≤ (4p+ 2)diam(e).

Combining this observation with the previous four inequalities confirms (19) with

C = Cp(1 + 2(4p+ 2)p+1Cβ).
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6. Experimental results

We perform several numerical experiments to validate and underline some relevant features of our approach.
The entire implementation has been carried out in C++ with the use of the G+Smo library (Mantzaflaris et al.,
2019).

Example 1. We perform adaptive approximation of the function

f(x, y) = 1− tanh

(√
x2 + y2 − 0.3

0.05
√

2

)
, (x, y) ∈ [−1, 1]2,

which was taken from the work of Hennig et al. (2018). The approximation obtained with our scheme is
compared with the global fitting strategy described by Kiss et al. (2014), and with uniform refinement. The
value of the extension parameter (see Step 3) is set to p. The algorithms terminate if the maximum error is
below a certain threshold (in this example ε = 1e-4).

Table 1 summarizes the obtained results. The results obtained by global fitting and by local fitting-based
quasi-interpolation with HB and THB-splines are quite similar (We even obtain the same meshes and virtually
the same maximum error, except for depth 5). In fact, a slightly smaller number of degrees of freedom suffices to
reach the desired accuracy via quasi-interpolation. As to be expected, many more degrees of freedom are needed
to achieve the same accuracy when using uniformly refined tensor-product (TP) splines. The convergence rates
are depicted in Fig. 4.

Quasi interpolation Global fitting

p depth DoF error (HB) error (THB) DoF (THB) error (HB & THB) DoF (TP) error (TP)

2

1 324 1.684e-1 1.684e-1 324 1.243e-1 324 1.243e-1
2 1012 2.213e-2 2.213e-2 1128 1.811e-2 1156 1.811e-2
3 2076 2.016e-3 2.016e-3 2512 1.545e-3 4356 1.545e-3
4 4648 1.688e-4 1.688e-4 4948 1.485e-4 16900 1.485e-4
5 7248 9.103e-5 9.103e-5 7420 7.227e-5 66564 1.903e-5

3

1 361 1.343e-1 1.343e-1 361 9.676e-2 361 9.676e-2
2 1225 1.491e-2 1.491e-2 1225 1.142e-3 1225 1.142e-2
3 2593 5.780e-4 5.780e-4 2977 3.526e-4 4489 3.527e-4
4 4753 5.019e-5 2.845e-5 4921 3.913e-5 17161 1.972e-5

Table 1: Example 1 – Maximum errors and degrees of freedom for approximation via quasi interpolation or global fitting with
HB-splines, THB-splines and tensor-product (TP) splines.
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Figure 4: Example 1 – Convergence rates for p = 2 (left) and p = 3 (right)

While we got identical meshes for HB- and THB-splines in this experiment, this is not always the case. Table
2 reports the result for biquadratic splines using the extension parameter 1, where the generated hierarchical
meshes and the associated numbers of degrees of freedom for HB- and THB-splines are slightly different. Even
though the maximum errors are again identical, the distribution of the error (shown in Fig. 5) is not.

Example 2. We approximate the function

f(x, y) =
1

9
(tanh(9y − 9x) + 1) +

1

1.5 exp((10x− 6)2 + (10y + 7)2)
, (x, y) ∈ [−1, 1]2
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HB THB
p depth DoF error DoF error

2

1 324 1.684e-1 324 1.684e-1
2 760 2.213e-2 760 2.213e-2
3 1580 2.016e-3 1580 2.016e-3
4 3672 1.688e-4 3696 1.688e-4
5 5360 8.933e-5 5384 8.933e-5

Table 2: Example 1 – Results for biquadratic HB- and
THB-splines with extension parameter 1

Figure 5: Error distribution for the HB- (left) and THB-spline
(right) approximations for depth 5, cf. Table 2

that has been considered by Bracco et al. (2018), using adaptive spline refinement. We set again ε = 1e-4.
Here we exploit the observation that many of the coefficients have been computed during previous steps of the
iterative refinement process. This is in contrast with global approximation strategies that require the solution
of one large linear system per iteration. Table 3 shows the error and the number of computed coefficients per
iteration. It is worth noting than even though the use of HB-splines leads to a larger restricted domain ∆
associated with each basis function, this does not have much impact on the locality of the approach. (Again,
the refinement processes creates the same meshes for HB- and THB-splines, and also the values of the error
are virtually identical in almost all cases.)

Quasi interpolation Computed coeffs.

p depth DoF error (HB) error (THB) HB THB

2

1 324 1.185e-1 1.185e-1 324 324
2 1044 2.088e-2 2.088e-2 1016 1016
3 2678 1.421e-3 1.421e-3 2408 2384
4 3376 1.245e-4 1.245e-4 1064 1030
5 3785 9.688e-5 9.688e-5 616 616

3

1 361 1.660e-1 1.660e-1 361 361
2 1150 1.081e-2 1.081e-2 1135 1135
3 3040 2.220e-4 2.220e-4 2826 2793
4 3421 4.408e-5 2.781e-5 617 617

Table 3: Example 2 – Maximum errors and computed coefficients

Example 3. We explore the impact of Assumptions I and II, and of the extension parameter. The latter
parameter controls the size of the neighborhood of a marked element that is subject to refinement, see Step 3
of the algorithm in Section 5. We perform adaptive approximation of the function

f(x, y) =
1

5 exp((10x)4 + (10y)4)

with Ω = [−1, 1]2 and ε = 1e-4. We use either HB- or THB-splines and vary the degree and the extension
parameter. We compare the average size of the linear systems.

Three observations are in order. First, the use of mesh grading leads to a smaller average size of the linear
systems. According to the theory, Assumptions I and II ensure that the size varies between (p+2)d and (2p+3)d

for THB-splines, and between (p + 2)d and (p + 2b 3p+3
2 c)

d for HB-splines. In practice, the average size is far
less than the upper bound. Second, increasing the extension parameter has a similar effect as mesh grading.
Third, the linear systems for HB-splines have a larger size.

We compare our QI scheme with SMS (Speleers and Manni, 2016), which was constructed in terms of
THB-splines. In order to do so, we apply our scheme to two given functions, both defined in [−1, 1]2, that were
considered in that paper, adopting the same setting. More precisely,

• we adopt manually created sequences of refined meshes (see Fig. 3 of Speleers and Manni, 2016), and

• we evaluate the maximum error on a fixed regular grid of 150× 150 points.

In addition, we also compare the results created by the automatic mesh refinement algorithm.

Example 4. The first function is

f(x, y) =
tanh(9y − 9x) + 1

9
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THB-splines HB-splines
without grading with grading without grading with grading

p ext. #lin. syst. avg. size #lin. syst. avg. size #lin. syst. avg. size #lin. syst. avg. size

2
1 5244 27.272 5520 26.962 5244 45.682 5520 39.342

2 6888 26.802 6960 26.762 6888 38.162 6960 37.722

3
1 3160 52.732 3412 51.882 3160 103.512 3412 82.642

2 4024 52.672 4228 52.352 4024 89.392 4228 82.442

3 5320 50.952 5344 50.942 5320 79.382 5344 78.702

4

1 3976 94.332 5412 82.642 4672 347.012 5864 125.002

2 4608 89.352 5740 82.922 4608 192.622 5740 128.972

3 6264 83.482 6620 80.932 6264 144.802 6620 116.222

4 7128 82.692 7324 81.252 7128 130.392 7324 115.272

Table 4: Example 3 – Number and average size of the linear systems during the refinement process
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Figure 6: Comparison of the maximum error for the Examples 4 (left) and 5 (right) with manually created meshes and errors with
respect to a fixed grid (top row) and for meshes created by automatic refinement (bottom row).

Figure 6 (left column) compares the approximations obtained by the two schemes. Our method results in
a slightly better or comparable accuracy in almost all the cases4. Note that the finest grid (level 6), when
considered on the entire domain, consists of 128× 128 points. Using only 150× 150 points for error estimation
may not suffice. The higher accuracy of our method is also present for meshes created by automatic refinement.
We used ε = 1e− 5 for p = 2 and ε = 1e− 6 for p ≥ 3.

Example 5. The same setting as in the previous example is applied to the function

f(x, y) = 2

3 exp
(√

(10x−3)2+(10y−3)2
) + 2

3 exp
(√

(10x+3)2+(10y+3)2
) + 2

3 exp
(√

(10x)2+(10y)2
)

The obtained results are shown in the right column of Figure 6. Also in this case, our method reveals a slightly
better accuracy in almost all cases. For the manually created meshes (top row), the grid of points used to
estimate the error might lead to inaccurate results. We used ε = 1e − 2 for the automatic mesh refinement
algorithm (bottom row).

4Speleers (2017) applies his QI schemes (which reproduce polynomials but not splines) to this function also. While the (manually
created) sequence of refined meshes is slightly different in that paper, the results still indicate that sacrificing the spline projector
property leads to a slight increase of the error, while the rate of convergence remains the same.

14



Example 6. Finally, we present an example that reveals another significant advantage of out method. We fit
the function from Example 3

f(x, y) =
1

5 exp((10x)4 + (10y)4)

on Ω = [−1, 1]2 using automatic refinement with threshold ε = 1e-4. Figure 7 shows the errors and the DoFs
obtained with the two schemes (our scheme and SMS) using THB-splines of degree 3. SMS leads to non–
symmetric meshes, even though the function is symmetric, see Fig. 8. This is due to the choice of performing
quasi-interpolation via interpolation in only one of cells that form the support of the selected basis function,
in agreement with (8).
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Speleers-Manni

Figure 7: Maximum error obtained by adaptive refinement
using our QI scheme and SMS for p = 3.

Figure 8: Meshes obtained at the finest level, see Figure 7,
using our QI scheme (left) and SMS (right) for p = 3.

Example 7. Finally we present a simple one-dimensional example that illustrates the differences between our
scheme for THB-splines and SMS. We use both schemes to approximate y = |x| by quadratic hierarchical
splines on [-1,1] defined on two levels with knot spans of length 1/8 and 1/16, where refinement took place
on the interval [−1/8, 1/8], see Fig. 9. SMS (blue) preserves the original approximation outside of the refined
domain, whereas our scheme recomputes the coefficients of all functions in the support extension of the refined
domain. In the first case, the error is more concentrated and larger, while it is more spread out and thus lower
for the second method.
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Figure 9: Approximation (left) and comparison of the error (right)

Remark. Finally we compare the computational costs of our spline projector for THB-splines with SMS:

• First we analyze the number of required sample points. We give a rather conservative (but degree-
independent) upper bound (10d) for the number of such points per degree of freedom in Proposition 9. In
practice, the ratio is closer to the lower bound of 2d, which is realized when considering uniform meshes
(N = 0), see Fig. 10. As noted by Speleers (2017) for d = 2, SMS requires “on average pd” (and not more
than (p+ 1)d) samples per degree of freedom.

• Both schemes generate the THB-spline coefficients by evaluating linear combinations of samples values
with predefined weights, and the number of floating point operations (flops) amounts to twice the number
of sample points. Our method requires 2(4(p+ 1) + 1)d flops per coefficient, thus approximately 4d times
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Figure 10: A domain Ω0 ⊂ R2 consisting of 2n× 2n cells of level 0 is repeatedly refined by selecting the central n× n cells of each
level ` to form the next level subdomain. Assumption I is satisfied if n ≥ 4p. The plot reports the limit of the number of sample
points per degree of freedom as N →∞ for various instances of n. For any fixed degree p, that value tends to 4 as n→∞.

as many as SMS, which needs 2(p + 1)d flops per coefficient. Clearly, the evaluation of the THB-spline
coefficients is ideally suited for parallel computing. Without using pre-computed inverse matrices, the
computational costs would amount to O(p3d) flops per degree of freedom for both methods, again with a
smaller constant for SMS and with the option of parallelizing the computations.

7. Conclusion

We proposed a novel QI scheme based on a local least-squares fitting. This defines two new spline projectors,
one each for HB- and for THB-splines, which are formulated within a unifying framework. Moreover, we pro-
vided a detailed analysis of the computational complexity, which showed that the costs are comparable to Kraft
(1998) for HB-splines and Speleers and Manni (2016) for THB-splines. We also analyzed the required number
of sampled function values, showing that O(1) evaluations are sufficient to obtain spline projectors. Naturally,
the computational costs grow with the degree p and with the dimension d, thereby imposing limitations on
the applicability of the method, which can, however, be addressed to some extent via parallel computing. The
theoretical results ensure the efficiency of the proposed scheme and provides meaningful indications on how to
apply it effectively. The approximation properties of the projector were analyzed, and an adaptive refinement
strategy was presented. The interdependence between the theoretical results achieved in the paper is summa-
rized in Fig. 11. Numerical experiments were performed, showing that one obtains an accuracy comparable to
the one of global approximation techniques.

Furthermore, a comparison with the QI scheme proposed by Speleers and Manni (2016) was carried out.
Our construction

• is based on a unifying framework for HB- and THB-splines, while SMS is limited to THB-splines,

• guarantees the spline projector property with O(1) evaluations per degree of freedom,

• was shown experimentally to preserve certain symmetries of the given function better than SMS, and

• seems to give slightly lower errors in almost all computational experiments that we performed.

While it was possible to maintain overall the computational complexity, these advantages come at the price of
higher computational costs, i.e., of a larger constant in the complexity estimate. Additionally, more computer
memory is needed to store the look-up table that is used to generate the spline coefficients.

Future work will be devoted to the extension of the proposed approximation scheme to scattered data
sets, both concerning the theory and the algorithmic aspects. In fact, local approximation strategies facilitate
the use of parallel computing approaches. This might be further addressed to increase the efficiency of the
current implementation. Future work may also include the extension to non-uniform meshes, where the use
of pre-computed look-up tables is not possible. Finally, the application of the proposed scheme to IgA related
problems, such as matrix assembly for hierarchical splines will be addressed, extending the results of Pan et al.
(2019).
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Figure 11: Dependencies between the assumptions and results
in this paper

Figure 12: Left: Full set of candidate sample points. Right:
grid of sample points on a restricted domain ∆ (grey) for p = 1.

Appendix A. Smart sampling

Any restricted domain ∆ contains active cells of at most two levels, and it can be covered by (active and
in-active) cells of the finer one among these two levels. We construct the grid on ∆ by splitting each of these
covering cells into 2d cells via dyadic subdivision and placing the grid points at the cells’ vertices. Consequently,
all the grid points are vertices of the mesh that is created by subdividing each active cell into 4d cells via 4-adic
subdivision. These vertices form the set of candidate sample points, see Fig. 12.

Proposition 8. For the restricted domains ∆ considered in Section 4.2 and 4.3, the grid contains O(pd) nodes
and is unisolvent for the restricted hierarchical spline space Ĥ.

Proof. Any restricted domain ∆ consist of O(pd) cells of the finer level and we sample at most 3d nodes per
cell. The unisolvency is guaranteed since these grids are unisolvent for the full space of tensor-product splines
defined on the finer grid, and the restricted hierarchical spline space is a subspace thereof. The unisolvency for
tensor-product splines follows from the Schoenberg-Whitney conditions and the fact that the ∆ consists of at
least (p+ 1)d cells of the finer level.

Proposition 9. The total number of grid points (and hence the number of required function evaluations) does
not exceed 10d|H|.

Proof. First we note that the total number of grid points is bounded by 5dnac, where nac denotes the number
of active cells. Second, we consider all pairs of (T)HB-splines and active cells, where the cells are contained in
the support of the (T)HB-spline. The number of such pairs is bounded from below by (p + 1)dnac, since the
(T)HB-splines span the full space of tensor-product polynomials on each active cell. It is also bounded from
above by 2d(p+ 1)d|H|, according to Assumption I. Consequently, nac ≤ 2d|H| and the result follows.

Finally we note that this counting – which is based on set of candidate sample points – leads to an over-
estimation of the required number of evaluations. Indeed, it suffices to perform 4-adic subdivision only for
active cells that are “close” to the cells of next finer level. More precisely, in order to generate the sample
points for THB-splines,

• the active cells within the offset region5 of the subdomain Ω`+1 formed by p layers of cells of level ` need
to be subdivided into 4d cells via 4-adic subdivision,

• it suffices to subdivide all other cells into 2d cells only, via binary subdivision.

The vertices of the refined mesh form the set of sample points. A similar observation applies to HB-splines.
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