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Abstract

Computing low-rank approximations of a given function is a key step for implementing
efficiently numerous algorithms in various fields, including the discretisation of non-local
integral operators and Isogeometric Analysis. The adaptive cross approximation (ACA) al-
gorithm is an efficient method requiring few computational resources introduced by Beben-
dorf. We introduce in the present paper the new paradigm of approximating the given
function by a piecewise low-rank function with C1-regularity. The proposed approxima-
tion is based on the ACA algorithm and our main contribution is the extension of the
interpolation property characterising this algorithm to Hermite interpolation. Therefore,
we introduce a new method for low-rank Hermite interpolation using a limiting case of the
ACA algorithm. The proposed method has full approximation order. We then propose
a piecewise low-rank approximation with adaptive refinement using either the ACA algo-
rithm or our new method to compute each piece. We finally compare the results obtained
for the two methods.

Keywords: cross approximation, Hermite interpolation, low-rank approximation

1. Introduction

In the present paper we focus on the approximation of a given bivariate function with
a sum of products of univariate functions. This so-called low-rank approximation has
received a lot of attention, see [1] and references therein, and [2]. A first approach to
perform this approximation uses the singular value decomposition [3, 4]. This method
has clear theoretical foundations, but is computationally expensive. A method reducing
drastically the resources needed, the adaptive cross approximation (ACA) algorithm, has
been introduced by Bebendorf in [2].

To estimate the error made by this approximation, the author focused on the case of
integral operators with kernels satisfying a reasonable asymptotic decay. Schneider then
showed in [5] that, under a particular choice of the points, the error can be controlled by
the infimum of the error in the L∞-norm over all the functions having the expected rank.
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One can find in [6] a review of low-rank approximations of matrices, including the ACA
algorithm for the case where the matrix arises from the sampling of a function on a grid.

Such approximations are notably used to implement efficient discretisations of integral
operators. Indeed, a specificity of these non-local operators is that the resulting matrices
are dense. Nevertheless, under some reasonable asymptotic assumptions on the kernel, a
data sparse approximation of these matrices follows from their decomposition into blocks
with low-rank [7, 8, 9]. Moreover, the low-rank approximation of the blocks is a direct
consequence of the low-rank approximation of the considered kernel.

More recently, in the field of Isogeometric Analysis [10], the authors of [11] have used
low-rank approximations to improve significantly the implementation of the discretisation
of partial differential equations. Indeed, to operate isogeometric discretisations of PDEs,
one mainly uses tensor spline bases mapped to the physical domain by a global parame-
terisation. The authors of [11] then used the tensor structure to decompose the Galerkin
matrix into Kronecker products of matrix factors with small dimensions. Similarly to the
case of integral equations, the key step is a low-rank approximation of the kernel (density
of the integral).

An algorithm to approximate a bivariate function by low-rank splines using the ACA
algorithm has then been proposed in [12]. The decomposition of the matrix obtained in
[11] is even crucial when considering higher dimensions to avoid prohibitive computational
costs [13, 14]. The rank of the aforementioned kernel depending directly on the rank of the
parameterisation, another way to obtain low-rank kernels is to directly construct low-rank
parameterisations. To this end, an optimisation approach has successfully been applied in
[15] to construct low-rank parameterisations of physical domains delimited by four given
curves.

On the other hand, interpolation methods, such as Coons patches [16], can be applied to
construct parameterisations. An interpolation algorithm generating low-rank parameteri-
sations has then been proposed in [17]. In a second paper, the authors have generalised this
method in order to interpolate multiple curves [18]. They also showed that this method is
equivalent to the ACA algorithm, this latter having the advantage of choosing adaptively
the points. Indeed, the ACA algorithm performs a low-rank approximation of a given
function using the restrictions of this function to some x-lines and y-lines, permitting it to
be equivalently used as an interpolation method.

Contrary to the error estimates of the ACA algorithm presented in [2, 5], the authors
of [18] focus on local estimations and show that this method has full approximation order.
This motivates the approach taken in the present paper: we approximate hierarchically
a given function by a piecewise low-rank function. The main bottleneck is to obtain C1-
continuity of the result, leading us to low-rank Hermite interpolation. We note that we
could obtain Hermite interpolation using blending functions [19], but the result may have
high rank. Therefore, we focus in the first sections of this paper on the development of a
new method for low-rank Hermite interpolation.

The proposed method results from a limiting case of the ACA algorithm, renamed as the
cross algorithm (CA) in what follows to underline that the points are fixed in our approach.
A closed-form solution is first proposed. We then present an efficient implementation of
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this closed-form solution using an extension of the CA algorithm. We also prove that this
new method has full approximation order. We finally show the efficiency of the piecewise
low-rank approximation by numerical examples in the last section.

2. Preliminaries and main results

After recalling the Cross Approximation (CA) algorithm and its properties [2, 18], we
outline below the main ideas of the present paper, as well as the main results.

The CA algorithm permits to approximate a bivariate function f ∈ C1,1(Ω) defined on
a tensor domain Ω = Ωx × Ωy, with Ωx,Ωy ⊂ R two bounded intervals, by a sum of few
products, say n ≥ 1, of univariate functions. To recall this algorithm, let us first pick the
following real values: x1, ..., xn ∈ Ωx and y1, ..., yn ∈ Ωy. We then denote respectively by
L1, ..., Ln and C1, ..., Cn the x-lines and the y-lines associated with these points, i.e.,

Li = {(x, yi), x ∈ Ωx}, and Ci = {(xi, y), y ∈ Ωy},

for all i = 1, ..., n. The key step of this algorithm is the construction of the following cross
interpolation operators:

Ii[f ] =
f(·, yi)f(xi, ·)
f(xi, yi)

,

for all i = 1, ..., n such that f(xi, yi) 6= 0. Clearly, the function Ii[f ] interpolates the values
of f along the x-line Li and the y-line Ci crossing at (xi, yi), i.e.,

Ii[f ](·, yi) = f(·, yi) and Ii[f ](xi, ·) = f(xi, ·). (1)

Hence, using the operators I1, ..., In, the values of f on the x-lines L1, ..., Ln and on the
y-lines C1, ..., Cn can be interpolated one by one thanks to the following property:

Property 1 (No fill-in). Let ` ∈ {2, ..., n} and i ∈ {1, ..., `−1}, and suppose that f(xi, ·) =
f(·, yi) = 0 and f(x`, y`) 6= 0. Then, I`[f ](xi, ·) = I`[f ](·, yi) = 0.

The CA algorithm, which performs this iterative interpolation, is presented above. This
algorithm can be applied, up to a permutation of the chosen points, whenever the n × n
matrix S containing the sampling of f , i.e.,

Sij = f(xj, yi), (2)

for all i, j = 1, ..., n, is invertible [18]. Under this condition, it follows from Property 1 that
the output Φn of the CA algorithm satisfies the following interpolation property.

Property 2 (Value interpolation). The function Φn interpolates the values of f on the
x-lines L1, ..., Ln and on the y-lines C1, ..., CN , i.e.,

Φn(·, yi) = f(·, yi), Φn(xi, ·) = f(xi, ·), (3)

for all i = 1, ..., n.
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Input : f : Ω→ R, x1, ..., xn ∈ Ωx, y1, ..., yn ∈ Ωy.
Output : rank n function Φn : Ω→ R.
Φ0 ← 0;
R0 ← f ;
for i← 1 to n do

if Ri−1(xi, yi) 6= 0 then

Ii ← Ri−1(·,yi) Ri−1(xi,·)
Ri−1(xi,yi)

;

Φi ← Φi−1 + Ii;
Ri ← Ri−1− Ii;

else
Error during Cross Approximation → stop;

end

end
Algorithm CA: Cross Approximation

Some error estimates of the approximation provided by the CA algorithm can be found
in [2, 5]. We focus in what follows on the error estimates presented in [18] which we restate
in Theorem 3.

Theorem 3 (Dyn, Jüttler, Mokrǐs, 2017). Let h̄ > 0 and f ∈ Cn,n([0, h̄]2) and suppose
that

cf =

max
x̂ij ,ŷij∈[0,h̄]
i,j=0,...,n

det
(
∂ix∂

j
yf(x̂ij, ŷij)

)
i,j=0,...,n

min
x̌ij ,y̌ij∈[0,h̄]
i,j=0,...,n−1

det
(
∂ix∂

j
yf(x̌ij, y̌ij)

)
i,j=0,...,n−1

<∞.

We set moreover h ∈ (0, h̄), Ωx = Ωy = [0, h], and Ω = Ωx × Ωy, and we suppose that
detS 6= 0. Then,

‖f − Φn‖L∞(Ω) ≤ cf
h2n

(n!)2
.

Remark. Remarkably, the coefficient cf does not depend on the chosen reals x1, ..., xn
and y1, ..., yn. Nevertheless, the properties of the interpolant depend on the choice of these
numbers. In practice, one may use the end points of the intervals defining the tensor
domain Ω and equally distributed points in the interior of the intervals. This choice is also
suitable for the construction of globally smooth spline-type interpolants. Alternatively
[2, 5] one may choose these numbers adaptively by always picking them as the coordinates
of the point with the largest residual error.

In order to investigate a limiting case of the CA algorithm, we first consider a small
real ε > 0 satisfying

ε <
1

2
min

(
min

i∈{1,...,n−1}
|xi+1 − xi|, min

j∈{1,...,n−1}
|yj+1 − yj |

)
. (4)
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When applying the CA algorithm with the double grid, emphasised by II, and defined by
the real values

x1, x1+ε, x2, x2+ε, ..., xn−1+ε, xn−ε, xn ∈ Ωx, and,

y1, y1+ε, y2, y2+ε, ..., yn−1+ε, yn−ε, yn ∈ Ωy, (5)

the coefficient cf introduced in Theorem 3 is independent of ε. The sampling of f is, for
this grid, given by the following matrix:

SII
ε =


f(x1, y1) f(x1+ε, y1) · · · f(xn–ε, y1) f(xn, y1)
f(x1, y1+ε) f(x1+ε, y1+ε) · · · f(xn–ε, y1+ε) f(xn, y1+ε)

...
...

. . .
...

...
f(x1, yn–ε) f(x1+ε, yn–ε) · · · f(xn–ε, yn–ε) f(xn, yn–ε)
f(x1, yn) f(x1+ε, yn) · · · f(xn–ε, yn) f(xn, yn)

 .

Clearly the determinant of the matrix SII
ε converges to zero whenever ε goes to zero.

Though, we show in the next section that the output ΦII
n,ε of the CA algorithm using the

points (5) converges under the same limit.
On the other hand, extending Property 2 of the CA algorithm to Hermite interpolation

is an important step to construct C1-smooth piecewise low-rank functions. With this
purpose in mind, we introduce in the next section the Low-Rank Hermite Interpolation
(LRHI) and we show that ΦII

n,ε converges to the unique solution Ψn of LRHI whenever
ε goes to zero. To be more precise, let us first introduce some samplings of the partial
derivatives of f . Using ∂ to highlight the source of the sampling, we denote by S∂x, S∂y,
and S∂xy, the matrices of size n× n respectively defined by

S∂xij = ∂xf(xj, yi), S∂yij = ∂yf(xj, yi), and S∂xyij = ∂xyf(xj, yi),

for all i, j = 1, ..., n. Next, let M be the matrix of size 2n× 2n defined as follows:

M =

(
S S∂x

S∂y S∂xy

)
. (6)

The convergence result is stated in the following theorem.

Theorem 4 (LRHI as limiting case of the CA algorithm). Let Ωx,Ωy ⊂ R be two bounded
intervals and set Ω = Ωx × Ωy. Let f ∈ C1,1(Ω) and suppose detM 6= 0. Then, for all
ε > 0 small enough, the matrix SII

ε is invertible and

lim
ε→0

ΦII
n,ε = Ψn,

where Ψn is the unique solution of LRHI defined in (11).

A direct consequence of Theorems 3 and 4 is that the order of approximation stated
for the CA algorithm is also valid for the solution of LRHI.
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Theorem 5 (Order of approximation 4n). Let h̄ > 0 and f ∈ C2n,2n([0, h̄]2) and suppose
that

cf =

max
x̂ij ,ŷij∈[0,h̄]
i,j=0,...,2n

det
(
∂ix∂

j
yf(x̂ij, ŷij)

)
i,j=0,...,2n

min
x̌ij ,y̌ij∈[0,h̄]
i,j=0,...,2n−1

det
(
∂ix∂

j
yf(x̌ij, y̌ij)

)
i,j=0,...,2n−1

<∞.

We set moreover h ∈ (0, h̄), Ωx = Ωy = [0, h], and Ω = Ωx × Ωy, and we suppose that
detM 6= 0. Then,

‖f −Ψn‖L∞(Ω) ≤ cf
h4n(

(2n)!
)2 ,

where Ψn is the unique solution of LRHI defined in (11).

Remark. The observations made in the previous remark apply to the Hermite setting,
too. In order to construct globally C1 smooth spline-type interpolants, one may use the
end points of the intervals defining the tensor domain Ω and equally distributed points in
the interior of the intervals.

3. Low-rank Hermite interpolation

In this section we introduce the Low-Rank Hermite Interpolation (LRHI): an extension
of the closed-form formula satisfied by the output of the CA algorithm permitting Hermite
interpolation. We then show that LRHI is a limiting case of the CA algorithm (Theorem
4).

Before this, let us recall the closed-form expression of the output of the CA algorithm
[2, Lemma 3]. To clarify the exposition, we define the vector fields η : Ωx → Rn and
τ : Ωy → Rn as follows:

η(x) =

f(x, y1)
...

f(x, yn)

 , and τ(y) =

f(x1, y)
...

f(xn, y)

 ,

for all (x, y) ∈ Ω.

Proposition 6 (Closed-form expression for the CA algorithm). Suppose det S 6= 0. Then,

Φn(x, y) = 〈S−1 η(x), τ(y)〉, (7)

for all (x, y) ∈ Ω, where Φn is the output of the CA algorithm.

Proof. We first remark in the CA algorithm that the output Φn only depends on the values
of f on the x-lines L1, ..., Ln and on the y-lines C1, ..., Cn. Moreover, this dependence is
clearly linear. In other words, there exists a matrix B of size n × n such that Φn(x, y) =
〈B η(x), τ(y)〉, for all (x, y) ∈ Ω. Next, omitting the variables x and y, we note that
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Φn = 〈λ, τ〉, with λ = B η. Then, denoting by τi and ηi the i-th coordinates of τ and
η respectively, we obtain using Property 2 that the function Φn interpolates ηi, for all
i = 1, ..., n, and we infer

n∑
k=1

λkτk(yi) = ηi .

Equivalently, using the sampling S, we have Sλ = η. Finally, since S is invertible, we
conclude that B η = λ = S−1 η, and the result follows.

In order to formulate LRHI, let us now introduce the interpolated data. We denote by
H : Ωx → Rn and T : Ωy → Rn the derivatives of f in the complementary direction on the
x-lines L1, ..., Ln and the y-lines C1, ..., Cn respectively, i.e.,

H(x) =

∂yf(x, y1)
...

∂yf(x, yn)

 , and T(y) =

∂xf(x1, y)
...

∂xf(xn, y)

 ,

for all (x, y) ∈ Ω. We construct in the following proposition a function Ψn ∈ C1,1(Ω) which
solves the Hermite interpolation problem, i.e.,

Ψn(·, yi) = f(·, yi), Ψn(xi, ·) = f(xi, ·), (8a)

∇Ψn(·, yi) = ∇f(·, yi), ∇Ψn(xi, ·) = ∇f(xi, ·), (8b)

or equivalently

Ψn(·, yi) = ηi, ∂yΨn(·, yi) = Hi, (9a)

Ψn(xi, ·) = τi, ∂xΨn(xi, ·) = Ti, (9b)

for all i = 1, ..., n, where ηi, τi, Hi, and Ti, are respectively the i-th coordinates of η, τ , H,
and T.

Proposition 7 (Low-rank Hermite interpolation). Suppose detM 6= 0. Then, there exists
a unique function Ψn ∈ C1,1(Ω) of the form

Ψn = 〈λ, τ〉+ 〈λ̃,T〉, (10)

with λ, λ̃ ∈
(
C1(Ωx)

)n
, satisfying (8) for all i = 1, ..., n. Moreover, this function is given

by

Ψn(x, y) =

〈
M−1

(
η(x)
H(x)

)
,

(
τ(y)
T(y)

)〉
, (11)

for all (x, y) ∈ Ω.

7



Proof. Firstly, Ψn satisfies (9a) if and only if it satisfies the following:

Ψn(·, yi) =
n∑
k=1

λkτk(yi) +
n∑
k=1

λ̃k Tk(yi) = ηi,

∂yΨn(·, yi) =
n∑
k=1

λk
dτk
dy

(yi) +
n∑
k=1

λ̃k
dTk

dy
(yi) = Hi,

for all i = 1, ..., n, with λi and λ̃i the i-th coordinates of λ and λ̃ respectively. Using the
matrix notation, we obtain(

Ψn(·, y1), · · · ,Ψn(·, yn)
)t

= Sλ+ S∂x λ̃ = η,(
∂yΨn(·, y1), · · · , ∂yΨn(·, yn)

)t
= S∂y λ+ S∂xy λ̃ = H .

Hence, since M is invertible, there exists a unique couple (λ, λ̃) such that Ψn satisfies (9a),
which is given by (

λ(x)

λ̃(x)

)
=

(
S S∂x

S∂y S∂xy

)−1(
η(x)
H(x)

)
= M−1

(
η(x)
H(x)

)
,

for all x ∈ Ωx. Now, to check that the uniquely defined function Ψn also satisfies (9b), let
us note that

M

(
λ(xj)

λ̃(xj)

)
=

(
η(xj)
H(xj)

)
, and M

(
λ′(xj)

λ̃′(xj)

)
=

(
η′(xj)
H′(xj)

)
,

for all j = 1, ..., n. The right hand side of the first and the second equalities are respectively
the columns j and n+ j of the matrix M . Hence, we have

λi(xj) =

{
1 if j = i,
0, else,

λ̃i(xj) = 0,

λ′i(xj) = 0, λ̃′i(xj) =

{
1, if j = i,
0, else,

for all i, j = 1, ..., n. We finally apply the definition of Ψn to conclude that (9b) is satisfied.
The result follows.

We now prove Theorem 4, i.e., that the output ΦII
n,ε of the CA algorithm applied to

the double grid (5) converges to the function Ψn, whenever ε goes to 0. To adapt Formula
(11), we denote by ηII

ε and τ II
ε the value of f on the x-lines and the y-lines associated with

the double grid (5), i.e.,

ηII
ε (x) =

(
f(x, y1), f(x, y1+ε), · · · , f(x, yn–ε), f(x, yn)

)t
, and

τ II
ε (y) =

(
f(x1, y), f(x1+ε, y), · · · , f(xn–ε, y), f(xn, y)

)t
,
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for all (x, y) ∈ Ω. Supposing det SII
ε 6= 0, we then have by Proposition 7:

ΦII
n,ε(x, y) =

〈
(SII
ε )−1ηII

ε (x), τ II
ε (y)

〉
, (12)

for all (x, y) ∈ Ω. We note that we can not directly compute the limit ε→ 0 in (12) since
SII
ε converges to a matrix which is not invertible. Therefore, the first step is to apply some

linear combinations on the lines and the columns of the matrix and the vectors involved in
(12). The resulting expression, presented in the next lemma, contains the following finite
difference operators:

δx,±ε f(x, y) = ±f(x±ε, y)− f(x, y)

ε
, for all (x, y) ∈ Ω s.t. (x±ε, y) ∈ Ω,

δy,±ε f(x, y) = ±f(x, y±ε)− f(x, y)

ε
, for all (x, y) ∈ Ω s.t. (x, y±ε) ∈ Ω. (13)

Lemma 8 (Equivalence with finite differences). Let ε > 0 satisfy (4) and suppose det SII
ε 6=

0. Then,
ΦII
n,ε(x, y) =

〈
M̃−1

ε η̃ε(x), τ̃ε(y)
〉
, (14)

for all (x, y) ∈ Ω, with:

M̃ε =


f(x1, y1) δx,+ε f(x1, y1) · · · f(xn, y1) δx,−ε f(xn, y1)

δy,+ε f(x1, y1) δx,+ε δy,+ε f(x1, y1) · · · δy,+ε f(xn, y1) δx,−ε δy,+ε f(xn, y1)
...

...
. . .

...
...

f(x1, yn) δx,+ε f(x1, yn) · · · f(xn, yn) δx,−ε f(xn, yn)
δy,−ε f(x1, yn) δx,+ε δy,−ε f(x1, yn) · · · δy,−ε f(xn, yn) δx,−ε δy,−ε f(xn, yn)

 ,

η̃ε(x) =


f(x, y1)

δy,+ε f(x, y1)
...

f(x, yn)
δy,−ε f(x, yn)

 , and τ̃ε(y) =


f(x1, y)

δx,+ε f(x1, y)
...

f(xn, y)
δx,−ε f(xn, y)

 .

Moreover, we have
| det SII

ε | = ε2n| det M̃ε|. (15)

Proof. The variables x and y will be omitted in this proof. Firstly, we denote by λ the
unique solution of the linear system SII

ε λ = η, so that ΦII
n,ε = 〈λ, τ II

ε 〉. We then apply the
following linear combinations to the rows R1, ...,Rn of this linear system:

(R′2i−1)← (R2i−1), (R′2i)←
(R2i)− (R2i−1)

ε
, (16)
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for all i = 1, ..., n, where R′1, ...,R′n are the lines of the resulting linear system. We obtain
that ΦII

n,ε =
〈
T−1η̃ε, τ

II
ε

〉
, with:

T =


f(x1, y1) f(x1+ε, y1) · · · f(xn–ε, y1) f(xn, y1)

δy,+ε f(x1, y1) δy,+ε f(x1+ε, y1) · · · δy,+ε f(xn–ε, y1) δy,+ε f(xn, y1)
...

...
. . .

...
...

f(x1, yn) f(x1+ε, yn) · · · f(xn–ε, yn) f(xn, yn)
δy,−ε f(x1, yn) δy,−ε f(x1+ε, yn) · · · δy,−ε f(xn–ε, yn) δy,−ε f(xn, yn)

 .

Next, using that ΦII
n,ε =

〈
η̃ε, T

−tτ II
ε

〉
, we apply the linear combinations (16) to the linear

system formed by the matrix T t and the right-hand side τ II
ε . These combinations are then

operated on the columns of T and we obtain ΦII
n,ε =

〈
η̃ε, M̃

−t
ε τ̃ε

〉
. Formula (14) follows.

Formula (15) then directly follows from (16) and the properties of the determinant.

To emphasise the similarities between the function Ψn and the expression of ΦII
n,ε given

by Lemma 8, similarly to the above proof, we apply some permutations on the lines and
the columns of the matrix and the vectors involved in (14). The resulting expression,
presented in Lemma 9, is a finite difference counterpart of the expression of Ψn. Therefore,
we introduce the finite difference version of the matrix M , denoted using the upper index
δ. Let Sδxε , S

δy
ε , S

δxy
ε be the matrices of size n× n given by

(Sδxε )ij =

{
δx,+ε f(xj, yi), if i < n,
δx,−ε f(xj, yi), else,

(Sδyε )ij =

{
δy,+ε f(xj, yi), if j < n,
δy,−ε f(xj, yi), else,

(Sδxyε )ij =


δx,+ε δy,+ε f(xj, yi), if j < n and i < n,
δx,+ε δy,−ε f(xj, yi), if j < n and i = n,
δx,−ε δy,+ε f(xj, yi), if j = n and i < n,
δx,−ε δy,−ε f(xj, yi), else,

for all i, j = 1, ..., n. We then denote by Mε the matrix of size 2n× 2n given by

Mε =

(
S Sδxε

Sδyε Sδxyε

)
,

where S is the sampling of f at the points x1, ..., xn and y1, ..., yn as defined in (2).

Lemma 9 (Finite difference interpolation). Let ε > 0 satisfy (4) and suppose det SII
ε 6= 0.

The output ΦII
n,ε of the CA algorithm using the double grid (5) then satisfies

ΦII
n,ε(x, y) =

〈
M−1

ε

(
η(x)

Hε(x)

)
,

(
τ(y)
Tε(y)

)〉
,
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for all (x, y) ∈ Ω, with:

Hε(x) =

δ
y,+
ε f(x, y1)

...
δy,−ε f(x, yn)

 , Tε(y) =

δ
x,+
ε f(x1, y)

...
δx,−ε f(xn, y)

 .

Moreover, we have
| det SII

ε | = ε2n| detMε|. (17)

Proof. The result is obtained in a similar manner as Lemma 8, using some permutations
instead of the linear combinations (16).

We can now conclude the proof of Theorem 4.

Proof of Theorem 4. First, since f ∈ C1,1(Ω), the finite differences δx,±ε f , δy,±ε f , and
δx,±ε δy,±ε f , converge uniformly to ∂xf , ∂yf , and ∂xyf , respectively. Hence, we obtain that:

Mε −−→
ε→0

M, (18a)

Hε(x) −−→
ε→0

H(x), for all x ∈ Ωx, (18b)

Tε(y) −−→
ε→0

T(y), for all y ∈ Ωy. (18c)

Gathering detM 6= 0, (18a), and the continuity of the determinant, we obtain that
| detMε| 6= 0, for all ε > 0 small enough. Using moreover (17), we infer that | det SII

ε | 6= 0
for all ε > 0 small enough, so that the CA algorithm can be applied with the double grid.

Next, since M is invertible, we have

M−1
ε

(
η(x),Hε(x)

)t −−→
ε→0

M−1
(
η(x),H(x)

)t
,

for all x ∈ Ωx. Finally, Lemma 9 yields

lim
ε→0

ΦII
n,ε(x, y) =

〈
M−1

(
η(x)
H(x)

)
,

(
τ(y)
T(y)

)〉
= Ψn(x, y),

for all (x, y) ∈ Ω.

4. Cross approximation approach

In this section we present iterative methods with the aim of implementing efficiently the
solution of LRHI. These methods moreover present the advantages of allowing an adaptive
choice of the points x1, ..., xn and y1, ..., yn used in Hermite interpolation, in a similar
manner as the ACA algorithm [2]. The choice of the points is nevertheless left for further
investigations.
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Let us first note that, in addition to the cross interpolation property (1), the operators
I1, ..., In satisfy:

∂x Ii[f ](·, yi) = ∂xf(·, yi) and ∂y Ii[f ](xi, ·) = ∂yf(xi, ·),

for all i = 1, ..., n. Then, we introduce the operators IX
1 , ..., I

X
n defined by

IX
i [f ] =

∂yf(·, yi)∂xf(xi, ·)
∂xyf(xi, yi)

,

for all i = 1, ..., n such that ∂xyf(xi, yi) 6= 0. One can easily check that the function IX
i [f ]

interpolates the derivatives of f in the opposite direction on the x-line Li and the y-line
Ci intersecting at (xi, yi), i.e.,

∂y IX
i [f ](·, yi) = ∂yf(·, yi) and ∂x IX

i [f ](xi, ·) = ∂xf(xi, ·), (19)

for all i = 1, ..., n. The algorithms introduced later in this section are constructed in a
same fashion as the CA algorithm, using the operators IX

1 , ..., I
X
n and I1, ..., In. Hence, before

presenting them, we check that no fill-in occurs during the different operations.

Proposition 10 (No fill-in). Let ` ∈ {2, ..., n} and i ∈ {1, ..., `−1}, and suppose ∇f(xi, ·) =
∇f(·, yi) = 0. Then,

• supposing that ∂xyf(x`, y`) 6= 0, we have the following:

1. IX
` [f ](xi, ·) = IX

` [f ](·, yi) = 0 (no fill-in in values by IX
` );

2. ∂x IX
` [f ](xi, ·) = ∂y IX

` [f ](·, yi) = 0 (no fill-in in derivatives by IX
` );

• supposing that ∂xf(x`, ·) = ∂yf(·, y`) = 0 and f(x`, y`) 6= 0, we have that

3. ∂x I`[f ](xi, ·) = ∂y I`[f ](·, yi) = 0 (no fill-in in derivatives by I`).

4. ∂x I`[f ](x`, ·) = ∂y I`[f ](·, y`) = 0 (no fill-in in derivatives by I`).

Proof. In each of the four cases, we prove one of the two equalities. The proof that the
second term is also null is done in a similar manner.

1. We deduce from ∂yf(xi, ·) = 0 that

IX
` [f ](xi, ·) =

∂yf(xi, y`)∂xf(x`, ·)
∂xyf(x`, y`)

= 0.

2. Since ∂xf(xi, ·) = 0, we have ∂xyf(xi, ·) = 0. We conclude that

∂x IX
` [f ](xi, ·) =

∂xyf(xi, y`)∂xf(x`, ·)
∂xyf(x`, y`)

= 0.

3. We infer from ∂xf(xi, ·) = 0 that

∂x I`[f ](xi, ·) =
∂xf(xi, y`)f(x`, ·)

f(x`, y`)
= 0.

12



4. Using ∂xf(x`, ·) = 0, we obtain:

∂x I`[f ](x`, ·) =
∂xf(x`, y`)f(x`, ·)

f(x`, y`)
= 0.

We present below the first implementation of LRHI: the first Cross Hermite Interpola-
tion (CHI1) algorithm.

Input : f : Ω→ R, x1, ..., xn ∈ Ωx, y1, ..., yn ∈ Ωy.
Output : rank 2n function Ψn : Ω→ R.
Ψ0 ← 0;
R0 ← f ;
for i← 1 to n do

if ∂xyRi−1(xi, yi) 6= 0 then

IX
i ←

∂yRi−1(·,yi) ∂xRi−1(xi,·)
∂xyRi−1(xi,yi)

;

Ψi ← Ψi−1 + IX
i ;

Ri ← Ri−1− IX
i ;

if Ri(xi, yi) 6= 0 then

Ii ← Ri(·,yi) Ri(xi,·)
Ri(xi,yi)

;

Ψi ← Ψi + Ii;
Ri ← Ri− Ii;

else
Error during Cross Hermite Interpolation → stop;

end

else
Error during Cross Hermite Interpolation → stop;

end

end
Algorithm CHI1: Cross Hermite Interpolation

Remark (Notation of the output). We use the same notation, namely Ψn, for the function
constructed in the CHI1 algorithm and the unique solution of LRHI. We indeed show in
Proposition 12 that these functions are the same.

We leave the discussion about the cases where the algorithm can be applied for later
and we now focus on the properties of the output.

Proposition 11 (Hermite interpolation). Supposing that the CHI1 algorithm processed
until the end, the output Ψn satisfies Hermite interpolation (8) for all i = 1, ..., n.

13



Proof. We prove this result by induction on n ≥ 0. First, the proposition is trivially
satisfied for n = 0 since no equation has to be satisfied. Then, we suppose that the
proposition is valid for n ≥ 0, i.e.,

Rn(xi, ·) = Rn(·, yi) = 0, ∇Rn(xi, ·) = ∇Rn(·, yi) = 0, (20)

for all i = 1, ..., n. We denote by Ψ̃n+1 : Ω → R the function obtained after adding the
interpolation of the derivatives: Ψ̃n+1 = Ψn + IX

n+1[Rn]. We infer from (20) and Points 1
and 2 of Proposition 10 that

IX
n+1[Rn](xi, ·) = IX

n+1[Rn](·, yi) = 0,

∇ IX
n+1[Rn](xi, ·) = ∇ IX

n+1[Rn](·, yi) = 0, (21)

for all i = 1, ..., n. Moreover, the cross interpolation property of the operator IX
n+1 (Equation

(19)) yields the following:

∂x IX
n+1[Rn](xn+1, ·) = ∂x Rn(xn+1, ·) = ∂xf(xn+1, ·)− ∂xΨn(xn+1, ·),

∂y IX
n+1[Rn](·, yn+1) = ∂y Rn(·, yn+1) = ∂yf(·, yn+1)− ∂yΨn(·, yn+1).

We infer that

∂xΨ̃n+1(xn+1, ·) = ∂xf(xn+1, ·) and ∂yΨ̃n+1(·, yn+1) = ∂yf(·, yn+1). (22)

We gather the induction hypothesis for n, and (21) and (22), to conclude that Ψ̃n+1 satisfies
the interpolation properties (8), for all i = 1, ..., n, and (8b) for i = n+1. Next, we denote
by R̃n+1 : Ω→ R the following remainder:

R̃n+1 = Rn− IX
n+1[Rn] = f − Ψ̃n+1.

The aforementioned interpolation properties satisfied by Ψ̃n+1 can be rewritten as follows:
for all i = 1, ..., n,

R̃n+1(xi, ·) = R̃n+1(·, yi) = 0, (23a)

∇ R̃n+1(xi, ·) = ∇ R̃n+1(·, yi) = 0, (23b)

∂xR̃n+1(xn+1, ·) = ∂yR̃n+1(·, yn+1) = 0. (23c)

Using moreover Point 3 of Proposition 10 and Property 1, we obtain

∂x In+1[R̃n+1](xi, ·) = ∂y In+1[R̃n+1](·, yi) = 0,

In+1[R̃n+1](xi, ·) = In+1[R̃n+1](·, yi) = 0, (24)

for all i = 1, ..., n. Furthermore, we infer from (23c) and Point 4 of Proposition 10 that

∂xIn+1[R̃n+1](xn+1, ·) = ∂yIn+1[R̃n+1](·, yn+1) = 0. (25)
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We conclude from (24) and (25) that Ψn+1 = Ψ̃n+1 + In+1[R̃n+1] satisfies the same interpo-
lation properties as Ψ̃n+1, i.e., (8) for all i = 1, ..., n and (8b) for i = n+1. Moreover, we
deduce from the cross interpolation property of In+1, namely (1), that

In+1[R̃n+1](xn+1, ·) = R̃n+1(xn+1, ·) = f(xn+1, ·)− Ψ̃n+1(xn+1, ·),
In+1[R̃n+1](·, yn+1) = R̃n+1(·, yn+1) = f(·, yn+1)− Ψ̃n+1(·, yn+1).

We infer that Ψn+1 satisfies

Ψn+1(xn+1, ·) = f(xn+1, ·), and Ψn+1(·, yn+1) = f(·, yn+1).

Hence, Ψn+1 also satisfies (8a) for i = n+1 and the result follows.

Using this proposition, we now prove that, whenever it exists, the output is the unique
solution of LRHI.

Proposition 12 (Closed-form expression for the CHI1 algorithm). Supposing that the
CHI1 algorithm processed until the end, the output is the function Ψn defined in (11).

Proof. The proof is done in a similar manner as the proof of Proposition 6. First, we note
that Ψn only depends linearly on η, τ, H, and T. As a result, there exists a matrix B
such that

Ψn(x, y) =

〈
B

(
η(x)
H(x)

)
,

(
τ(y)
T(y)

)〉
,

for all (x, y) ∈ Ω. Next, let λ, λ̃ ∈
[
C1(Ωx)

]n
be the vector fields defined by

(
λ(x), λ̃(x)

)t
=

B
(
η(x),H(x)

)t
, for all x ∈ Ωx. The function Ψn then satisfies Hermite interpolation (8)

and Ψn = 〈λ, τ〉+ 〈λ̃,T〉, and the result follows from Proposition 7.

We though underline that invertibility of the matrix M is not a sufficient condition for
the CHI1 algorithm to succeed. We present below an example illustrating this remark.

Example. Consider n = 2, the points x1 = y1 = 0 and x2 = y2 = 1, and the rank four
function f : [0, 1]2 → R given by

f(x, y) = α(x) + α(y) + xα(x)β(y) + yα(y)β(x),

for all x, y ∈ [0, 1], with α, β : [0, 1]→ R defined as follows:

α(x) = x(x− 1), β(x) = x2(−3 + 2x),

for all x ∈ [0, 1]. Then, f(xj, yi) = ∂xyf(xj, yi) = 0, for all i, j = 1, 2. Hence, since f and
its cross-derivative cancel on all the vertices of the chosen grid, one can neither apply CA
nor the CHI1 algorithm. Though, we have

∂xf(0, 0) = −1, ∂xf(0, 1) = −1, ∂xf(1, 0) = 1, ∂xf(1, 1) = 0,

∂yf(0, 0) = −1, ∂yf(0, 1) = 1, ∂yf(1, 0) = −1, ∂yf(1, 1) = 0.
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And we obtain

M =

(
0 S∂x

S∂y 0

)
, with S∂x =

(
−1 1
−1 0

)
and S∂y =

(
−1 −1
1 0

)
.

Hence, the matrix M is invertible and Formula (11) yields:

Ψ2(x, y) = H2(x) τ1(y)−
(
H1(x) + H2(x)

)
τ2(y)

− η2(x) T1(y) +
(
η1(x)− η2(x)

)
T2(y),

or equivalently, Ψ2 = f .

In order to provide an algorithm working under a predefined condition, we now switch
the order in which the operators I1, ..., In and IX

1 , ..., I
X
n are applied. In what follows, the

derivatives are first interpolated and the CA algorithm is then applied to the remainder in
order to interpolate the values. To interpolate the derivatives, we use the Cross Derivative
Interpolation (CDI) algorithm presented below. Before giving the conditions ensuring that

Input : f : Ω→ R, x1, ..., xn ∈ Ωx, y1, ..., yn ∈ Ωy.
Output : rank n function ΨX

n : Ω→ R.
ΨX

0 ← 0;

RX
0 ← f ;

for i← 1 to n do
if ∂xyR

X
i−1(xi, yi) 6= 0 then

IX
i ←

∂yRX
i−1(·,yi) ∂xRX

i−1(xi,·)
∂xyRX

i−1(xi,yi)
;

ΨX
i ← ΨX

i−1 + IX
i ;

RX
i ← RX

i−1− IX
i ;

else
Error during Cross Derivative Interpolation → stop;

end

end
Algorithm CDI: Cross Derivative Interpolation

the CDI algorithm will process until the end, let us show that the derivatives of f in the
opposite directions are, as expected, interpolated.

Proposition 13 (Derivatives interpolation). Supposing that the CDI algorithm processed
until the end, the output ΨX

n of the CDI algorithm satisfies

∂yΨ
X
n (·, yi) = Hi, ∂xΨ

X
n (xi, ·) = Ti, (26)

for all i = 1, ..., n.

Proof. This result is obtained by induction, using the interpolation property (19) of the
operators IX

1 , ..., I
X
n , and Point 2 of Proposition 10, similarly to the proof of Proposition

11.
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The CDI algorithm can be applied, up to a permutation of the chosen points, under
the condition det S∂xy 6= 0. This follows from the next lemma adapting [2, Lemma 2] to
the CDI algorithm.

Lemma 14 (Formula for the remainder). The remainders RX
1 , ...,R

X
n introduced in the CDI

algorithm satisfy the following:

n∏
j=1

∂xy RX
j−1(xj, yj) = det S∂xy .

Proof. First, we note that, for all j = 1, ..., n, there exist αj1, ..., α
j
j : Ωx → R such that

RX
j (x, y) = f(x, y)−

j∑
k=1

αjk(x)∂xf(xk, y),

for all (x, y) ∈ Ω. Therefore, we have

∂xy RX
j (x, y) = ∂xyf(x, y)−

j∑
k=1

αj ′k (x)∂xyf(xk, y),

for all j = 1, ..., n and (x, y) ∈ Ω. Then,

∂xy RX
j−1(xj, yi) = ∂xyf(xj, yi)−

j−1∑
k=1

αj−1 ′
k (xj)∂xyf(xk, yi)

= S∂xyij −
j−1∑
k=1

αj−1 ′
k (xj) S∂xyik ,

for all i, j = 1, ..., n. Since the second term on the right hand side is a linear combination
of the columns of S∂xy, we obtain

det
[(
∂xy RX

j−1(xj, yi)
)
i,j=1,...,n

]
= det S∂xy .

Moreover, for all j = 2, ..., n and i = 1, ..., j−1, we deduce from

∂xyΨ
X
j−1(·, yi) = ∂xyf(·, yi)

that ∂xy RX
j−1(xj, yi) = 0. Hence, the matrix

(
∂xy RX

j−1(xj, yi)
)
i,j=1,...,n

is lower triangular

and

det S∂xy = det
[(
∂xy RX

j−1(xj, yi)
)
i,j=1,...,n

]
=

n∏
j=1

∂xy RX
j−1(xj, yj).

This concludes the proof.

17



A consequence of Proposition 13 is the following closed-form expression for the output
of the CDI algorithm.

Proposition 15 (Closed-form expression for the CDI algorithm). Supposing det S∂xy 6= 0,
the output ΨX

n satisfies

ΨX
n (x, y) =

〈(
S∂xy

)−1
H(x),T(y)

〉
, (27)

for all (x, y) ∈ Ω.

Proof. This result is proven in a very similar manner as Propositions 6 and 12. First, we
note that ΨX

n only depends linearly on H and T. As a result, there exists a matrix B such
that

ΨX
n (x, y) = 〈BH(x),T(y)〉 ,

for all (x, y) ∈ Ω. Next, omitting the variables x and y, we note that ΨX
n = 〈λ̃,T〉, with

λ̃ = BH. We then deduce from Proposition 13 that

∂yΨ
X
n (·, yi) =

〈
λ̃,
dT

dy
(yi)
〉

= Hi,

for all i = 1, ..., n. Using the matrix notation, we obtain S∂xy λ̃ = H, and we conclude that

B =
(

S∂xy
)−1

.

In order to apply the CA algorithm to the remainder RX
n of the CDI algorithm, we

present in the following proposition an explicit formula for its associated sampling matrix
S̄.

Proposition 16. Suppose det S∂xy 6= 0 and denote by S̄ the matrix containing the sampling
of RX

n = f −ΨX
n , i.e.,

S̄ij = f(xj, yi)−ΨX
n (xj, yi),

for all i, j ∈ 1, ..., n. Then, the matrix S̄ is the Schur complement of the block S∂xy of the
matrix M , that is,

S̄ = S − S∂x
(

S∂xy
)−1

S∂y .

Proof. Using Proposition 15, we obtain

ΨX
n (xj, yi) =

〈
(S∂xy)−1 H(xj),T(yi)

〉
=

n∑
k=1

n∑
l=1

(
(S∂xy)−1

)
kl

Hl(xj) Tk(yi)

=
n∑
k=1

n∑
l=1

(
(S∂xy)−1

)
kl
∂yf(xj, yl)∂xf(xk, yi)

=
n∑
k=1

n∑
l=1

(
(S∂xy)−1

)
kl

S∂ylj S∂xik .
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Hence, we have
S̄ij = Sij −

(
S∂x(S∂xy)−1 S∂y

)
ij
,

and the result follows.

Using the determinant formula for Schur complements [20], we obtain:

detM = det S̄ det S∂xy .

As a result, under the conditions detM 6= 0 and det S∂xy 6= 0, one can apply the CA algo-
rithm to the remainder RX

n , up to some permutation of the points x1, ..., xn and y1, ..., yn.
The combination of these two algorithms, denoted as the second Cross Hermite Interpola-
tion (CHI2) algorithm in what follows, is presented below. In a similar manner as earlier

Input : f : Ω→ R, x1, ..., xn ∈ Ωx, y1, ..., yn ∈ Ωy.
Output : rank 2n function Ψn : Ω→ R.
ΨX
n ← CDI(f);

RX
n ← f −ΨX

n ;

Ψn ← ΨX
n+ CA(RX

n );
Algorithm CHI2: Cross Hermite Interpolation

for the CHI1 algorithm, we now prove the interpolation property and conclude that the
output is the unique solution of LRHI.

Proposition 17 (Hermite interpolation). Suppose detM 6= 0 and det S∂xy 6= 0. Then, the
output Ψn of the CHI2 algorithm satisfies Hermite interpolation (8) for all i = 1, ..., n.

Proof. The proof can be done recursively, similarly to the proof of Proposition 11. Points
3 and 4 of Proposition 10 indeed ensures that (26) remains satisfied by the output Ψn. On
the other hand, the interpolation of the values of f , i.e., Equalities (3), is proven using the
interpolation property (1) of the operators I1, ..., In and Property 1.

Proposition 18 (Closed-form expression for the CHI2 algorithm). Suppose detM 6= 0
and det S∂xy 6= 0. Then, the output of the CHI2 algorithm is the function Ψn defined in
(11).

Proof. The result can be proven similarly to the proof of Proposition 12.

5. Adaptively refined piecewise low-rank approximation

In order to satisfy a given error tolerance, one may increase the rank until the interpolant
reaches the desired level accuracy [2, 5]. In the present paper we adopt a different approach,
since our aim is to approximate the function f by a piecewise low-rank function. The main
idea is to subdivide the domain Ω until the low-rank approximation on each subdomain is
close enough to the target function f . We then validate numerically the C1-regularity of
the result whenever using LRHI for the local low-rank approximations.
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Before this, let us show the efficiency of LRHI with an example. We apply LRHI and
the CA algorithm to a polynomial of bidegree (10, 10) with randomly chosen coefficients
on Ω = [0, h]2, for multiple values of h > 0. We compare in Figure 1 the L∞-error of
these two algorithms for ranks 4 and 6. The comparison of the L∞-error of the gradient
in the same configuration with rank 4 is presented in Figure 2. We finally corroborate,
using this random polynomial, the convergence announced in Theorem 4. To this extent,
we apply the CA algorithm with the double grid (5) and we plot the L∞-distance between
the resulting function ΦII

n,ε and the output Ψn of LRHI for different values of ε in Figure 3.
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To simplify the exposition of the piecewise low-rank approximation, we suppose in what
follows that Ωx = Ωy = [0, 1], and Ω = [0, 1]2. Also, we restrict ourselves to the case where
the domain is split uniformly in two parts, both in the x-direction and in the y-direction.
Each subdomain is then associated with two sequences of Booleans. Therefore, set N ≥ 1
and denote by BN the set of Boolean N -tuples. The two sequences bx,by ∈ BN , with

bx = (bx,1, ..., bx,N) and by = (by,1, ..., by,N), encode the side of a given subdomain Ω
bx,by

N

after each of the N splittings, i.e.,

Ω
bx,by

N = Ωbx
x,N × Ω

by

y,N , with Ωbx
x,N = [ix, ix + 2−N ], Ω

by

y,N = [iy, iy + 2−N ], (28)
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ix =
∑N

j=1 bx,j2
−j, and iy =

∑N
j=1 by,j2

−j. For consistency of the notation, we also set
Ωx,0 = Ωx, Ωy,0 = Ωy, and Ω0 = Ω. These sets are then defined such that:

Ωbx
x,N = Ω

bx×{0}
x,N+1 ∪ Ω

bx×{1}
x,N+1 , and Ω

by

y,N = Ω
by×{0}
y,N+1 ∪ Ω

by×{1}
y,N+1 .

An illustration of the above notation can be found in Figure 4.

Ω
(1,1)
x,2Ω

(0)
x,1

Ωx,0

Ω
(1,0),(1,0)
2

Figure 4: Illustration of the hierarchical subdomains

In order to stay generic, both for the choice between LRHI and the CA algorithm and
for the definition of the stopping criterion, we suppose that we are given the following
functions:

• lowRankApproximation(f, [a, b]× [c, d]): applies either LRHI or the CA algorithm to
f
∣∣
[a,b]×[c,d]

with x1 = a, xn = b, y1 = c, and yn = d;

• stoppingCriterion(f, Ω̄, ζ): checks if the approximation of f on Ω̄ by the low-rank
function ζ : Ω̄→ R is good enough.

Though it did not occur during our numerical examples, we highlight that we might be in
the particular case where the chosen low-rank approximation method can not be applied.
This is checked a priori with the condition det S 6= 0 for the CA algorithm and detM 6= 0 for
the LRHI method. If this condition is not satisfied, we simply apply a Coons interpolation
of the considered data. Then, the Adaptively Refined Piecewise Low-Rank Approximation
(ARPLRA) can be outlined as follows:

An illustration of the recursive splitting used in ARPLRA is depicted in Figure 5.
ARPLRA returns a list ζ of low-rank functions ζ1 : Γ1 → R, ..., ζd : Γd → R, where
Γ1, ...,Γd ⊂ Ω are domains of the form (28). With the purpose in mind to assemble these
local functions, we first underline that the domains satisfy:

Ω =
d⋃

k=1

Γk, and Γi ∩ Γj = ∂Γi ∩ ∂Γj, (29)

for all i, j = 1, ..., d such that i 6= j. Furthermore, using the interpolation properties of the
CA algorithm and LRHI, we infer that the low-rank functions ζ1, ..., ζd satisfy

ζ i
∣∣
∂Γi

= f
∣∣
∂Γi
, (30)
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Input : f : Ω→ R: function to approximate,
N : number of subdivisions already operated,
bx,by ∈ BN : position of the considered subdomain in the grid.

Output : ζ: list of low-rank functions.

locInterp← lowRankApproximation(f,Ω
bx,by

N );

if stoppingCriterion(f,Ω
bx,by

N , locInterp) then
ζ ← {locInterp};

else
subd1 ← ARPLRA(f,N+1,bx×{0},by×{0});
subd2 ← ARPLRA(f,N+1,bx×{0},by×{1});
subd3 ← ARPLRA(f,N+1,bx×{1},by×{0});
subd4 ← ARPLRA(f,N+1,bx×{1},by×{1});
ζ ← subd1 ∪ subd2 ∪ subd3 ∪ subd4;

end
Algorithm ARPLRA: Adaptively refined piecewise low-rank approximation

for all i = 1, ..., d. Therefore, we conclude from (29) and (30) that the functions ζ1, ..., ζd
can be assembled to form the continuous function Z : Ω→ R defined as follows:

Z(x, y) = ζ i(x, y), where i ∈ {1, ..., d} is such that (x, y) ∈ Γi.

We finally analyse the efficiency of ARPLRA using a numerical example. To highlight
the smoothness of the result whenever using LRHI, we consider in what follows a function
with larger variations: a Fourier finite sum with (7, 7) random coefficients. The used
stopping criterion for a domain Ω̃ and a low-rank approximation Ψ is:

∥∥f ∣∣
Ω̃
−Ψ

∥∥
L∞(Ω̃)

<

10−2. We compare the number of local approximations level by level using LRHI and the
CA algorithm with rank 4 and 6 in the following array.

We remark that the number of splittings is lower when using the CA algorithm. Though,
using LRHI ensures that the resulting function Z has C1-regularity. To visualise this, we
plot the output of ARPLRA using LRHI and the CA algorithm in Figure 7. The norm
of the gradient of the output using these two methods can be found in Figure 8. One
can observe in this figure jumps in the derivatives along the junctions when using the CA
algorithm. On the other side, the gradient seems continuous when using LRHI.

To analyse more precisely the regularity of the output, since the functions ζ1, ..., ζd are
smooth, let us define the gradient jump of Z by the following quantity:

max
i,j∈{1,...,d}
∂Γi∩∂Γj 6=∅

‖∇ζ i−∇ζj ‖L∞(∂Γi∩∂Γj).

We then compare in the following table the gradient jump of Z for the three different
methods using rank 6 and tolerances 10−2 and 10−6 for the stopping criterion.

We observe in this table the smoothness of Z, even for a tolerance 10−2, when using
LRHI.
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Figure 5: Illustration of the recursive splitting

algorithm rank level N=1 level N=2 level N=3 level N=4 level N=5

CA
4 0 1 49 44 0
6 0 16 0 0 0

LRHI
4 0 0 36 108 16
6 0 16 0 0 0

CA double grid 4 0 1 36 93 12
ε = 10−1 6 0 16 0 0 0

CA double grid 4 0 0 36 108 16
ε = 10−3 6 0 16 0 0 0

Figure 6: Comparison of the number of local low-rank approximations required for the different approxi-
mation algorithms with ranks 4 and 6 and tolerance 10−2

6. Conclusion

We have considered the approximation of a given function by a C1-regular piecewise
low-rank function. The algorithm used for the local approximations is based on the CA
algorithm. The main bottleneck is then to obtain C1-junctions between the local approxi-
mations. In order to tackle this problem, we have extended a closed-form formula, which
characterises the output of the CA algorithm, to obtain a method providing a Hermite
interpolation property. We have then shown that this method is a limiting case of the CA
algorithm. A direct consequence of this result is that the full approximation order satisfied
by the CA algorithm [18] is also valid for our new method.

We have then proposed an extension of the CA algorithm to implement efficiently the
new approximation method. Next, we have presented a second algorithm which is ensured
to perform the approximation under some predefined condition. We have then presented a
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Figure 7: Piecewise low-rank output of ARPLRA using LRHI and the CA algorithm

piecewise low-rank approximation with adaptive refinement using either the CA algorithm
or our new method to perform the local approximations. We have finally compared the
results obtained using the two methods, confirming that our method ensures C1-smooth
junctions.

For future works, one should investigate if this method can be extended to higher
dimensions. This could be done using the extension of the CA algorithm to higher dimen-
sions studied in [21]. Among the challenging problems associated with the extension to
the multivariate setting, we mention the fact that the tensor-rank of higher order tensors
is much harder to characterize than the matrix rank (in fact, its computation is known to
be a NP-hard problem). Also, the result of the CA algorithm is no-longer independent of
the order of the successive cross-interpolation steps.

In addition, a characterization of low-rank functions would be very useful. We feel that
the error bounds (Theorems 3 and 5 will be useful for that, leading us to conjecture that
rank n functions are characterized by det

(
∂ix∂

j
yf(x̂, ŷ)

)
i,j=0,...,n

= 0 on Ω. At this point,

however, we are not able to provide further theoretical insights.
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[14] F. Scholz, A. Mantzaflaris, B. Jüttler, Partial tensor decomposition for decoupling
isogeometric galerkin discretizations, Computer Methods in Applied Mechanics and
Engineering 336 (2018) 485 – 506.

[15] M. Pan, F. Chen, W. Tong, Low-rank parameterization of planar domains for isogeo-
metric analysis, Computer Aided Geometric Design 63 (2018) 1 – 16.

[16] S. A. Coons, Surfaces for computer-aided design of space forms, Tech. rep., Mas-
sachusetts Institute of Technology, Cambridge, MA, USA (1967).
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