
July 21, 2021 17:29 WSPC/Guidelines paper

International Journal of Computational Geometry & Applications

© World Scientific Publishing Company

Mitered Offsets and Skeletons for Circular Arc Polygons

Bastian Weiß, Bert Jüttler
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ABSTRACT

The offsetting process that defines straight skeletons of polygons is generalized to arc
polygons, i.e., to planar shapes with piecewise circular boundaries. The offsets are ob-

tained by shrinking or expanding the circular arcs on the boundary in a co-circular

manner, and tracing the paths of their endpoints. These paths define the associated
shape-preserving skeleton, which decomposes the input object into patches. While the

skeleton forms a forest of trees, the patches of the decomposition have a radial monotonic-

ity property. Analyzing the events that occur during the offsetting process is non-trivial;
the boundary of the offsetting object may get into self-contact and may even splice.

This leads us to an event-driven algorithm for offset and skeleton computation. Several

examples (both manually created ones and approximations of planar free-form shapes
by arc spline curves) are analyzed to study the practical performance of our algorithm.
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1. Introduction

Offsets and skeletons of planar shapes are widely used in shape analysis, shape de-

sign, motion planning, image processing, and tool path generation. Besides classical

offsets, various generalizations have been considered.

The computation and representation of untrimmed offsets of planar shapes is

well understood, see Refs. 1, 2 and the references cited therein. Trimming, i.e., the

removal of the offset curves’ self-intersections, has attracted substantial attention. A

simple method for detecting and removing invalid loops of planar offsets is described

by Lai et al.3 Trimming of local and global self-intersections of offsets based on

distance maps is discussed by Seong et al.4 Circular arc-based auxiliary structures

are employed in Refs. 5,6. The extension of trimming techniques to offset curves on

surfaces (represented as meshes) is described by Xu et al.7

Singularities and self-intersections of offset curves are closely related to the

medial axis8 which is a particular skeleton, i.e., a structural shape descriptor. Al-

gorithms for computing the medial axes of planar shapes are studied in several

publications. Lee et al.9 develop a divide-and-conquer algorithm for computing the

medial axis of a simple polygon in O(n log n) time by exploiting its Voronoi dia-

gram. The medial axis can be approximated with the help of the Voronoi diagram

of point samples.10 A spiral-preserving circular spline approximation11 is used by

Aichholzer et al.12,13 to derive algorithms for the computation of medial axes and

trimmed offsets of planar shapes. Spline approximations of the medial axis are

described in Ref. 14. Exact medial axis computation is greatly simplified when con-

sidering piecewise linear metrics. Such metrics can be exploited to compute the

exact medial axis of triangulated solids.15 For a general account of properties and

algorithms concerning the medial axis, we refer the reader to Refs. 16,17.

In the case of piecewise linear shapes, mitered offsets provide an alternative to

classical offsets with enhanced shape-preserving properties around reflex vertices.18

They are defined procedurally, by specifying the evolution of the boundary of a

shape as the offset distance increases. Special attention has to be paid to topological

changes of the offsets, which can be classified into so-called events.

Aichholzer et al.19,20 use this evolution to define the straight skeleton of simple

polygons and planar straight line graphs. Mitered offsets and straight skeletons for

non-uniform speed offsetting are analyzed in Ref. 21. The approximate medial axis

can be computed by using straight skeletons.22 The recent extension of straight

skeletons to three-dimensional polytopes is highly nontrivial.23

In this paper, we propose a generalization of mitered offsets and straight skele-

tons to arc polygons, i.e., to simply connected planar shapes with a boundary defined

by circular arcs. The mitered offsets are again defined by specifying the evolution

of the boundary, where the use of arcs leads to a wider variety of events.

Figure 1 compares classical offsets (top) and mitered offsets (bottom) of a heart-

shaped curve composed of circular arcs (left) and line segments (right), respectively.

The offsets differ around the reflex vertex, where the mitered offsets exhibit better



July 21, 2021 17:29 WSPC/Guidelines paper

Mitered Offsets and Skeletons for Circular Arc Polygons 3

Arc polygon Polygon

Classical offset

Mitered offset

Fig. 1: Comparison of classical and mitered offsets

shape-preserving properties. Clearly, the use of a piecewise linear representation (i.e.

a polygon, see right column) requires a much larger number of geometric primitives

to achieve a similar accuracy.

The remainder of the paper consists of six sections. Sections 2 and 3 define and

analyze mitered offsets, the resulting skeleton, and associated patch decomposition

of the input shape. Section 4 is dedicated to the problem of computing the patch

decomposition. We introduce necessary data structures and show how to detect

and handle resulting events. Experimental results and examples are presented in

Section 5. Finally we conclude the paper in Section 6.

2. Mitered offsets

For our input objects, we consider simply connected planar shapes represented as

arc polygons, i.e., simple closed curves formed by circular arcs (or straight line

segments) joined together. Objects of more general shape can be converted into arc

polygons easily and efficiently.24

We define mitered offsets, and subsequently the associated skeleton, as the result

of an evolution of a circular arc polygon P that represents the boundary of a

given shape. Offsetting P means that the edges (which can be circular arcs or line

segments) shrink or expand in radial direction (parallel for straight line segments)

with constant speed towards the interior of the polygon. Simultaneously, the edges’

endpoints travel on certain paths (more precisely, on arcs of conic sections), which
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Fig. 2: Untrimmed offset of an arc polygon.

are determined by the evolution of the adjacent edgesa. This process is well-defined

until we encounter (self-)intersections or the boundary becomes disconnected, see

Fig. 2. The latter situation appears when the evolution reaches a point where two

adjacent arcs possess anti-parallel tangents at the common endpoint. We introduce

events in order to obtain a globally consistent definition of trimmed offsets. More

precisely, we distinguish between four classes of events.

Vanish event One edge e of P vanishes. This happens if the two endpoint vertices

of e become coincident and the length of e shrinks to zero, see Fig. 3.

Fig. 3: Vanish event. The gray curve is the offset and the blue lines form the skeleton.

Terminal event Such an event occurs if a connected component of P collapses.

One, two, or three edges of P then disappear simultaneously; see Fig. 4.

Contact event The boundary of P gets into self-contact. There are three events

of this type: A split event (Fig. 5a) occurs when a reflex vertex hits an

edge of P . Two edges that touch in their interiors create a squeeze event

aWe choose the normal if two adjacent edges are segments of the same circle or line.
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Fig. 4: There are three possible terminal events.

(Fig. 5b). Finally, a bubble event (Fig. 5c) takes place when the endpoints

of a shrinking edge meet but that edge does not vanish (but rather bends

to a full circle).

(a) Split event (b) Squeeze event (c) Bubble event

Fig. 5: The three types of contact events.

Vanish events and contact events, respectively, generalize the edge event and

the split event that have been introduced when defining straight skeletons of simple

polygons.20

Two adjacent edges of P can lose contact during the evolution process, see Fig. 2.

Since this situation was not encountered for classical straight skeletons, we need to

introduce a new type of event.

Splice event A reflex vertex v of P splices at the moment when its two incident

edges become tangential (Fig. 6). The continuation of the offsetting process

is not unique. We propose to close the gap in the boundary of P by inserting

a semicircle that starts to expand at v.

Depending on practical requirements, we may generalize the definition of a splice
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Fig. 6: Splice event. The gray curve is the offset, the solid blue line forms the

skeleton, and the green lines are paths of smooth vertices.

event in the following way: We introduce σ as the exterior angle at which a reflex

vertex v is assumed to splice. The resulting σ-splice event is identical with the just

introduced splice event for σ = 2π. An angle of π ≤ σ < 2π forces v to splice earlier.

In particular, setting σ = π causes an immediate splice of v, which results in the

classical offset at v defined by the medial axis of P .

At this point, let us mention that—in contrast to classical offsets—mitered off-

sets possess a local invertibility property. Namely, for any circular arc polygon P ,

there exists a threshold ε > 0 such that the following holds: If we offset P by a

distance δ ≤ ε, and then offset the resulting arc polygon by a distance −δ, then P

itself is obtained again; see Fig. 7. The value of ε is determined by the first vanish

event. This property does not hold for classical offsets, since the convex vertices of

P will not be preserved.

Fig. 7: Mitered offsets (left) possess the local invertibility property, while classical

offsets (right) do not.

Most of the events caused by arc polygons are of local nature, since they in-

volve only a small number of adjacent edges. Exceptions are the split event and the

squeeze event, which entail global modifications of the polygon’s topology. Conse-

quently, we will distinguish between local events and global events later on.
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3. The skeleton

In this section, we will analyse the basic geometric and combinatorial properties of

skeletons defined by mitered offsets of arc polygons.

Vertex paths

Let our circular arc polygon P consist of N vertices vi (with indices modulo N)

connected by edges ei = vivi+1 in counterclockwise order. Each edge is a portion of

a circle or a straight line, and has a center mi (possibly at infinity) and a radius ri
(non-zero, possibly infinite). Positive and negative values of the radius correspond

to circular arcs with counterclockwise and clockwise orientation, respectively. In the

offsetting process for P , centers and signs of radii stay fixed, whereas radii values

are changing.

The path that a vertex vi traces during the evolution of P is a conic section

and is determined by its incident edges. Vertices with interior angle π are called

smooth. Note that all edges can be straight line segments, hence we include straight

skeletons20 as a special case. More precisely we have the following result:

Lemma 1. The path of a vertex vi is a linear, elliptic, hyperbolic, or parabolic

arc, according to the classification in Table 1.

Table 1: Different paths of vertices.

condition conic foci

riri−1 < 0 elliptic mi, mi−1

riri−1 > 0 and ri 6= ri−1 hyperbolic mi, mi−1

ri = ri−1 or vi is smooth straight line -

ri =∞, ri−1 6=∞ parabola mi−1

ri 6=∞, ri−1 =∞ parabola mi

Proof. The type of the path of vi is determined by its incident edges ei−1 and ei.

First we assume that their radii ri−1 and ri are finite.

On the one hand, the vertex vi(t+ δ) at time t+ δ satisfies the equation

‖vi(t+ δ)−mi‖+ ‖vi(t+ δ)−mi−1‖ = |ri − δ|+ |ri−1 − δ|.

The right-hand side is constant if ri and ri−1 have opposite signs, hence the vertex

travels on an ellipse with foci mi and mi−1 in this case, see Fig. 8a. The ellipse

degenerates into a line segment if vi(t) is located on the line segment that connects

mi with mi−1 which implies that vi(t) is smooth.
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(a) elliptic (b) hyperbolic (c) parabolic

Fig. 8: Possible paths of a vertex.

On the other hand, the vertex vi(t+ δ) also satisfies the equation

‖vi(t+ δ)−mi‖ − ‖vi(t+ δ)−mi−1‖ = |ri − δ| − |ri−1 − δ|.

The right-hand side is constant if ri and ri−1 have identical signs, hence the vertex

then travels on a hyperbola with foci mi and mi−1, see Fig. 8b. There are two

cases in which this hyperbola degenerates into a straight line: First, if ri = ri−1

holds. Second, if vi(t) is located on the line defined by mi and mi−1 but not on

the corresponding segment. Again, the second case implies that vi(t) is a smooth

vertex.

Extending this analysis to the cases of one or two arcs with infinite radii (i.e.,

straight lines) confirms that the path becomes a parabola or a straight line in this

situation. In the first case, the center of the curved edge serves as focus, while the

directrix is parallel to the edge which is straight, see Fig. 8c. Note that the parabola

degenerates into a straight line when vi(t), mi−1, and mi are collinear (one of the

neighbors centers is a far point). In this case vi(t) is a smooth vertex.

Definition 1. The skeleton, S(P ), of a circular arc polygon P is formed by the

paths of all non-smooth vertices under the mitered offsetting process for P .

Figure 9 shows a complex circular arc polygon P , its various mitered offsets, and

its skeleton S(P ). Note that the skeleton consists of three connected components,

two of them being just single hyperbolic arcs emerging from reflex vertices of P .

Properties of the skeleton

We will show that the skeleton S(P ) is a forest (Lemma 4) with at most r + 1

connected components, where r is the number of reflex vertices of P . Thus this

structure is slightly more complex than the straight skeletons of polygons,19 which

is known to be a tree.

In addition, the size of the skeleton will be shown to be linear in the size of P .

While the latter property is rather obvious for straight skeletons of polygons, the
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Fig. 9: Mitered offsets (left) and skeleton (right).

analysis is more involved for circular arc polygons, due to the presence of additional

events. We start with stating a technical lemma.

Lemma 2. Neither the evolution process between events, nor the individual events

themselves, increase the number of reflex vertices of the offsetting arc polygon.

Proof. First, we consider the evolution process without the occurrence of any

events, which does not create any new vertices. Since angles at vertices change

continuously, the transformation from a convex vertex to a reflex vertex would

need to pass through a smooth one. However, smooth vertices are preserved by the

evolution, as is reflected in Fig. 10.

mi−1

mivi

Fig. 10: Smooth vertices move on the line between centers.

Second, we analyze the various events and show that they do not increase the

number of reflex vertices. Splice events create two smooth vertices, squeeze events

create two zero angle vertices, thus no reflex ones. Any terminal event destroys the

respective component of the polygon.

Let us argue that bubble events also do not create reflex vertices. Indeed, any
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two adjacent interior vertex angles satisfy αi + αi+1 < 4π. We consider the edge ei
that turns into a full circle, thereby creating a smooth vertex. At the time of the

event, the other newly created vertex angle α∗ satisfies

2π = α∗ + (2π − αi) + π + (2π − αi+1),

see Fig. 11a, thus

α∗ = αi + αi+1 − 3π < π.

The analysis of split events is analogous. Finally we consider vanish events. These

vivi+1

2π−αi2π−αi+1 2π−αi

π

2π−αi+1

α∗
v∗

α∗

π

(a) A bubble event (center) and the arc polygon shortly before (left) and after (right) the
event.

vi vi+1

π−αi

π−αi+1

v∗
π−α∗

(b) A vanish event (right) and the arc polygon shortly before the event (left).

Fig. 11: Bubble events (a) and vanish events (b) do not create reflex vertices.

events can only occur if αi +αi+1 < 2π. At the time of the event, the newly created

exterior angle π − α∗ of the arc polygon satisfies

π − α∗ = (π − αi) + (π − αi+1),

see Fig. 11b. Consequently, α∗ does not achieve π.
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ei

ei+1

ei+2

ej

vi
vi+1

vi+2

vi+3

vj

vj+1

ei
vi+1

ei+1

ei+2

. . .

ej

. . .

Fig. 12: Schematic representation of two squeeze events.

Remark 1. The proof above also shows that reflex vertices disappear whenever

they are involved in an event. For instance, even if one of the vertices in a vanish

event is reflex, the newly created vertex is always convex.

Lemma 3. The skeleton S(P ) of a circular arc polygon P has linear complexity.

Proof. We observe first that an event can create at most two new edges and one

new vertex of S(P ). Consequently, it suffices to show that the number of events is

linear.

Let P have N edges and r reflex vertices. Splice events, split events, and bubble

events emerge from reflex vertices of P . The associated reflex vertex gets eliminated

in such an event, and no new reflex vertices are ever created, by Lemma 2. This

implies

|splice events|+ |split events|+ |bubble events| ≤ r.

Next we analyze the number of squeeze events. A squeeze event involves two edges,

which either are offsets of edges of P , or have been introduced when some reflex

vertex of P got spliced. Let us associate the N edges of P with the corners of a

regular N -gon R, in the same cyclic order. Each squeeze event then represents a

diagonal of R, and these diagonals do not cross because each squeeze event splits the

arc polygon into two components; see Fig. 12. Clearly, the number of such diagonals

is smaller than the number of vertices of R, and we obtain

|squeeze events| < N.

Finally, let us consider the vanish and terminal events. Either type destroys at

least one edge of P . On the other hand, splice and split events create one new edge,

while squeeze events increase the number of edges by two. Therefore

|vanish & terminal events| ≤ N+|splice events|+|split events|+2|squeeze events|.
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Combining these results confirms that the number of events is less than 4N+2r.

In conclusion, the complexity of S(P ) is O(N + r) = O(N).

Lemma 4. The skeleton S(P ) of P is a forest consisting of at most r + 1 trees.

Proof. We define the ‘evolving skeleton’, E(t), at time t as the part of the skeleton

generated by the paths of P ’s vertices for time at most t, plus the planar domains

that are enclosed by the connected components of the evolving arc polygon at time t.

We argue that E(t) is always simply connected. This is clearly true for t = 0,

since P is simply connected. Moreover, none of the events creates connected com-

ponents of E(t) that are not simply connected: The topological effect of three of the

events is shown schematically in Fig. 13, and the remaining events (squeeze, bubble,

and terminal events) also do not create cycles in E(t). Concerning the number of

components of E(t), each of the (at most r) splice events increases this number

by 1, whereas all the other events keep this number constant. We complete the

proof by observing that E(t) starts with one component and ends up with S(P ),

which therefore is a collection of at most r + 1 trees.

Fig. 13: How a splice event (left), a vanish event (right), and a split event (bottom)

modify the topology of the evolving skeleton.

Patch decomposition and roof

The proof of Lemma 4 reflects that the connected components of S(P ) fall into

two categories: The first one is created by reflex vertices that are subject to splice

events. Each such component is just a single edge of S(P ) traced out by a reflex

vertex before it gets spliced. The second category consists of the remaining parts of
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S(P ) and contains only one component, which we will call the principal component

of S(P ).

To make the skeleton a connected structure, we may add all the paths of the

smooth vertices to it. A smooth vertex can either be part of the input arc polygon

P already, or it can be created later in a splice event (Fig. 6). The paths of the

latter vertices will connect the edges in the first component category above to the

principal component of S(P ). The resulting structure, which can contain cycles now,

is termed the extended skeleton of P . It defines a segmentation of the arc polygon’s

interior into disjoint patches, which we denote as the patch decomposition of P .

The extended skeleton shown in Figure 14 (left) contains two paths of smooth

vertices (emanating from the splicing reflex vertex) and defines a patch decomposi-

tion consisting of four patches.

Fig. 14: Extended skeleton (left) and radial decomposition of one patch (right).

Similar to the case of planar straight skeletons20 we consider a so-called roof

model and discuss its link to the patch decomposition. The roof R(P ) of P is

constructed as follows: Each point (x, y) of the mitered offset of P is lifted into

xyt-space by adding the time t as a third coordinate. This results into a composite

surface in 3D consisting of planar facets (generated by straight edges of P ) and

facets of right circular cones (generated by circular edge of P ), both with slope 1.

Clearly, R(P ) forms a globally continuous surface.

The roof provides the alternative definition of the skeleton, namely

S(P ) = {(x, y) | (x, y, t) ∈ R(P ) is singular and not isolated}.

R(P ) simultaneously encodes the patch decomposition of P , since its pieces when

separated by the projected paths of (smooth or non-smooth) vertices, are in one-

to-one correspondence to the resulting patches.

It is known that the patch decomposition induced by the classical straight skele-

ton possesses a monotonicity property:20 Each patch is monotonic with respect to

the direction of the defining edge. We generalize this fact to arc polygons.
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Lemma 5. Each patch g of the patch decomposition of P possesses the property of

radial monotonicity with respect to the center c of its defining edge.

Proof. We have to show that the intersection of g with any radial line emanating

from c is either empty or a single line segment. This can be done using the roofR(P ).

Let f be the facet on R(P ) corresponding to the patch g. Assuming that the lemma

is not true, there have to exist two points p and q where some projected radial line

through c leaves and re-enters f . Between p and q, the slope of the roof must be

different from 1, and in order to achieve the roof height at q, this slope must be larger

than 1 at some places. This is a contradiction, since the maximal slope on R(P )

is 1.

By the radial monotonicity property, the patches can be decomposed in a radial

manner, as is depicted for the uppermost patch in Figure 14 (right).

4. Computing mitered offsets and skeletons

The skeleton S(P ) of an arc polygon P generalizes the classical straight skeleton.

It has been noted that, for the later structure, well-known algorithmic principles

(such as sweep-line and divide & conquer) cannot be employed directly, due to the

absence of an underlying Voronoi structure.19 Additional effort is needed to bound

the influence of reflex vertices to the straight skeleton, since their speeds (which are

determined by the interior vertex angles of P ) can take any positive values. In fact,

the majority of known algorithms compute the straight skeleton by simulating the

event-driven evolution that defines mitered offsets; see e.g.25

We present such an algorithm that generates the patch decomposition deter-

mined by the mitered offsets of a given arc polygon P . From this decomposition,

the individual offsets can be restored in two steps: First, we compute the roof R(P )

by projecting the patch decomposition onto the cones in space-time. Second, the

intersection of R(P ) with a horizontal plane at height δ gives the mitered offset

of P at distance δ.

Algorithm

Our algorithm operates on three main data structures. The evolving circular arc

polygon is represented as a doubly linked list E which maintains the current status of

the evolution. The output is recorded in a DCEL (doubly-connected edge list26) D
that represents the patch decomposition. Finally, the events are managed by a

priority queue Q. Algorithm 1 gives an outline of our method.

The procedure initEvolvingPolygon(P ) initializes E with alternating edges and

vertices, sorted counterclockwise. Additionally, the center mi of each edge is com-

puted, as well as a flag for each vertex that determines whether it is smooth,
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Algorithm 1: Patch Decomposition

Input: Circular arc polygon P

Output: Patch decomposition D
1 E ← initEvolvingPolygon(P )

2 D ← initPatchDecomposition(P )

3 Q← initLocalEventList(E)

4 while E 6= ∅ do

5 nextEvent← chooseNextEvent(Top(Q), E)

6 handleEvent(nextEvent, E,D, Q)

7 end

8 return D

convex, or reflex. We initialize D by calling initPatchDecomposition(E). This pro-

cedure copies all edges and vertices from E into the DCEL D. Additionally, it

creates an edge of the extended skeleton for each vertex in D. The procedure init-

LocalEventList(E) initializes the local event list Q. We loop over all edges in E to

compute vanish and bubble events – see the next section for details. Similarly, we

loop over all reflex vertices to find splice events. In case a connected component of

E has three or fewer edges, terminal events have to be considered as well. All these

events, in ascending order, are stored in the local events list Q.

Now we explain the two steps of the main loop. First, we need to determine the

next event. This can be either a local event, which is then already stored in Q, or a

global (yet unknown) event. The computation of possible global events requires to

test all edge-edge and edge-vertex pairs (for reflex vertices only). Second, we perform

event handling: For all events q (local or global), we use pointers to the associated

edges or vertices in E to perform the required adaptations of E, D, and Q. Details

are given below.

Prediction and handling of events

For computational purposes, the edges ei = vivi+1 in E are represented as right

circular cones in space-time, determined by their centers mi and signed radii ri;

consult Fig. 15. Events are computed by intersecting such cones with certain planes.

Only intersection points in the future, i.e., with time coordinates exceeding the

current time, are considered.

Local events The intersection of the three cones ci−1, ci, and ci+1 for three ad-

jacent edges ei−1, ei, and ei+1 is used to detect vanish and bubble events. The

latter events are obtained for edges ei with strictly positive radius ri and with both

endpoints being nonconvex (but not both being smooth).

The intersection of the two cones ci−1, ci for two adjacent edges ei−1, ei with

the (vertical) bisector plane of the centers mi−1, mi is used to detect a splice event,



July 21, 2021 17:29 WSPC/Guidelines paper

16 Bastian Weiß, Bert Jüttler, Franz Aurenhammer

if vi is a reflex vertex.

Finally, terminal events occur if the number of edges of a connected component

of E drops below four. They can be handled like vanish and bubble events.

Global events A squeeze event corresponds to the intersection of two non-adjacent

cones ci, cj (that is, |i−j| > 1) with the plane that contains their intersection curve.

A split event can be associated with the intersection of two adjacent cones ci−1,

ci with some non-adjacent cone cj , where vi is a reflex vertex.

Note that these intersections do not necessarily determine valid events. In order

to single out those, we compute events only if they occur not later than the next local

event, and we check their validity by performing a local evolution of the arc polygon

(which is safe in the time frame determined by the next local event). Figure 16 gives

an illustration.

Event handling Once having been detected, the generic handling of an event

proceeds as follows. We evolve the offset until we reach the time of the event, and

we identify the involved edges and vertices in E. According to the type of the event,

we perform the necessary adaptations of the patch decomposition D (creation of

skeleton vertices, finalization of patches, or creation of new ones, etc.) and of the

evolving offset E (deleting, adding, or splitting of edges). Subsequently, we remove

the events from the local event queue Q that are no longer relevant (e.g., vanish

events where one of the three involved edges has been deleted), and we add the new

local events created by the modified edge structure (e.g., vanish events involving

three consecutive edges that became adjacent by deleting an edge).

ei

ri

vi

vi+1
ei

vi+1

vi
ri
ri

vi+1

vi+1
vi+1

vi+1

vi

vi

vi

vi

ri

ri

ri

ri

mi

mi
ei

ei

ei

ei

Fig. 15: Representing edges with positive (top) and negative (bottom) radius by

(double-) cones.
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S

vi+1(t)

vi

vj+1(t)

vj(t)

vi+1(t+ δ)
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Fig. 16: Detection of an invalid candidate squeeze event point S.

Computational complexity

The runtime of Algorithm 1 is clearly dominated by the loop in Line 4. This loop

deals with one event per iteration, and is therefore executed O(N) times, as each

event either contributes to the skeleton or reduces the size of E, both of which have

linear size. The detection of the next event may take O(N2) time, since for global

events there is a quadratic number of edge-edge or edge-vertex pairs to be tested.

Consequently, the total time complexity is O(N3). The space complexity is O(N).

To speed up the global event prediction, we have used a sweep line approach: For

a certain time step δ, an axis-aligned bounding box (AABB) for each edge and each

reflex vertex is established, which covers the regions that are traced by these entities

in the time frame from t to t+ δ; see Fig. 17. A sweep line algorithm is invoked to

identify all pairs of overlapping AABBs. Among those we select the candidates for

global events (squeeze or split events), which are then analyzed as before.

The time step δ is chosen as an upper bound for the time to the next (local or

global) event. Clearly, δ should be chosen as small as possible, since the size of the

AABBs grows as δ increases. In most situations, δ is taken as the time distance to

the next local event. However, there are cases when no such event exists. We then

compute the ‘life spans’ of all vertices as the time distance until their two incident

edges are in tangential contact, see Fig. 18, and choose δ as the minimum of all

those. (The situation shown in the figure occurs at terminal events of the second

kind, see Fig. 4, center, and at splice events, see Fig. 6.)

The overlapping AABBs can be found in O((N + k) logN) time, where k is the

number of intersections.26 For a small k (that is, k = O(N)), this is an improve-
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vi+1(t)

vi(t)

vi+1(t+ δ)

vi(t+ δ)

ei(t)

ei(t+ δ)

ei−1

vi(t)

vi(t+ δ)

Fig. 17: The bounding boxes of an edge ei (left) and a reflex vertex vi (right) for

the time frame δ.

vi(t) ei

ei−1

vi(t+ δ)

Fig. 18: Tangential contact of the edges incident to vertex vi.

ment over the quadratic complexity of global event prediction. Note that the space

complexity remains linear. In Section 5 we demonstrate that an O(N2 logN) time

complexity can be achieved for realistic data.

5. Experimental results and examples

We have performed experiments with manually designed arc polygons as well as with

arc polygons created by approximating planar free form shapes with spiral biarcs

(arc splines).13 These arc splines have also been used to evaluate our algorithms’

performance. The algorithm is implemented in Python 3.6 on an Intel i7-6700 CPU

machine with 8 GB Memory.

Some results for mitered offset computation are depicted in Fig. 19. All three

examples are arc spline approximations of free-form curves. While the topmost arc

polygon is smooth everywhere, the other two arc polygons possess vertices of all

types (convex, reflex, and smooth).

Figure 20 shows mitered offsets that have been computed for a lion shape, for

various values of the splicing parameter σ (see Section 2). In particular, Fig. 20a
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Fig. 19: Mitered offsets of the arc polygons smooth, reflex, and snake.

visualizes the classical offset defined by the medial axis of the shape. Increasing σ

(Figs. 20b to 20d) delays the occurring splice events, thereby extending the life span

of the reflex vertices.

Fig. 21 illustrates how the patch decomposition varies for different values of the

splicing parameter. When σ is increased, the skeleton edges of the reflex vertices

extend, and the σ-splice events move towards the interior of the polygon.

When only the (unextended) skeleton is considered, rather than the patch de-

composition, the way how we represent the boundary of an arc polygon can influence

the skeleton greatly. Figure 22 visualizes this effect. The different skeletons of the

snake example in Figure 19 are shown, for a C0 smooth and a C1 smooth repre-

sentation of the boundary, respectively. Concerning the combinatorial size of these

skeletons, the size of both structures is clearly linear in the number of edges in the

input, but the C0 representation creates twice as many entities; see Fig. 23. This is

due to the fact that smooth vertices do not contribute to the skeleton.

Finally, let us demonstrate experimentally that the time complexity of our algo-

rithm is O(N2 logN). Figure 24 gives the relation between computation time and

number of input edges, for the examples smooth, reflex, and snake. The reference

lines (black) show cN2 logN .
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(a) σ = 180° (b) σ = 280°

(c) σ = 320° (d) σ = 360°

Fig. 20: The effect of increasing the splicing parameter σ.

(a) σ = 180° (b) σ = 270°

(c) σ = 300° (d) σ = 360°

Fig. 21: Patch decompositions of an arc polygon, for various values of σ.

6. Conclusion

We have presented an extension of straight skeletons to shapes bounded by circular

arcs and, in particular, arc splines. Experimental results indicate that the proposed
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algorithm computes mitered offsets and their associated skeleton in O(N2 logN)

time, where N is the number of edges of the input shape. The size of the resulting

skeleton and patch decomposition is linear, the patches possess a radial monotonic-

ity property, and the mitered offsets are locally invertible.

The introduction of the parameter σ allows us to control the exterior angle at

which reflex vertices on the offsetting boundary will splice, thereby influencing the

structure of the skeleton. Consequently, our algorithm can be adapted to compute

either the medial axis or the skeleton (which is the straight skeleton for the special

case of polygons with only straight edges). The algorithm can be directly extended

to general circular arc figures in the plane that consist of various arc polygons.

Practical efficiency could be gained by using a different algorithmic approach,

via the maintaining of a partitioning structure for the interior of the offsetting

shape.20 However, for arc polygons we cannot use a triangulation for partitioning

Fig. 22: Different boundary representations lead to different skeletons.
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Fig. 23: Skeleton size of the snake example, given as a C0 continuous arc spline

(squares) and a C1 continuous arc spline (dots), respectively.
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22 Bastian Weiß, Bert Jüttler, Franz Aurenhammer

102 103 104

10−1

100

101

102

103

104

105

N – number of edges

co
m
p
u
ta
ti
o
n
ti
m
e
(i
n
se
co

n
d
s)

smooth

reflex

snake

Fig. 24: Runtime behavior when the size of the arc spline representation is increased.

any more, because such a structure need not exists for an arc polygon.24 A trape-

zoidal decomposition26 will work, but will lead to an involved algorithm which is

much harder to implement than ours.
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axis computation for planar free–form shapes, Computer-Aided Design 41 (2009) 339.
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