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On tensor-product bases of PHT-spline spaces

Lisa Groiss, Bert Jüttler and Maodong Pan

Abstract We show how to generate hierarchical T-meshes in R2 with associated
locally refined B-splines, which possess the property of local linear independence,
form a non-negative partition of unity, and span the resulting spaces of 𝐶𝑠-smooth
polynomial splines of degree 𝑝 = 2𝑠 + 1. The bases are collections of systems of
tensor-product B-splines, without any need for truncation or similar modifications.
The construction extends our earlier results for 𝑠 = 0 and the bilinear case [12].
Additionally we introduce two new mesh quality parameters that control the local
complexity and quality of the elements and show that these parameters are compatible
with our mesh generation procedure. We also analyze their impact on the resulting
meshes with the help of numerous examples. In order to make the paper self-
contained, we also include a new proof (covering the case 𝑝 = 2𝑠 + 1) of the fact –
first noted by Dokken et al. [8] – that the resulting locally refined B-splines depend
solely on the final mesh.

1 Introduction

Adaptive refinement of bivariate spline spaces plays an important role in geometric
modeling and isogeometric analysis (IGA). It provides significant advantages over
traditional NURBS techniques, which are based on a tensor-product structure that
precludes local refinement. Several different approaches have been explored so far,
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including H (hierarchical) B-splines, T-splines, PHT- (polynomial) splines (over
hierarchical T-meshes) and LR (locally refined) B-splines. We briefly review these
splines, emphasizing PHT-splines and LRB-splines as these are particularly relevant
for our paper:

• HB-splines were established by Forsey and Bartels [9] for applications in geo-
metric design. The initial lack of linear independence was resolved in the PhD
thesis of Kraft [19] and further investigated by Vuong et al. [27]. Unfortunately,
the partition of unity property is not preserved by the construction mechanism.
As a remedy, Giannelli et al. [11] modified the basis by introducing the trunca-
tion mechanism, which resulted in the definition of THB-splines. These combine
good approximation and stability properties and have been shown to be useful for
geometric design and IGA [10, 17].

• T-splines were invented by Sederberg et al. [25] as a surface design methodology.
Later they were then used for IGA [1]. Buffa et al. studied their linear indepen-
dence [4], indicating that this property is not guaranteed on generic T-meshes.
Subsequently, Li et al. [20] introduced the restricted subset of “analysis-suitable”
T-splines, which are linearly independent and form a partition of unity.

• PHT-splines [7], which are piecewise bicubic polynomials with 𝐶1-continuity
over hierarchical T-meshes, inherit several good properties of B-splines. Higher
degree PHT-splines and the dimension of the space spanned by themwere investi-
gated in the paper [6]. Compared to other constructions, the reduced smoothness 𝑠
for degree 𝑝 = 2𝑠 + 1 simplifies the mathematical theory. PHT-Splines have been
used for various applications, such as isogeometric analysis [18], topology opti-
mization [14], domain parameterization [5], and fracture mechanics [29], Later,
it was observed that the basis of PHT-splines reveals a decay phenomenon for
certain types of refinement of T-meshes [16], which is not expected in applica-
tions. Subsequently, several modified versions of PHT-splines [16, 22, 30] were
proposed to address this issue.

• LR B-splines were introduced by Dokken et al. [8] and provide another way to
perform adaptive refinement of spline spaces. The basic idea of LR B-splines is
to extend the global refinement of B-splines to insertion of local line segments
in tensor meshes. Although LR B-splines possess almost all the properties of
classical B-splines, they are not always linearly independent. A useful analysis
was carried out by Bressan [2]. Subsequently, Bressan and Jüttler [3] presented
a hierarchical construction of LR-spaces which guarantees the local linear inde-
pendence of basis functions and completeness. In [23], the authors studied the
necessary features of LR B-splines to have the linear independence property and
proved that the minimal number of LR B-splines needed for this property is eight.
Patrizi et al. [24] further proposed a practical refinement strategy that ensures the
local linear independence of the resulting LR B-splines. Several applications of
LR B-splines in isogeometric simulations and geometric modeling can be found
in the literature [13, 15, 26].

Recently, we proposed [12] a simple algorithm which constructs hierarchical T-
meshes by repeatedly inserting new line segments, focusing on the case of LR B-



On tensor-product bases of PHT-spline spaces 3

splines for bilinear (i.e., 𝐶0-smooth) PHT-splines. The main benefit of this approach
is the ability to adapt both the shape and size of the cells to the specific application,
while ensuring the good properties of local linear independence and partition of
unity of the basis. The correctness of this algorithm was verified by enumerating the
newly introduced standardized local configurations.
Based on this work, which mainly focused on the bilinear case and on the concept

of semi-regularity in the sense of Weller and Hagen [28], the present paper extends
and improves the construction in several ways: First, the new algorithm is applicable
to higher order splines of degree 𝑝 = 2𝑠 + 1 with 𝐶𝑠-smoothness. Second, two
new mesh quality parameters that measure the local complexity and quality of the
elements are introduced. In order to make the paper self-contained, we also include a
new proof of the fact (first noted by Dokken et al. [8]) that the resulting LR B-splines
depend solely on the final mesh.
The remainder of the paper is organized as follows. The construction of locally

linearly independent LR B-splines on PHT spline spaces is reviewed in Section 2.
The next two sections introduce the RMB-spline systems and analyzes the B-splines
systems on the cells with the help of standardized local configurations. The proposed
refinement algorithm is established in Sections 5 and 6 with the help of the notion
of good line segments. Numerous experimental results are shown in Section 7. The
final section draws the conclusions and identifies directions for future work.

2 Preliminaries

Our starting points are the sets of vertical and horizontal line segments

𝑣 = {𝑥𝑣} × [𝑦𝑣 , 𝑦′𝑣] and ℎ = [𝑥ℎ , 𝑥 ′ℎ] × {𝑦ℎ} ,

respectively, where 𝑥𝑣 , 𝑦𝑣 , 𝑦′𝑣 , 𝑦ℎ , 𝑥ℎ , 𝑥 ′ℎ ∈ R and 𝑦𝑣 < 𝑦′𝑣 and 𝑥ℎ < 𝑥 ′ℎ . A T-mesh
𝑀 covering the domain Ω (which will be introduced later) is represented by a finite
set of line segments, which is saturated in the sense that we always use the longest
possible segments for representing it1. The subset relation is generalized to meshes
by writing 𝑀 @ 𝑀 ′ whenever each line segment in 𝑀 is a subset of a line segment
in 𝑀 ′.
The cells 𝑐 of themesh are the bounded connected components of the set difference

Ω\\𝑀 , where the symbol \\ indicates that we apply the set difference operator with
respect to all the elements of 𝑀 . Furthermore, we exclude non-rectangular cells by
assuming that the mesh can be created from an initial tensor mesh by iteratively
inserting one vertical or horizontal line segment at a time, such that the two end
points of that segment are located on segments that are already present at this step.
On each mesh we define collections of systems of B-splines. Each system 𝛽

consists of (𝑠 + 1)2 B-splines of degree 𝑝 = 2𝑠 + 1 that are 𝐶𝑠 smooth for 𝑠 ≥ 1,

1 More precisely, all pairs of parallel line segments in 𝑀 (i.e., both vertical or both horizontal)
have no common point.
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which are specified by the local knot vectors 𝑋𝛽 = [𝑥, 𝑥 ′, 𝑥 ′′] and 𝑌𝛽 = [𝑦, 𝑦′, 𝑦′′]
with 𝑥 < 𝑥 ′ < 𝑥 ′′ and 𝑦 < 𝑦′ < 𝑦′′ and possesses the associated mesh

𝐺𝛽 = {{b} × [𝑦, 𝑦′′] : b ∈ {𝑥, 𝑥 ′, 𝑥 ′′}} ∪ {[𝑥, 𝑥 ′′] × {[} : [ ∈ {𝑦, 𝑦′, 𝑦′′}} ,

which we call its grid. All these B-splines take the form

𝑁 𝑝
Ξ (𝑥)𝑁

𝑝
H (𝑦) ,

where the local knot vectors Ξ and H of the univariate B-splines consist of 𝑝 + 2
instances of the knots 𝑥, 𝑥 ′, 𝑥 ′′ and 𝑦, 𝑦′, 𝑦′′, respectively, with the multiplicities 𝑘 ,
𝑠+1 and 𝑠+2− 𝑘 of the first, second and third knot, respectively, for 𝑘 = 1, . . . , 𝑠+1.
As an example, Fig. 1 visualizes the knot vectors of the B-splines forming a system
for 𝑠 = 1. The axis-aligned box [𝑥, 𝑥 ′′] × [𝑦, 𝑦′′] is the support of the B-spline

𝑥 𝑥′ 𝑥′′
𝑦

𝑦′
𝑦′′

𝑥 𝑥′ 𝑥′′
𝑦

𝑦′
𝑦′′

𝑥 𝑥′ 𝑥′′
𝑦

𝑦′
𝑦′′

𝑥 𝑥′ 𝑥′′
𝑦

𝑦′
𝑦′′

Fig. 1: A B-spline system for 𝑠 = 1. It consists of four bicubic B-splines and the knot
lines have multiplicity 1 or 2.

system, and (𝑥 ′, 𝑦′) serves as its anchor point. A B-spline system is said to be on the
mesh 𝑀 if its grid satisfies 𝐺𝛽 @ 𝑀 , and the collection of the B-spline systems on
the mesh forms the set 𝐵. Note that 𝐵 depends on 𝑀! Clearly, nested meshes possess
nested collections of B-spline systems, 𝐵′ ⊂ 𝐵 if 𝑀 ′ @ 𝑀 . Here we use the prime ′
to denote a second mesh and the associated collection of the B-spline systems.
The following example will be used throughout the paper in order to illustrate the

theory presented:

Example We consider meshes 𝑀 A 𝑀0 that contain the initial mesh

𝑀0 = {{𝑥} × [𝑎 − 1, 𝑏 + 1] : 𝑥 ∈ {𝑎 − 1, 𝑎, 𝑏, 𝑏 + 1}} ∪
{[𝑎 − 1, 𝑏 + 1] × {𝑦} : 𝑦 ∈ {𝑎 − 1, 𝑎, 𝑏, 𝑏 + 1}} ,

where we use the phantom knots 𝑎 − 1 and 𝑏 + 1. The 16 B-spline systems on the
initial mesh 𝑀0 form the set 𝐵0. ♦

A B-spline system 𝛽 ∈ 𝐵 is said to split into another B-spline system 𝛽′ ∈ 𝐵 with
respect to the mesh 𝑀 , denoted by

𝛽→𝑀 𝛽′ and 𝛽′ = (𝛽 :ℓ)+/− ,
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if the grids satisfy 𝐺𝛽′ @ (𝐺𝛽 t {ℓ}) for some (vertical or horizontal) line segment
ℓ @− 𝑀 . More precisely, ℓ is a subset of an element of 𝑀 , and we use the symbol @−
to denote this generalized element notation. The sign + or − indicates which of the
two resulting systems is selected, see Fig. 2. Moreover, it is required that the line

𝑥 𝑥′ 𝑥′′
𝑦

𝑦′
𝑦′′

ℓ

𝑥 𝑥′ 𝑥′′
𝑦

𝑦′
𝑦′′

ℓ

𝑥 𝑥′ 𝑥′′
𝑦

𝑦′
𝑦′′

ℓ

Fig. 2: The B-spline system 𝛽 (left) splits into (𝛽 :ℓ)− (middle) and (𝛽 :ℓ)+ (right).

segment ℓ traverses the support of 𝛽 and is not already present in its grid, and the
satisfaction of these conditions is indicated as ℓ | 𝛽. In addition we define

(𝛽 :ℓ)+/− = 𝛽 if ℓ - 𝛽 .

The “splits into” relation→𝑀 defines the directed acyclic graph Γ = (𝐵,→𝑀 ) with
vertex set 𝐵. The sinks of this graph, which form the set 𝐵⊥, are the minimally
supported B-spline systems on the mesh 𝑀 .

3 The reachable minimally supported B-spline systems

We consider a subset 𝑆 ⊆ 𝐵, which is called the set of seeds. Among all the B-spline
systems on a given mesh 𝑀 , we are only interested in those that can be generated by
splitting one of the seed systems, and we denote the resulting subset of 𝐵 by

{𝑆 →+𝑀 } = {𝛽 ∈ 𝐵 : ∃𝛽0 ∈ 𝑆 such that 𝛽0 →+𝑀 𝛽},

where→+𝑀 denotes the transitive closure of the relation→𝑀 . In particular, we will
study the systems of reachable minimally supported B-spline systems (RMB-spline
systems) on the mesh 𝑀 ,

𝑅 = {𝑆 →+𝑀 }⊥ = {𝛽 ∈ {𝑆 →+𝑀 } : 𝛽 is a sink} . (1)

Example We choose the four sinks in 𝐵0 as the set of seeds 𝑆0. These four B-spline
systems also form the RMB-spline systems on 𝑀0. ♦

Consider a coarser mesh 𝑀 ′ @ 𝑀 . We analyze the sinks that can be found by
tracing a path in Γ that starts at one of the vertices in the set 𝑅′ = {𝑆 →+𝑀 ′}⊥ in order
to establish the following theorem, which is a reformulation (with a new proof) of
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Theorem 3.4 by Dokken et al. [8]. We include it here in order to make this article
self-contained:

Theorem 1 The RMB-spline systems on a mesh 𝑀 can be reached from the RMB-
spline systems on any coarser mesh 𝑀 ′ @ 𝑀 , i.e.,

{𝑅′→+𝑀 }⊥ = 𝑅 ,

provided that both 𝑀 and 𝑀 ′ are derived from the same set of seeds 𝑆 = 𝑆′ ⊂ 𝐵′ ⊂ 𝐵,
where 𝐵 and 𝐵′ are the collections of the B-spline systems on the meshes 𝑀 and 𝑀 ′,
respectively.

Proof We prove the theorem by contradiction. Assume there exists a RMB-spline
system 𝛽⊥ ∈ 𝑅 that cannot be reached from a RMB-spline system in 𝑅′. We consider
all the paths of B-spline systems that start at an element 𝛽0 ∈ 𝑆 and terminate at
𝛽⊥ ∈ 𝑅. Let 𝛽 (0) be the first B-spline system on some path whose successor 𝛽 (1) is
not on the coarse mesh 𝑀 ′, i.e., 𝛽 (1) ∉ 𝐵′. Among all the paths and B-spline systems
𝛽 we pick the ones where the area of the support is minimal. By assumption, 𝛽 (0) is
not a sinkwith respect to→𝑀 ′ , hence there exists a line segment 𝑘 @− 𝑀 ′ such that the
two systems (𝛽 : 𝑘)+/− are on 𝑀 ′. The remaining path 𝛽 (0) , 𝛽 (1) , 𝛽 (2) , . . . , 𝛽 (𝑛) = 𝛽⊥
with associated line segments ℓ (𝑖) used in the splitting steps,

𝛽 (𝑖+1) = (𝛽 (𝑖) :ℓ (𝑖) )+/− (2)

will be called the tail. We will show that there exists a modified tail 𝛽 (0) , 𝛽 (0) , 𝛽 (1) ,
𝛽 (2) , . . . , 𝛽 (𝑛) = 𝛽⊥ such that its vertices satisfy the two conditions

𝛽 (𝑖) = (𝛽 (𝑖) : 𝑘)+/− (3𝑎) and 𝛽 (𝑖+1) = (𝛽 (𝑖) :ℓ (𝑖) )+/− (3𝑏)
for a suitable choice of the signs. Some of the adjacent nodes may be identical (if
ℓ (𝑖) - 𝛽 (𝑖) ) and can be merged.
In order to prove the existence of the modified tail, we note that the splitting steps

with respect to ℓ (𝑖) and 𝑘 commute in the sense that two sets

{((𝛽 (𝑖) : 𝑘)+ :ℓ (𝑖) )+, ((𝛽 (𝑖) : 𝑘)+ :ℓ (𝑖) )−, ((𝛽 (𝑖) : 𝑘)− :ℓ (𝑖) )+, ((𝛽 (𝑖) : 𝑘)− :ℓ (𝑖) )−} and
{((𝛽 (𝑖) :ℓ (𝑖) )+ : 𝑘)+, ((𝛽 (𝑖) :ℓ (𝑖) )+ : 𝑘)−, ((𝛽 (𝑖) :ℓ (𝑖) )− : 𝑘)+, ((𝛽 (𝑖) :ℓ (𝑖) )− : 𝑘)−}

are identical since both sets consist of the minimally supported B-spline systems
on the mesh obtained by adding 𝑘 and ℓ (𝑖) to 𝐺𝛽 (𝑖) , which is a tensor mesh when
restricted to the support of 𝛽 (𝑖) , see Fig. 3. The figure depicts one representative
for each class of topologically equivalent configurations. Additional (simpler) cases
arise if 𝑘 is identical to one of the other line segments.
Hence, we may construct the modified tail going backward from the sink 𝛽⊥ to

𝛽 (0) by choosing the sign in the first equation in (3) such that the second condition
is satisfied for 𝑖 = 𝑛 − 1, . . . , 0. Indeed, considering the diagram in Fig. 4, for any
given 𝛽 (𝑖) , 𝛽 (𝑖+1) and 𝛽 (𝑖+1) that respect the upper and the right arrow, the equality
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𝑥 𝑥′ 𝑥′′

𝑘

ℓ (𝑖)
𝑦

𝑦′
𝑦′′

𝑥 𝑥′ 𝑥′′

𝑘

ℓ (𝑖)
𝑦

𝑦′
𝑦′′

𝑥 𝑥′

𝑘

ℓ (𝑖)

𝑥′′
𝑦

𝑦′
𝑦′′

𝑥 𝑥′ 𝑥′′

𝑘

ℓ (𝑖)

𝑦

𝑦′
𝑦′′

Fig. 3: The mesh 𝐺𝛽 (𝑖) t {𝑘} t {ℓ (𝑖) } is a tensor mesh in all the situations.

𝛽 (𝑖) 𝛽 (𝑖+1)

𝛽 (𝑖) 𝛽 (𝑖+1)

(2)

(3𝑏)
(3𝑎) (3𝑎)

Fig. 4: The commutativity of this diagram ensures the existence of the modified tail.

of the two sets implies that one may always find a 𝛽 (𝑖) ensuring commutativity for
some choice of signs of the splitting steps on the lower and the left arrow.
Summing up, we obtain a new path that starts at 𝛽0 ∈ 𝑆 and terminates at 𝛽⊥ ∈ 𝑅,

simply by replacing the tail with the modified tail. Again, we consider the first B-
spline system on the path whose successor is not on the coarse mesh𝑀 ′. This system
is necessarily behind 𝛽, since 𝛽 (0) is on the coarse mesh �̂� . Consequently, the area
of its support is smaller than the support area of 𝛽, in contradiction to the assumption
regarding the minimal support area. �

This theorem leads to a procedure for generating the RMB-spline systems on a
mesh: One inserts one line segment after the other. After each insertion, splitting
steps are used to transform the RMB-spline systems of the previous instance of the
mesh to the current one. Clearly, one needs to consider all the line segments that are
present in the mesh at this stage, since the latest line segment insertion may enable
additional splitting steps with respect to previously inserted ones.

4 The B-spline systems on the cells

The B-spline system 𝛽 ∈ 𝐵 is said to be active on the cell 𝑐 if 𝑐 ⊂ supp(𝛽). The
active RMB-spline systems on a cell 𝑐 form the set

𝑅𝑐 = {𝛽 ∈ 𝑅 : 𝑐 ⊆ supp 𝛽} .

Furthermore, the local mesh
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𝑀𝑐 =
⊔
𝛽∈𝑅𝑐

𝐺𝛽

of a cell is the union of all the local grids 𝐺𝛽 associated with B-spline systems
𝛽 ∈ 𝑅𝑐 .
We introduce the notion of standardized local configurations (SLCs) in order to

capture the topologically different collections of active RMB-spline systems on the
cells. An SLC is a finite collection of B-spline systems

Σ = {𝛽1, 𝛽2, . . . , 𝛽𝑛Σ }

where all the knots are odd integers, such that all the supports contain the standard
cell [−1, 1]2. Moreover, it is required that the cell’s knot vectors (i.e., the union of
the knot vectors, which are considered as sets for notational convenience) combined
with the cell’s boundary knots, i.e.,

𝑛Σ⋃
𝑖=1

𝑋𝛽𝑖 ∪ {−1, +1} and
𝑛Σ⋃
𝑖=1

𝑌𝛽𝑖 ∪ {−1, +1}

are finite sequences of consecutive odd integers. Note that we consider SLCs as
equivalent if there exist reflections or rotations that transform them into each other.
For each cell 𝑐 there exists a homeomorphism ℎ𝑐 of the plane R2 that transforms

𝑐 into [−1, 1]2 and 𝑅𝑐 into an SLC

Σ𝑐 = {𝛽 : ∃𝛽′ ∈ 𝑅𝑐 such that 𝐺𝛽 = ℎ𝑐 (𝐺𝛽′)} .

The resulting SLC is unique up to reflections and rotations, and thus we will denote
it as the standardized local configuration of the cell 𝑐.
We consider two meshes 𝑀 and 𝑀 ′ with cells 𝑐 and 𝑐′ and associated SLCs

Φ = Σ𝑐 and Φ′ = Σ′𝑐′ , respectively. The SLC Φ is said to refine into the SLC Φ′,
denoted by Φ { Φ′, if

(i) 𝑐′ ⊆ 𝑐,
(ii) 𝑅𝑐 ≠ 𝑅𝑐′ and
(iii) there exists a line segment 𝑘 such that 𝑀 t {𝑘} = 𝑀 ′.

The second condition is imposed in order to exclude the insertion of line segments
that do not enrich the spline space (e.g., segments that split a single cell only).
Among all the SLCs we consider the finite subset F of all the standardized

configurations with only four elements,

F = {Σ : Σ is SLC and |Σ| = 𝑛Σ = 4} ,

since this is a necessary condition for the associated spline spaces to possess the
property of local linear independence. Among others it contains the tensor-product
standardized local configuration T, which is depicted in Fig. 5 (left). The figure
shows the mesh (solid black lines), the standard cell (blue) and the anchor points
(𝑥 ′, 𝑦′) of the B-spline systems (red squares).
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Fig. 5: Left: E4,4 = {T}. Center: An SLC in F \ {T {+F}. Right: E4,5.

We denote with{F the restriction of the “refines into” relation to F ,

Φ {F Φ′ if Φ { Φ′ and Φ,Φ′ ∈ F .

The symbol {+F denotes the transitive closure of this relation. Similar to →𝑀 , it
defines a directed acyclic graph (F ,{F).
We recall the following result about the SLCs that are created by refining the

tensor-product configuration:

Lemma 1 The set of SLCs

{T {+F} = {Φ ∈ F : T {+F Φ}

that are reachable from the tensor-product SLC T via {F consists of the 385
elements (up to reflections and rotations) listed in the Appendix of [12, technical
report version].

Proof All the SLCs Φ′ a given configuration Φ refines into can be generated by
taking the mesh and the seeds

𝑀 =
⊔
𝛽∈Φ

𝐺𝛽 and 𝑆 = Φ ,

respectively, and then considering all the meshes 𝑀 ′ that are obtained by adding a
single line segment 𝑘 to it. It suffices to analyze one representative from each class
of line segments that lead to topologically equivalent meshes. Hence we can reduce
the problem to a finite number of cases for each SLC. Based on this fact, the result
was obtained in [12] by recursively enumerating the reachable standardized local
configurations, starting with T. �

Note that {T {+F} is a proper subset of F . To confirm this fact, Fig. 5 (center)
shows an instance of an SLC (i.e., the mesh and the anchor points) that belongs to
F but not to {T {+F}.
We are interested in several subsets of {T {+F}: Firstly, we introduce the setsE𝑞,𝑟 , where 4 ≤ 𝑞 ≤ 𝑟 , that contain all the SLCs in {T {+F} with exactly 𝑞 and 𝑟

knots, respectively, in one direction and in the other direction. Table 1(left) lists the
number of SLCs in these sets up to reflections and rotations. Figs. 5–15 visualize
selected SLCs (meshes and anchor points) in these sets.
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𝑟
𝑞 4 5 6 7 8 ≥ 9
4 1 3 15 18 12 0
5 n/a 11 56 72 36 0
6 n/a n/a 50 72 39 0
≥ 7 n/a n/a n/a 0 0 n/a or 0

`
𝜏 4 5 6 7 ≥ 8
8 1 1 1 1 1
9 1 4 4 4 4
10 1 15 30 30 30
11 1 15 86 104 104
12 1 15 136 226 238
13 1 15 136 298 346
≥ 14 1 15 136 298 385

Table 1: Number of SLCs in E𝑞,𝑟 (left) and in K`,𝜏 (right).

Secondly, we establish the sets K`,𝜏 of SLCs with at most 𝜏 knots that have no
more than ` knots in each direction. The indices ` and 𝜏 are called the maximum
and the total knot number, respectively. These sets satisfy

K`,𝜏 =
⋃

𝑞≤𝑟 ≤`,𝑞+𝑟 ≤𝜏
E𝑞,𝑟 .

Table 1(right) reports the numbers of SLCs in these sets up to reflections and
rotations.

5 Good line segments

Consider a fixed set of seeds 𝑆 and a domain Ω ⊂ R2. A mesh 𝑀 is said to be
(𝑆,Ω)-compatible if

(i) the B-spline systems in 𝑆 are on the mesh 𝑀 and
(ii) the domain Ω is equal to the closure of the union of a subset of the cells of
the mesh 𝑀 .

The cells contained in the latter subset (and hence in the domain) are said to be
active.
Based on the setsK`,𝜏 of SLCs, we introduce the following notion: A compatible

mesh 𝑀 – with the associated RMB-splines 𝑅 obtained from 𝑆 – is said to have the
class (`, 𝜏) if all the SLCs of all active cells belong to K`,𝜏 . The quantities ` and
𝜏 are called the mesh quality parameters. Clearly, a mesh has such a class only if
all the SLCs belong to {T {+F} = K8,14. The class (∞,∞) is assigned otherwise.
In particular, this class is assigned to meshes with cells that possess more than four
active systems of B-splines and to meshes containing line segments that do not
enrich the spline space, according to the second condition (ii) in the definition of the
“refines into” relation for SLCs.
The class of a mesh will be used to control the local complexity of the elements.

The larger the mesh quality parameters, the richer the set of SLCs that may be present
in the mesh.
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Fig. 6: Selected SLCs in E4,6.

Fig. 7: Selected SLCs in E4,7.

Fig. 8: Selected SLCs in E4,8.

Fig. 9: Selected SLCs in E5,5.

Fig. 10: Selected SLCs in E5,6.

A vertical or horizontal line segment ℓ is said to be good for the class (`, 𝜏) if
the class of the mesh 𝑀 t {ℓ} – with the associated RMB-splines on it – does not
exceed (`, 𝜏). Furthermore, we specialize this notion to the local mesh 𝑀𝑐 , which
was introduced for all the cells 𝑐 of 𝑀 . Here we use the RMB-splines 𝑅𝑐 on the
cell as the set of seeds and the cell itself as the domain, hence we consider 𝑀𝑐 as
a (𝑅𝑐 , 𝑐)-compatible mesh and assume it has class (`, 𝜏). This is the case if the
SLC belongs toK`,𝜏 . We then say that a line segment ℓ is locally good for the class
(`, 𝜏) with respect to the cell 𝑐 if the class of the mesh 𝑀𝑐 t {ℓ} – which is again
(𝑅𝑐 , 𝑐)-compatible – does not exceed (`, 𝜏).

Local goodness implies global goodness: A line segment ℓ is good for the class
(`, 𝜏) if and only if it is locally good for this class with respect to all the cells. The
following result provides a sufficient condition for local goodness:
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Fig. 11: Selected SLCs in E5,7.

Fig. 12: Selected SLCs in E5,8.

Fig. 13: Selected SLCs in E6,6.

Fig. 14: Selected SLCs in E6,7.

Fig. 15: Selected SLCs in E6,8.

Lemma 2 Line segments that traverse a local mesh 𝑀𝑐 of some class (`, 𝜏) are
always2 locally good with respect to the cell 𝑐.

Proof We go through all the 385 SLCs in {T {+F} and add all the possible line
segments ℓ that traverse the local meshes 𝑀𝑐 with 𝑐 = [−1, 1]2. It suffices to analyze
one representative for each class of topologically equivalent meshes 𝑀𝑐 t{ℓ}, hence
we arrive at a finite number of cases. A detailed analysis confirms the above result.
More precisely, for each SLC we generate all the vertical lines 𝑥 = b and all the

horizontal lines 𝑦 = [ with integer coordinates b, [ ∈ Z. We consider only the lines
among them that intersect the local mesh 𝑀𝑐 in a non-empty line segment ℓ. The
number of these lines and associated line segments is finite.

2 i.e., for all values of the mesh quality parameters ` and 𝜏
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Finally, we compute the class of 𝑀𝑐 t {ℓ} for each line segment ℓ and compare it
with the class of 𝑀𝑐 . It turns out that the class never increases. More precisely, we
obtain the same or a lower class for all the 385 SLCs and for all the considered lines
and associated line segments. �

The lemma forms the basis for a procedure that turns any line segment ℓ into a
good line segment, simply by extending it as long as this is necessary. It confirms
that the two mesh quality parameters ` and 𝜏 are compatible with this procedure,
which is formalized as Algorithm GoodLineSegment.

Algorithm: GoodLineSegment(line segment ℓ)
global mesh 𝑀; class (`, 𝜏);
LineSegmentGrows← true;
while LineSegmentGrows do
LineSegmentGrows← false;
𝑀 ′← 𝑀 t {ℓ};
forall cells 𝑐′ of mesh 𝑀 ′ do

if Σ𝑐′ ∉ K(`,𝜏) then
LineSegmentGrows← true;
forall cells 𝑐 of mesh 𝑀 do

if 𝑐′ ⊆ 𝑐 then
extend ℓ such that it traverses

⋃
𝛽∈𝑅𝑐

supp 𝛽;
return ℓ;
The algorithm uses the mesh 𝑀 and its class (`, 𝜏) as global variables. In par-

ticular, the line segment will be extended if its insertion (or the insertion of some
parts of it) do not enrich the spline space, according to the second condition (ii) in
the definition of the “refines into” relation for SLCs.

6 Mesh refinement

Given a pair (`, 𝜏) of finite mesh quality parameters, we study the RMB-spline
systems on sequences of meshes that are created via mesh refinement,

𝑀 (𝑖) = 𝑀 (𝑖−1) t {ℓ (𝑖−1) } and 𝑅 (𝑖) = {𝑅 (𝑖−1) →+
𝑀 (𝑖) }⊥ for 𝑖 = 1, 2, . . . 𝑁,

where we assume that a good vertical or horizontal line segment ℓ (𝑖−1) is inserted in
each step. In addition, it is required that the end points of that segment are located
on segments that are already present in the mesh at this step. The sequence starts
with an initial mesh 𝑀0 with RMB-spline systems 𝑅0 = {𝑆 →+

𝑀 0 }⊥ for a given set
of seeds 𝑆.
The construction is justified by Theorem 1, which ensures that the iteratively

created sets 𝑅 (𝑖) are indeed the RMB-spline systems {𝑆 →+
𝑀 (𝑖) }⊥ on the mesh 𝑀 (𝑖) ,

cf. (1). The goodness of the inserted line segments ensures that the class (`, 𝜏) of
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the initial mesh3 is preserved throughout the refinement process. Consequently, the
mesh quality parameters ` and 𝜏 are compatible with our construction.
We restrict the initialization of the refinement procedure in order to derive addi-

tional results, cf. Fig. 16.

Assumption The initial mesh 𝑀 (0) , the set of seeds 𝑆 and the domain Ω fulfill the
following three conditions:

(i) The initial mesh 𝑀 (0) is a tensor mesh.
(ii) The seeds 𝑆 are all the associated tensor-product B-splines with knots pos-
sessing multiplicity 𝑠 + 1, organized in systems associated with the inner vertices
of the initial mesh.
(iii) The domain Ω is the closure of the union of a certain subset of the cells
(including the cell’s boundaries) that does not contain any of the boundary cells of
𝑀 (0) . Its boundary consists of closed simple curves, which are mutually disjoint.
♦

Fig. 16: An initial mesh (black) and a domain (green) that fulfills the assumption.

Example We choose the initial mesh 𝑀 (0) = 𝑀0, the seeds 𝑆 = 𝑆0 and the domain
Ω = [𝑎, 𝑏]2. The assumption is satisfied. ♦

The spaces spanned by the RMB-spline systems 𝑅 (𝑖) are nested,

span
⋃

𝛽∈𝑅 (𝑖−1)
𝛽 ⊆ span

⋃
𝛽∈𝑅 (𝑖)

𝛽 ,

simply because any B-spline in 𝛽 admits a representation as a linear combination
(with non-negative weights) of the functions in (𝛽 :ℓ)+ ∪ (𝛽 :ℓ)− for any line seg-
ment ℓ. These spaces also contain all the tensor-product polynomials of degree (𝑝, 𝑝)
restricted to Ω, since the domain does not contain the boundary cells of the initial
tensor mesh.

Theorem 2 The RMB-spline systems 𝑅 (𝑖)

3 That mesh even possesses the class (8, 4) , due to the assumption, as all the SLCs are equal to T.
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(i) are locally linearly independent on the domain Ω, and
(ii) form a nonnegative partition of unity on Ω.

In addition, they

(iii) span the full spline space defined by Ω and 𝑀 (𝑖)

if the mesh contains no T-vertices4 on the domain boundary.

Proof All the SLCs of the created meshes possess the class (`, 𝜏), thus the unions
of the RMB-spline systems 𝑅 (𝑖)𝑐 on each cell 𝑐 of 𝑀 (𝑖) are linearly independent since
|𝑅 (𝑖)𝑐 | = 4 and the space spanned by them contains all the tensor-product polynomials
of degree (𝑝, 𝑝) restricted to 𝑐. Indeed, these polynomials form a linear space of
dimension (𝑝+1)2 = (2𝑠+2)2 = 4(𝑠+1)2 and this number is equal to the total number
of B-splines in the four systems in 𝑅 (𝑖)𝑐 . The linear independence of the unions of
the RMB-spline systems 𝑅 (𝑖)𝑐 on 𝑐 implies the local linear independence (i).
The proof of the second statement relies on two facts:

• Firstly, the anchor points of the active5 B-spline systems belong to Ω. This is
true for the initial mesh and for the RMB-splines on it (which are simply the
seeds). It carries over to the subsequent meshes since this property is preserved
by the splitting steps. (Note that the lines spanned by the segments of the domain
boundary traverse the entire domain Ω as they belong to the initial tensor mesh
𝑀 (0) .)

• Secondly, no anchor point of any active B-spline system is contained within the
interior of the support of any other B-spline system. This fact is verified with the
help of a detailed analysis of the SLCs in {T {+F}.

Since the space spanned by the RMB-splines 𝑅 (𝑖) contains the tensor-product poly-
nomials of degree (𝑝, 𝑝) on the domain Ω, we may recover the representation of
the function 𝑓 (𝑥, 𝑦) = 1 by interpolating its values and derivatives. In particular,
we interpolate the value 𝑓 (𝑥, 𝑦) = 1 and the partial derivatives 𝜕 𝑗

𝑥𝜕
𝑘
𝑦 𝑓 (𝑥, 𝑦) = 0

for 𝑗 , 𝑘 = 0, . . . , 𝑠, ( 𝑗 , 𝑘) ≠ (0, 0), at all the anchor points of the active B-spline
systems, based on the first fact. The number of these anchor points is equal to the
number of systems and they are all contained within Ω. The second fact ensures that
the resulting linear equations splits into |𝑅 (𝑖) | sets of equations that can be solved
individually, one for each active B-spline system and its anchor point. Solving them
individually confirms that choosing all the B-spline coefficients equal to 1 gives a
partition of unity. This proves the second statement (ii) since all the B-splines are
non–negative.
The full spline space defined byΩ and𝑀 (𝑖) has been analyzed in [6], where it was

shown that its dimension is equal to (𝐶 + 𝐵) (𝑠 + 1)2, where 𝐶 is the number of the
domain’s inner cross vertices and 𝐵 is the number of the boundary vertices. There
are (𝐶 + 𝐵) active RMB-spline systems on Ω since the mesh contains no 𝑇-vertices

4 This can be guaranteed easily by extending all the line segments that reach the domain boundary
such that they traverse one more cell of the mesh.
5 i.e., the ones that take non-zero values on the domain Ω
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on the domain boundary. This completes the proof, since the active RMB-splines
are linearly independent on Ω and each system consists of (𝑠 + 1)2 tensor-product
B-splines. �

7 Experiments

We verify the effectiveness of the new algorithm by performing the adaptive approx-
imation of three functions over the square [1, 11]2. Starting from a domain covered
by a tensor mesh which contains 10×10 cells with 121 systems of basis functions, the
adaptive approximation procedure runs until the given precision (with respect to the
maximum error) is achieved, see [12, Section 6] for a more detailed description. All
the examples were run in C++ using the open-source library G+smo [21] developed
for isogeometric analysis. For simplicity we use 𝑠 = 0 and 𝑝 = 1 since the mesh
refinement can be guided efficiently in this situation.
More precisely, the refinement procedure is guided by a marking procedure (iden-

tifying the cells that need to be refined based on the error) and a direction indicator
(specifying the preferred direction of the split). While our direction indicator works
well in the bilinear case, additional work is needed in order to extend it to higher
degrees. This is beyond the scope of the present paper.
Instead, we focus on studying the effect of the class parameters ` and 𝜏 on the

resulting meshes. In addition we will introduce the element shape constraint (ESC)
in order to control the quality of the elements. In order to avoid non-aligned T-joints,
we always use dyadic splits during the refinement process, as introduced in [12,
Section 6.2].

7.1 Influence of the class parameters 𝝁 and 𝝉

First we perform the adaptive refinement of the three peak function

𝑓 (𝑥, 𝑦) =
3∑︁

𝑘=1
exp

(
−10

√︃
(𝑥 − 3𝑘)2 + (𝑦 − 3𝑘)2

)
(4)

using several values of `. In this example, the parameter 𝜏 is set as ∞ and the
tolerance 𝜖 is chosen to be 0.04 and 0.02, respectively.
Figure 17 presents the resulting meshes with different values of ` varying from

5 to 8. Here we only show the meshes for 𝜖 = 0.04 since the lines of the ones for
𝜖 = 0.02 are too detailed for a visualization, and this will be similar in the next
examples. The figure indicates that choosing a smaller value of ` results in excess
refinements, which is also verified by the number of basis functions listed in Table 2.
Second we consider approximations of the circular arc function
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(a) ` = 5 (b) ` = 6

(c) ` = 7 (d) ` = 8

Fig. 17: The resultingmeshes of approximating the three peak function (4) adaptively
for different values of `. The class parameter 𝜏 is set as∞ in this example.

𝑓 (𝑥, 𝑦) = 0.0615| (𝑥 − 1.5)2 + (𝑦 − 1)2 − 9.52 | (5)

for various values of 𝜏. In this example, the class parameter ` is set as ∞ and the
tolerance 𝜖 is chosen to be 0.04 and 0.02, respectively.
Figure 18 shows the meshes obtained by approximating this function adaptively

with various values of 𝜏 ranging from 9 to 12. Here we only show the meshes for
𝜖 = 0.04. It demonstrates that larger values of 𝜏 improve the mesh quality. The
number of basis functions shown in Table 3 also supports this.

7.2 Adaptive refinement with element shape constraint

It is observed in Figure 17 and 18 that the shape of some cells is extremely uneven.
More precisely, the ratio of width to height (height to width) of these cells is
quite large. To this end, we further modify the framework of the original adaptive
approximation algorithm by introducing the element shape constraint. Given the
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Functions / Meshes ` 𝜖 = 0.04 𝜖 = 0.02

Three peak function (4)
5 409 (152%) 861 (148%)

Figure 17
6 281 (104%) 621 (107%)
7 269 (100%) 580 (100%)
8 269 (100%) 580 (100%)

Circular arc function (5)

5 1,316 (163%) 2,774 (160%)
6 887 (110%) 1,922 (112%)
7 812 (101%) 1,742 (101%)
8 805 (100%) 1,719 (100%)

Diagonal function (6)

5 1,999 (157%) 4,439 (177%)
6 1,402 (110%) 2,705 (108%)
7 1,307 (103%) 2,532 (101%)
8 1,271 (100%) 2,509 (100%)

Table 2: The influence of the class parameter ` on the number of basis functions.
Here the parameter 𝜏 is set as∞ and the ESC condition is switched off.

(a) 𝜏 = 9 (b) 𝜏 = 10

(c) 𝜏 = 11 (d) 𝜏 = 12

Fig. 18: The resulting meshes of approximating the circular arc function (5) adap-
tively using different values of 𝜏. The class parameter ` is set as∞ in this example.
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Functions / Meshes 𝜏 𝜖 = 0.04 𝜖 = 0.02

Three peak function (4)

9 507 (188%) 1,131 (195%)
10 296 (110%) 646 (111%)
11 269 (100%) 585 (101%)
12 269 (100%) 580 (100%)

Circular arc function (5)
9 1,999 (242%) 4,533 (255%)

Figure 18
10 1,178 (143%) 2,555 (144%)
11 881 (107%) 1,913 (108%)
12 825 (100%) 1,775 (100%)

Diagonal function (6)

9 3,558 (276%) 7,780 (301%)
10 1,857 (144%) 4,122 (159%)
11 1,457 (113%) 2,974 (115%)
12 1,291 (100%) 2,586 (100%)

Table 3: The effect of the class parameter 𝜏 on the number of basis functions. Here
the parameter ` is set as∞ and the ESC condition is switched off.

upper bound for the ratio, denoted by 𝜌, themodified framework repeats the following
steps:

1. Mark the cell with the largest shape ratio. If it is less than 𝜌, then continue with
Step 4.

2. Extend the support of the marked cell and construct the corresponding split.
3. Perform the original refinement algorithm with the constructed split and continue
with Step 1.

4. Mark the cell with the largest approximation error. If this error is less than 𝜖 , then
exit.

5. Extend the support of the marked cell and construct the corresponding split.
6. Perform the original refinement algorithm with the constructed split and continue
with Step 1.

We approximate the function

𝑓 (𝑥, 𝑦) = |𝑥 − 𝑦 | (6)

adaptively using the modified algorithm. This function is non-smooth along the line
𝑥 − 𝑦 = 0. In this test, the class parameters ` and 𝜏 are both set as ∞, the tolerance
𝜖 is also chosen to be 0.04 and 0.02, respectively.
Figure 19 depicts the resulting meshes with various values of 𝜌 varying from 2

to 8. The one (𝜌 = ∞) obtained via the original approximation algorithm is also
presented. Again only the meshes for 𝜖 = 0.04 are shown. It reveals that smaller
values of 𝜌 lead to cells with better shapes, at the price of creating more basis
functions as shown in Table 4.
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(a) 𝜌 = 2 (b) 𝜌 = 4

(c) 𝜌 = 8 (d) 𝜌 = ∞

Fig. 19: The resulting meshes of approximating the diagonal function (6) adaptively
using various ESC conditions. The class parameters ` and 𝜏 are both set as∞ in this
example.

8 Conclusion

The present paper extended the previous work [12], which mainly focuses on bilinear
case, to 𝐶𝑠-smooth splines of degree 𝑝 = 2𝑠 + 1. It introduced several new mesh
quality parameters that measure the local complexity and quality of the elements. In
addition, a new proof of the fact that the resulting B-splines depend solely on the
final mesh was proposed in order to make the paper self-contained.
The current approach is only applicable to (PHT-) splines of degree 𝑝 = 2𝑠+1with

𝐶𝑠 smoothness. Future work will address the extension to splines with more general
combinations of smoothness 𝑠 and degree 𝑝 > 𝑠. Moreover, it is also worthwhile
to explore the generalization to higher-dimensional splines. Last, but not least, the
investigation of efficient data structures for this class of splines is also of vital interest.
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Functions / Meshes 𝜌 𝜖 = 0.04 𝜖 = 0.02

Three peak function (4)

2 271 (101%) 793 (137%)
4 269 (100%) 582 (100%)
8 269 (100%) 580 (100%)
∞ 269 (100%) 580 (100%)

Circular arc function (5)

2 1,249 (155%) 2,966 (173%)
4 933 (116%) 2,001 (116%)
8 821 (102%) 1,788 (104%)
∞ 805 (100%) 1,719 (100%)

Diagonal function (6)
2 1,871 (147%) 3,900 (155%)

Figure 19
4 1,495 (121%) 3,194 (127%)
8 1,314 (109%) 2,681 (107%)
∞ 1,271 (100%) 2,509 (100%)

Table 4: The influence of the ESC condition on the number of basis functions. Here
the class parameters ` and 𝜏 are both set as∞.
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