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Abstract

We describe a new de Casteljau–type algorithm for complex rational Bézier curves. After
proving that these curves exhibit the maximal possible circularity, we construct their points
via a de Casteljau–type algorithm over complex numbers. Consequently, the line segments
that correspond to convex linear combinations in affine spaces are replaced by circular arcs.
In difference to the algorithm of Sánchez-Reyes (2009), the construction of all the points
is governed by (generically complex) roots of the denominator, using one of them for each
level. Moreover, one of the bi-polar coordinates is fixed at each level, independently of the
parameter value. A rational curve of the complex degree n admits generically n! distinct
de Casteljau–type algorithms, corresponding to the different orderings of the denominator’s
roots.

Keywords: de Casteljau algorithm, complex rational curve, bi-polar coordinates, Möbius
transformation, Farin points

1. Introduction

The survey article of Boehm and Müller (1999), which covers the historical development,
concluded with the observation that de Casteljau’s algorithm became a fundamental tool
in CAGD in the 20 years preceding its publication, and this is even more true today. In
this short note, we are interested in generalizations of the original algorithm. Excluding the
cases of splines (i.e., piecewise defined curves) and of surfaces, which are beyond the scope
of this note, the available results can roughly organized in two categories.

The first one covers generalizations to other ambient spaces, where de Casteljau’s algo-
rithm provides a natural generalization of polynomial curves via (e.g.) geodesic interpolation
(cf. Popiel and Noakes, 2007; Nava-Yazdani and Polthier, 2013). Among the first works in
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this direction, Shoemake (1985) established generalized Bézier curves on the unit quaternion
sphere for computer animation and Park and Ravani (1995) introduced them on Rieman-
nian manifolds and Lie groups for applications in kinematics and motion design, see also
the work of Crouch et al. (1999). More recently, Zhang and Noakes (2019) discussed the
approximation of cubics in Riemannian spaces via curves defined by de Casteljau’s algo-
rithm, and Bogfjellmo et al. (2018) presented a numerical algorithm for creating C2-smooth
curves on manifolds from such curves. An application to the design of ruled surfaces with
the help of curves on the Plücker quadric was presented by Nawratil (2019). Applications
of generalized Bézier curves on the space of images and on the shape space of planar curves
have also been explored (Effland et al., 2015; Samir and Adouani, 2019).

The second category encompasses extensions to other systems of functions. The most
classical contribution here is the seminal paper of Farin (1983) about the extension of de
Casteljau’s algorithm to the case of rational curves based on projective geometry. Extensions
to the case of trigonometric curves were presented by Zhu and Han (2015) and Casciola et al.
(1998). Even well before that, the (more general) case of Tchebycheff Curves was addressed
by Mazure and Pottmann (1996). Numerous other contributions exist, which we do not
mention here.

Our work builds on previous contributions to both categories. First, we recall the work
of Sánchez-Reyes (2009) on complex rational Bézier curves, which can be associated with the
first category. It addresses embeddings of the real line into the projective line over the field
of complex numbers. Second, we take into account earlier results obtained by considering
the linear factors of the denominators of real rational curves, which have been used to derive
a particular version of the de Casteljau algorithm. This idea was first suggested by Han
et al. (2014) for a particular form of the denominator. Later it has been extended to general
rational curves (Š́ır and Jüttler, 2015). The resulting algorithm was called a de Casteljau-
type algorithm since it does not provide the subdivision property, which is available in the
classical case.

In the present paper we revisit the framework of complex rational curve and describe
a new de Casteljau–type algorithm for complex rational Bézier curves, based on the de-
nominator’s linear factors. After proving that these curves exhibit the maximal possible
circularity, we construct their points via a de Casteljau–type algorithm over complex num-
bers. Consequently the usual line segments are replaced by circular arcs. In difference to the
algorithm of Sánchez-Reyes (2009), the construction of all the points is governed by (gener-
ically complex) roots of the denominator, using one of them per level. Moreover, one of the
bi-polar coordinates is fixed at each level, independently of the parameter value. A rational
curve of the complex degree n admits generically n! distinct de Casteljau–type algorithms,
corresponding to the different orderings of the denominator’s roots.

The remainder of the paper is organized as follows. We study the complex rational curves
in Section 2 and show that they exhibit the maximal circularity. After recalling bipolar
coordinates in Section 3 we design the Apollonian de Casteljau algorithm in Section 4 and
we show that the complex rational curves can be constructed with the help of this algorithm
in Section 5. Section 6 is devoted to an observation about the Farin points occurring in
the complex de Casteljau algorithm of Sánchez-Reyes (2009). We show that they can be
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obtained solely by intersecting circles. Eventually we conclude the paper.

2. Complex rational Bézier curves

A complex rational Bézier curve (Sánchez-Reyes, 2009) with control points c0, . . . , cn ∈ C
and associated weights w0, . . . , wn ∈ C is defined by the parametric representation

p(ξ) =

∑n
j=0

(
n
j

)
ξj(1− ξ)n−jwjcj∑n

j=0

(
n
j

)
ξj(1− ξ)n−jwj

(1)

with the real parameter ξ ∈ R, for some n. We denote the numerator and the denominator
of this representation by

q(ξ) =
n∑

j=0

(
n

j

)
ξj(1− ξ)n−jwjcj and r(ξ) =

n∑

j=0

(
n

j

)
ξj(1− ξ)n−jwj .

We assume, without loss of generality, that q and r do not have a common factor (over C).
To compute the degree of the curve, we identify C with R2, homogenize the parametrization,
and cancel common factors that may arise during this process. Assume that gcd(r, r) =: g
(a real polynomial), and s := r/g. Then we get the real projective parametrization

p(ξ) ∼= (<(qr̄) : =(qr̄) : rr̄) = (<(qs̄) : =(qs̄) : ss̄g), (2)

where <(f̂) and =(f̂) denote the real and imaginary part of a complex polynomial f̂ . Then
the degree of the curve is equal to the maximum of the degrees of the three polynomials giving
the projective parametrization, which is max(deg(q) + deg(s), 2 deg(s) + deg(g)), divided by
the degree of the parametrization map in case the parametrization is not proper.

The circularity of a curve is defined as the order of the defining equation at one of
the circular points at infinity (1 : i : 0), (1 : −i : 0) – for a real curve, the two orders
will always coincide. It is relevant for counting intersection points: if C1 has degree d1
and circularity γ1, and C2 has degree d2 and circularity γ2, then the number of intersection
points is bounded by d1d2−2γ1γ2. Circles are simply circular quadrics, and the above formula
bounds the number of intersections of two circles by two, while the number of intersections
of general quadrics is only bounded by four. Examples of double circular quartics are the
lemniscate of Bernoulli, the ovals of Cassini, the cardioid, and the limaçon of Pascal (Cayley,
1874). The difference (degree minus circularity) is invariant under inversive maps (Möbius
transformations, including inversion); this is remarkable because the degree is not invariant
under inversion. The circularity is bounded by half of the degree. Curves with maximal
circularity (such as epi- and hypocycloids) also appear in kinematics, as the orbits of generic
rational motions (Li et al., 2016).

For a parametric curve given by (f̂ : ĝ : ĥ), the circularity γ is equal to

deg(gcd(f̂ + iĝ, ĥ)) = deg(gcd(f̂ − iĝ, ĥ)) ,

divided by the degree of the parametrization map.
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Proposition 1. The class of complex rational Bézier curve of degree n with gcd(q, r) = 1
and deg(r) = n but without proper real factors of the denominator forms the class of rational
curves of degree 2n with maximum circularity.

Proof. Let k ≥ 1 be the degree of the parametrization map (2). Then the circularity of p(ξ)
is

deg(gcd(<(qs̄+ i=(qs̄), ss̄g))

k
=

deg(gcd(qs̄, ss̄g))

k
=

deg(s̄)

k
=

deg(s)

k
.

The maximal number for fixed value of the degree is half the degree. This degree is equal to

max(deg(q) + deg(s), 2 deg(s) + deg(g))

k
.

So we have maximality if and only if deg(g) = 0 and deg(q) ≤ deg(s) + deg(g) = deg(r).

3. Bipolar coordinates

These coordinates provide the natural setting for representing the intermediate points
in the new de Casteljau-type algorithm, which will be described in the next section. Recall
(Happel and Brenner, 1983, pp. 516-519) that the bipolar coordinates (σ, τ) of the point
z = x + iy in the complex plane with respect to the two foci F1 = −1 and F2 = +1 satisfy
the identity

z = i cot(
σ + iτ

2
) . (3)

The σ-coordinate evaluates to the natural logarithm of the distance ratio from the point
to the two foci, and the τ -coordinate is equal to the angle ∠(−1, z, 1), usually taken in the
range (−π, 0) ∪ (0, π]. The curves defined by constant values of σ or τ are the Apollonian
circles, which are mutually orthogonal as they are the image of the Cartesian grid under the
holomorphic function (3).

The bipolar coordinates with respect to two general foci F1, F2 are obtained by mapping
them and z into the standard position via a similarity transformation. For future reference
we note the identities

σ = 2< arccot(i(a− b)) and τ = 2= arccot(i(a− b)) ,

which are satisfied whenever

z = aF1 + bF2 and a+ b = 1 .

Indeed, they are easily derived from (3) for the standard position, and they extend to general
foci since the complex barycentric coordinates

a =
F2 − z
F2 − F1

and b =
z − F1

F2 − F1

of z with respect to F1, F2 are preserved by similarity transformations.
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4. The Apollonian de Casteljau–type algorithm

For given control points c0, . . . , cn ∈ C and pairs of weights (uk, vk) ∈ C2 \ (0, 0), (the
relation of which to the weights w0, . . . , wn of (1) will be clarified later on, see (7)) with
indices k = 1, . . . , n, we generate a curve segment in the complex plane via the following
algorithm:

1: Input: Any ξ ∈ [0, 1]

2: for j = 0, . . . , n do

3: c0j ← cj

4: end for

5: for k = 1, . . . , n do

6: ak ← (1−ξ)uk

(1−ξ)uk+ξvk

7: bk ← ξvk
(1−ξ)uk+ξvk

8: for j = 0, . . . , n− k do

9: ckj ← akck−1
j + bkck−1

j+1

10: end for

11: end for

12: Return: Point cn0 on the curve

As a major difference to the classical de Casteljau algorithm, this algorithm uses a different
ratio ak : bk (which is moreover defined by two complex numbers) for each level k. A example
is shown in Figure 1. Starting from four control points (hollow circles), it produces a point
in the curve shown in black.

c00

c01

c02

c03

c10

c11

c12

c20

c21

c30

Figure 1: The Apollonian de Casteljau-type algorithm for n = 3 and ξ = 1/2.

We analyze the linear combination step for some fixed level k. It is governed by the two
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bilinear complex–valued functions ak(ξ) and bk(ξ) that form a partition of unity,

ak(ξ) + bk(ξ) = 1 .

Consequently, these two functions specify the barycentric coordinates of the points ck+1
j with

respect to ckj and ckj+1.
First we note that – for any given value of ξ – the result depends solely on the ratios

qk = vk : uk

of the weights. Indeed, the coefficients ak(ξ) and bk(ξ) satisfy

ak(ξ) =
(1− ξ)uk

(1− ξ)uk + ξvk
=

(1− ξ)
(1− ξ) + ξqk

and bk(ξ) =
ξvk

(1− ξ)uk + ξvk
=

ξqk
(1− ξ) + ξqk

.

(4)
We clarify the relation to the bipolar coordinates:

Proposition 2. The bipolar coordinates of the points ck+1
j (ξ) with respect to the two foci

ckj (ξ) and ckj+1(ξ) take the values

σk = arg qk and τ k(ξ) = ln
ξ

1− ξ + ln |qk| .

Proof. This follow by using the identity

arccot z =
1

2i
ln
z + i

z − i

to compute the bipolar coordinates (3) with the help of the equation

i cot(
σk + iτ k

2
) = ak · (−1) + bk · 1 =

−(1− ξ) + ξqk
(1− ξ) + ξqk

.

Consequently, the Apollonian de Casteljau algorithm proceeds by generating new points
with pre-defined bipolar coordinates (the same for each level) in each step. Some comments
are in order:

• One obtains the classical de Casteljau algorithm if qk = 1 for k = 1, . . . , n.

• All the triangles 4ck+1
j (ξ), ckj (ξ), ckj+1(ξ) for j = 0, . . . , n−k are similar. Consequently,

the algorithm is invariant under similarity transformations.

• When choosing pairs of weights with arg qk = arg vk : uk = 0, all the triangles de-
generate into line segments, as σk = π. Consequently, the argument of the weight
ratios qk control the deviation of the algorithm from linear rational interpolation. The
algorithm is then identical to the the rational de Casteljau–type algorithm of Š́ır and
Jüttler (2015), where the quantities ak and bk in that paper are chosen as the norms
of uk and vk, respectively.
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• The coordinate σk depends solely on the argument of qk. It does not on depend on ξ.
Consequently, the newly generated points are always located on the same Apollonian
circle defined by σ = σk with respect to the corresponding bipolar coordinate system.

• The norm of qk controls the deviation from the chord–length parameterization. If
|qk| = 1, then the ratio of the distances from ck+1

j (ξ) to ckj (ξ) and ckj+1(ξ) is equal to
the ratio of the distances from ξ to 0 and 1.

For later reference we introduce the pseudo-Farin points zk. These points possess the
bipolar coordinates

σk = arg qk and τ k(
1

2
) = ln |qk| (5)

with respect to the foci 0 and 1, cf. Proposition 2.

5. Application to complex rational Bézier curves

We analyze the curves generated by the algorithm:

Proposition 3. The Apollonian de Casteljau–type algorithm generates the complex rational
Bézier curve (1) if

r(ξ) =
n∏

k=1

[(1− ξ)uk + ξvk] . (6)

Proof. Mathematical induction allows to prove the identity

ckj (ξ) =
k∑

`=0

( ∑

s1<...<sn−`
t1<...<t`

{s1,...,sn−`,t1,...,t`}={1,...,n}

as1(ξ) · · · asn−`(ξ) · bt1(ξ) · · · bt`(ξ)
)
· cj+` ,

where the two sums consider all the decompositions of the level index set {1, . . . , n} into two
disjoint subsets {s1, . . . , sn−`} and {t1, . . . , t`}. This is then used to verify that p(ξ) = cn0 (ξ)
takes the rational Bézier form (1) if one chooses the weights

wj =
1(
n
j

)
∑

s1<...<sn−j
t1<...<tj

{s1,...,sn−`,t1,...,t`}={1,...,n}

us1 · · ·usn−`
· vt1 · · · vt` , (7)

and that the numerator can equivalently be written in the form (6).

The Apollonian de Casteljau–type algorithm is based on the factorization (6) of the
curve’s denominator into linear factors. Since we are working in the complex realm, this
factorization is always available. As a benefit, it makes it much easier to control the roots
of the denominator that must not be real and contained in the parameter domain [0, 1] –
no such roots exist if and only if all the the ratios qk = vk : uk are either positive or non-
real. This condition is much weaker than requiring non–negative weights for classical (i.e.,
non-complex) rational Bézier curves!

The previous proposition also implies the following simple observation:
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Corollary 4. The Apollonian de Casteljau–type algorithm gives the same curve for any
permutation of the pairs of weights (u1, v1), . . . , (un, vn).

Consequently, there are up to n! de Casteljau–type algorithms that generate the same
curve. The maximum is realized for complex rational Bézier curves with only single roots
of the denominator. Fig. 2 shows an example.

Note that the results of this section could have been derived also by adapting the ap-
proach of Š́ır and Jüttler (2015). In particular, the weights and the basis functions can be
shown to satisfy recurrence relations as noted in Propositions 2 and 3 of the earlier paper.

6. Remarks on Sanchez-Reyes’ rational de Casteljau algorithm

Just like their rational counterparts, complex rational Bézier curves can be evaluated
with the help of the rational de Casteljau algorithm (see Farin, 1983):

1: Input: Any ξ ∈ [0, 1]

2: for j = 0, . . . , n do

3: w0
j ← wj

4: c0j ← cj

5: end for

6: for k = 1, . . . , n do

7: for j = 0, . . . , n− k do

8: wkj ← (1− ξ)wk−1
j + ξ wk−1

j+1

9: akj ← (1− ξ) w
k−1
j

wk
j

10: bkj ← ξ
wk−1

j+1

wk
j

11: ckj ← akj c
k−1
j + bkj c

k−1
j+1

12: end for

13: end for

14: Return: Point cn0 on the curve

It should be noted that one has to generate individual values of the complex barycentric
coordinates for each combination of k and j. This is different from the Apollonian de
Casteljau-type algorithm, where these coordinates depend on k only.

Sánchez-Reyes (2009) uses the Farin points

fk
j =

wk
j c

k
j + wk

j+1c
k
j+1

wk
j + wk

j+1

in order to generalize the geometric interpretation of the rational de Casteljau algorithm to
the complex case, noting that the four points ckj , ck+1

j , fk
j and ckj+1 are always concircular

(i.e., located on a single circle) and possess the cross ratio ξ/(1− ξ).
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Figure 2: The six permutations of the Apollonian de Casteljau–type algorithm shown in Figure 1.

The level 0 Farin points f 0
j = fj, j = 0, . . . , n − 1, are assumed to be specified by the

user, and they can be used as design handles for controlling the shape of the curve. In order
to make the generalization complete, one needs to describe how the Farin points of the levels
k ≥ 1 are obtained recursively as well.

In the standard (non-complex) case, Farin (1983) proved that the point fk+1
j is located

on the two lines that connect ck+1
j with ck+1

j+1 and fk
j with fk

j+1 and can thus be found by
intersecting them, except in degenerate situations. Consequently, it is possible to realize the
rational de Casteljau algorithm by means of a geometric construction that uses solely inter-

9



sections of lines and cross ratios, thus confirming its invariance under projective mappings.
In the complex case we need to consider the second intersection point gkj (in addition to

ckj+1) of the circle through ckj , f
k
j and ckj+1 with the circle through ckj+1, f

k
j+1 and ckj+2. We

then obtain the following result:

Proposition 5. The Farin point fk+1
j is located on the two circles through gkj that connect

ck+1
j with ck+1

j+1 and fk
j with fk

j+1.

Proof. This follows from the arguments in the standard rational case with the help of a
Möbius transformation that sends gkj to ∞.

The next level Farin points can thus be found by intersecting certain circles, except
in degenerate situations. Consequently, it is possible to realize the complex rational de
Casteljau algorithm by means of a geometric construction that uses solely intersections of
circles and cross ratios, thus confirming its invariance under Möbius transformations.

The proposition is visualized in Fig 3, where we added the additional intersections to
Fig. 3 of Sánchez-Reyes (2009). Note that four circles intersect at each point gkj . Sánchez-
Reyes (2009) also established the property of circular precision, which can now be be re–
derived by considering the limit of a sequence of curves where all the control and Farin
points of level 0 converge to positions on a given circle.

c00

c01 c02

c03

c10

c11

c12

c20

c21

c30f 0
0

f 0
1

f 0
2

f 1
0

f 1
1

f 2
0

g00 g01

g10

Figure 3: Sanchez-Reyes’ rational de Casteljau algorithm

Conclusion

We established a new de Casteljau–type algorithm for complex rational Bézier curves,
which can be formulated with the help of bi-polar coordinates. We also analyzed the cir-

10



de Casteljau’s algorithm Apollonian de Casteljau-
type algorithm

Sánchez-Reyes’ (2009)
rational de Casteljau
algorithm

generates polynomial Bézier curves complex rational Bézier curves

commutes with affine transformations similarities Möbius transformations

subdivision property yes no yes

number of (complex)
barycentric coordi-
nates per evaluation

1 n
(
n+1
2

)

shape handles control points plus n pseudo-Farin
points zk

plus n Farin points fj

absence of points at
infinity

always if and only if
zk 6∈ [−∞, 0] ∪ [1,∞] for
k = 1, . . . , n

not studied in the com-
plex case, guaranteed by
positive weights for real
curves (sufficient condi-
tion)

precision linear precision circular precision for
equally spaced control
points only

circular precision

Table 1: Comparison of de Casteljau (-type) algorithms.

cularity of rational complex curves and added an observation about the Farin points in the
context of the complex rational de Casteljau algorithm of Sánchez-Reyes (2009).

We compare the properties of the two algorithms for complex rational Bézier curves with
the standard de Casteljau algorithm in Table 1. Most of them have already been addressed
in the previous sections. We would like to stress that our de Casteljau-type algorithms are
linked to an alternative geometric representation of complex rational curves, which combines
control points cj, j = 0, . . . , n, and the pseudo-Farin points zk, k = 1, . . . , n, see (5). The
latter ones provide a necessary and sufficient condition for the absence of points at infinity.

In future research we intend to study the analogy of the convex-hull property for the
complex de Casteljau algorithms, both in the rational and in the Apollonian case. The
generalization to higher dimensions and to curves in general Clifford algebras is also of
potential interest.
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