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Abstract

Finding parameterizations of spatial point data is a fundamental step for surface reconstruction in Computer
Aided Geometric Design. Especially the case of unstructured point clouds is challenging and not widely
studied. In this work, we show how to parameterize a point cloud by using barycentric coordinates in the pa-
rameter domain, with the aim of reproducing the parameterizations provided by quadratic triangular Bézier
surfaces. To this end, we train an artificial neural network that predicts suitable barycentric parameters
for a fixed number of data points. In a subsequent step we improve the parameterization using non-linear
optimization methods. We then use a number of local parameterizations to obtain a global parameterization
using a new overdetermined barycentric parameterization approach. We study the behavior of our method
numerically in the zero-residual case (i.e., data sampled from quadratic polynomial surfaces) and in the
non-zero residual case and observe an improvement of the accuracy in comparison to standard methods.
We also compare different approaches for non-linear surface fitting such as tangent distance minimization,
squared distance minimization and the Levenberg Marquardt algorithm.

Keywords: surface approximation, neural networks, parameterization, point cloud parameterization,
reverse engineering

1. Introduction

Many applications in computer-aided geometric design, like surface fitting, texture mapping and remesh-
ing of 3D points (or a point cloud) require a parameterization. More precisely, given a set of points xi ∈ R3,
which is assumed to be sampled from a surface, the task is to find parameter values ui ∈ Ω for each point
where Ω ⊆ R2. The specific requirements for the choice of parameters ui depend on the one hand on the ap-
plication and on the other hand on the structure of point data, which can be either organized or unorganized.
Here, organized means that the point cloud comes with a triangulation T while an unorganized point cloud
does not include any information about neighborhood relationships between points. In the organized case,
the parameters are sought such that the triangulation T induces a planar triangulation T̂ on the 2D points
ui. In the unorganized case one can consider the opposite direction: Since triangulating a set of planar
points is a simple task, finding a parameterization leads to a triangulation of the point cloud. This can also
be interpreted as fitting a surface to the point cloud. In order to obtain a smooth approximating surface, a
parameterization of the point cloud can also be used for fitting with a parametric surface P : Ω→ R3. For
example, if the parameter domain Ω is a triangle, P can be a triangular Bézier surface.

Numerous results have been presented over the past years for both cases considering local or global
parameterizations, different topologies and therefore a large range of applications. In the case of organized
points, several methods have been proposed that minimize the energy functional

E =
1

2

∑

{i,j}∈Edges

λij‖ui − uj‖2 (1)

subject to boundary conditions (i.e., constraints on the positions of the parameters associated with the
boundary points), where i, j represents the index of an edge in the triangulation and ui are the planar
parameters. The proposed methods differ in how the weights λij ∈ R are chosen.



Floater (1997) presents three particular parameterizations: uniform, weighted least squares and shape-
preserving. They are generalizations of the well-known uniform and chord length parameterizations for
curves. The theorem of Tutte (1963) provides the theoretical basis for Floater’s method (cf. Groiss et al.,
2021).

Greiner and Hormann (1997) consider a variation of (1)

E =
1

2

∑

{i,j}∈Edges

λij (‖ui − uj‖ − `ij)2 ,

where `ij = α‖xi − xj‖ for different choices of α ≥ 0. They also choose the weights to be λij = 1
‖xi−xj‖r

with r > 0. Similarly, Eck et al. (1995) perform local parameterizations based on harmonic mappings. To
this end they use weights λij that correspond to the Dirichlet energy of piece-wise linear functions on the
triangulation.

Besides the choice of the weights λij , the above methods differ in how the boundary parameters are
determined. While Floater (1997) maps the boundary of the parameter domain to the boundary of the
unit square using chord length parameterization of curves, Greiner and Hormann (1997) project and fix the
boundary points into the plane that fits all of them in the least square sense. Eck et al. (1995) map the
boundary of the parameter domain to the unit circle.

Unlike the previous methods, Hormann and Greiner (2000) introduced a method that estimates both
interior and boundary parameters. The method minimizes the deformation made by local atomic linear
maps from the surface triangles to the corresponding parameter triangles.

Some methods for parameterizing unorganized point clouds have been proposed. Floater and Reimers
(2001) generalize the method of Floater (1997) to unorganized point clouds by finding neighborhoods Ni

of each vertex xi and choosing corresponding weights λij in several different ways. This leads to a global
system

ui −
∑

j∈Ni

λijuj = 0, (2)

where the boundary vertices are assumed to be parameterized over a convex polygon. In Giannelli et al.
(2023), the authors propose training a graph neural network to predict suitable weights for the system (2).

A different approach was proposed by Barhak and Fischer (2001). They project the sample points onto
a 3D base surface without segmenting the data set. Two main problems have been observed in similar
approaches: the base surface could have self intersections and the grid could not reflect the density of the
sample points. The authors overcome these problems via partial differential equations or neural network
parameterizations. A recent review of existing 3D point cloud parameterization methods was presented by
Zhu et al. (2022).

In the case of parameterizing data points for fitting curves, some applications of neural networks for
directly parameterizing point sequences have been proposed by Laube et al. (2018) and Scholz and Jüttler
(2021).

In the particular context of fitting smooth curves or surfaces to unorganized point clouds, a common
approach is to optimize the parameterization and the control points of the fitting surface in an alternating
manner. Here, the parameters at each iteration step are computed as the foot points of the data points
on the fitting surface. The specific choice of error functional for the control points leads to point distance
minimization (PDM), tangent distance minimization (TDM) and squared distance minimization (SDM) (cf.
Wang et al., 2006). Alternatively, the parameters and the control points can also be optimized simultane-
ously, which for the curve case has been shown to be more robust and efficient than the alternating approach
(cf. Zheng et al., 2012). Rios and Jüttler (2022) studied the simultaneous optimization of parameters and
control points using artificial neural networks and stochastic gradient descent.

In this paper, we propose an overdetermined generalization of the method of Floater and Reimers (2001).
Instead of finding only one equation per unknown parameter ui and solving the linear system (2), we find
several convex combinations for each parameter with respect to different parameters. This leads to an
overdetermined system that we solve in the least squares sense. We find that if we choose these local
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convex combinations in a way that preserves the exact local parameterizations, also the resulting global
parameterization is able to do so. In order to find such local parameterizations, we combine non-linear
optimization with a neural network that predicts an initial parameterization that is sufficiently close to
the optimum. More precisely, our neural network parameterizes twelve given points in R3 by barycentric
coordinates with respect to three other points. The output of our neural network is then further improved
by fitting quadratic surfaces to the given points while either alternatingly or simultaneously optimizing the
parameter values. To this end, we compare the use of PDM, TDM, SDM and directly using the Levenberg-
Marquardt algorithm. Since our method produces barycentric coordinates, the result is a suitable choice of
weights for an overdetermined global system analogous to (2), where each chosen neighborhood of a vertex
consists of three vertices.

In Section 2, we summarize the parameterization method from Floater and Reimers (2001) and present
our overdetermined generalization. We also derive conditions for the existence and uniqueness of the parame-
terization resulting from a specific choice of local convex combinations. In Section 3, we present our methods
for finding optimal local parameterizations by neural network initialization and fitting quadratic surfaces
using different methods for non-linear optimization. In the numerical experiments in Section 4 we demon-
strate the effectiveness of our local parameterization algorithm. Moreover, we compare the performance
of classical surface fitting methods with direct non-linear optimization. In the last section, we combine
the local parameterizations using overdetermined barycentric parameterization and we present numerical
experiments for the global surface parameterization, comparing our method to the standard methods.

2. Point Cloud Parameterization

In this section, we first describe a standard approach for parameterizing unstructured point clouds. We
then present a new overdetermined generalization of the standard method as well as its theoretical analysis.

2.1. Meshless barycentric parameterization

In Floater and Reimers (2001), a method for parameterizing a three-dimensional point cloud over a
convex planar domain is presented. We summarize this method here.

Let X = (x1, . . . xN ) with xi ∈ R3 a point cloud and D a convex domain in R2. We assume that
X is decomposed as X = XI ∪ XB into interior points XI = (x1, . . . , xn) and boundary points XB =
(xn+1, . . . , xN ). We denote by I = {1, . . . n} and B = {n+1, . . . N} the corresponding index sets. Moreover,
we assume that a one-dimensional parameterization UB = (un+1, . . . , uN ) ⊂ ∂D of XB over the boundary
of D is given. We aim to find parameters UI = (u1, . . . , un) ⊂ D that correspond to the interior points in
XI . To this end, we assume that each parameter ui ∈ UI can be written as a convex combination

ui =
∑

j∈Ni

λijuj , (3)

where Ni ⊂ I ∪B is any subset of the index set and λij > 0 of j ∈ Ni, λij = 0 for j /∈ Ni and

∑

j∈Ni

λij = 1.

Equation (3) corresponds to a linear system
AUI = C, (4)

where Aij = δij − λij for i, j = 1, . . . n and ci =
∑N

j=n+1 λijuj .
If A is invertible, the solution of eq. (4) is the parameterization of XI . The specific choice of the sets Ni

and the convex combination weights λij is open and determines the resulting parameterization.
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2.2. Overdetermined meshless barycentric parameterization

In this work, we generalize the approach summarized in the previous section by allowing more than one
equation per parameter in eq. (3). More precisely, for each i ∈ I, we determine a number of Li ∈ N+ subsets

N `
i ⊂ I ∪B, ` = 1, . . . , Li

and weights λ`ij with λ`ij > 0 for j ∈ N `
i , λ`ij = 0 for j /∈ N `

i such that

∑

j∈N`
i

λ`ij = 1.

Then, we consider the equations

ui =
∑

j∈N`
i

λ`ijuj , (5)

for i = 1 . . . n, ` = 1 . . . Li, which lead to the overdetermined system of equations

AUI = C, (6)

where

Ak(i,`)j = δij − λ`ij ,

bk(i,`) =
N∑

j=n+1

λ`ijuj

and
k :
⋃

i∈I
({i} × {1, . . . , Li})→ {1, . . . ,

∑

i∈I
Li}

is any ordering. If eq. (6) has maximum rank, we solve it in the least-squares sense, meaning that we find
UI ∈ Rn×2, such that

‖AUI − C‖22 (7)

is minimal.

2.3. Conditions for existence and uniqueness

In general, neither the linear system eq. (4) nor the least squares problem eq. (7) is guaranteed to have
a unique solution. However, in both cases there are easy to check conditions on the neighborhoods Ni and
N `

i , respectively. We use the notion of weakly chained diagonally dominant matrices: Recall that a row i of
a matrix A is weakly diagonally dominant if |Aii| ≥

∑
j 6=i |Aij |. and that it is strongly diagonally dominant

if |Aii| >
∑

j 6=i |Aij |.
Moreover, a matrix A ∈ Rn×n is weakly chained diagonally dominant if every row of A is weakly di-

agonally dominant and from each row i there is a path to a strongly diagonally dominant row, i.e. a
sequence (i = j1, j2, . . . , jk) such that the jk-th row of A is strongly diagonally dominant and Ajaja+1 > 0
for a = 1 . . . k − 1.

Theorem 1 (Shivakumar and Chew, 1974). Every weakly chained diagonally dominant matrix has full rank.

We use this fact to show that the matrix A in eq. (4) has full rank. The following theorem is equivalent to
(Floater and Reimers, 2001, Proposition 3.3) where it was proven directly without invoking weakly chained
diagonally dominant matrices. We consider the directed graph G = (V,E) with

V = I ∪B
E = {(i, j) : i ∈ I, j ∈ Ni}.

A vertex i ∈ V is called boundary connected if there is a path in G from i to a vertex j ∈ B ⊂ V .
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Theorem 2 (Floater and Reimers, 2001). If every vertex in G is boundary connected, the matrix A in
eq. (4) has full rank.

Proof. We consider the extended matrix Ã ∈ RN×N with

Ãij = δij − λij ,

where we set λij = 0 if i > n. Thus, Ã is a block matrix

(
A −C
0 I

)

Clearly, Ã has full rank if and only if A has full rank.
The diagonal entries of Ã are all 1. For i > n, the diagonal entry is the only entry of the i-row and

therefore all these rows are strongly diagonally dominant. For i ≤ n, we have

∑

j 6=i

=
∑

j∈Ni

λij = 1

and therefore these rows are weakly diagonally dominant. Finally, a path in G from a vertex i to a vertex
j ∈ B ⊂ V corresponds to a path from the i-th row in Ã to a row j > n. Since the rows j > n are strongly
diagonally dominant and every vertex is boundary connected in G, we conclude that Ã is weakly chained
diagonally dominant and therefore has full rank. By construction of Ã, this means that also A has full
rank.

Remark. In (Floater and Reimers, 2001, Proposition 3.3) it was additionally proven that the resulting
interior parameters ui for i ∈ I lie in the convex hull of the boundary parameters UB .

We now generalize this result to the case of the overdetermined least squares problem. As before, we
consider a graph G = (V,E) with

V = I ∪B (8)

E = {(i, j) : i ∈ I, j ∈ N `
i for some ` ∈ {1, . . . , Li}} (9)

and we call a vertex i of this graph boundary connected if there is a path in G from i to a boundary vertex.

Theorem 3. If every vertex in G is boundary connected, the least squares problem

‖AUI − C‖22
with A ∈ R(

∑
i∈I Li)×n defined as in (6) has a unique solution.

Proof. The least squares problem has a unique solution if and only if A has a n× n submatrix, obtained by
removing rows of A, that has full rank. We construct such a matrix by removing rows from A and removing
the corresponding edges from G simultaneously.

Consider the vertex 1 ∈ I with neighborhoods N `
1 for ` = 1 . . . L1. Then by our assumption, there is a

path
1 = j1 . . . jk

in Ĝ with jk ∈ B ⊂ V . From this follows that j1 ∈ N `
1 for at least one ` ≤ L1, say, without loss of generality,

for ` = 1. We find the matrix A1 by removing all rows k(1, `) for ` = 2 . . . Li (if L1 > 1). Moreover, we
construct the graph G1 by setting L1 = 1 in (9). Now, every vertex i in G1 is still boundary connected: If
i had a path

i = q1 . . . qm−1(qm = 1)qm+1 . . . qr

in G with qr ∈ B, then
i = q1 . . . qm−1j1 . . . jk
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is a path in G1 from i to a vertex in B. Moreover, A1 still corresponds to a system in the form of (5) with
the same sets N `

i that were used to generate G1.
We continue this process for the vertices 2, . . . , n to arrive at the n× n-matrix

(An)ij = δij − λ1ij ,

where we assume without loss of generality that we kept the equation corresponding to ` = 1 for each
interior vertex. Moreover, the graph Gn obtained by this procedure is equal to the graph generated by the
neighborhoods sets N1

i . Since Gn is boundary connected, An and Gn fulfill the assumptions of Theorem 2
and thus An has full rank. Since An is a submatrix of A, the least squares problem has a unique solution.

2.4. Choosing the neighborhoods and weights

What remains to be chosen for both the barycentric parameterization described in Section 2.1 and our new
overdetermined barycentric parameterization described in Section 2.2 are the neighborhoods N `

i as well as
the weights λ`ij . Floater and Reimers (2001) considered three particular choices: uniform parameterization,
reciprocal distance parameterization and shape preserving parameterization. In both the uniform and the
reciprocal distance parameterization, neighborhoods for each vertex are chosen as the ball neighborhoods

Ni = {j ∈ {1, . . . , N}\{i} : ‖xi − xj‖2 < r} (10)

for some fixed radius r > 0. Then, the uniform weights are defined as λij = 1
|Ni| and the reciprocal distance

weights are defined as

λij =
‖xi − xj‖−12∑

k∈Ni
‖xi − xk‖−12

.

For the shape preserving parameterization, the neighborhoods are found by projecting a ball neighborhood
of each vertex i onto its best approximating plane and generating a Delaunay triangulation on that plane.
The neighbors of i in the Delaunay triangulation form the neighborhood Ni and the weights are found by
preserving the angle ratios around the vertex as detailed in Floater (1997).

In this work, we leverage the additional flexibility of the overdetermined barycentric parameterization
to improve the performance of the parameterization algorithm. To this end, we need to find a number of
neighborhoods N `

i and weights λ`ij for each vertex. In the following section we describe our method to choose
these combinations by finding locally optimal parameterizations for a fixed number of points. Each of these
parameterizations will lead to a number of equations of the form (5).

3. Finding local parameterizations

In order to generate equations of the form (5), we develop an algorithm to parameterize a fixed small
number of points by barycentric coordinates with respect to three points of this point cloud.

3.1. Overview of the algorithm

We take as input a point cloud of fifteen points

{x1, . . . , x12} ∪ {x13, x14, x15}

in R3, where the first twelve points are considered as interior points and the last three points are considered
as vertex points. We consider fifteen points for two reasons: On the one hand, the fifteen points uniquely
determine a quadratic surface in general. On the other hand, the number is not too large and thus we are
able to train a neural network that reproduces the parameters (see below). The output of our proposed
algorithm are barycentric coordinates

ui =

15∑

j=13

λijuj
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for i = 1 . . . 12 such that

λij > 0,

15∑

j=13

λij = 1.

In principle, there are infinitely many such barycentric parameterizations. In order to obtain good param-
eters for approximation with polynomial surfaces, our algorithm attempts to reproduce parameterizations
of quadratic Bézier surfaces

P (u, v, w) =
∑

a+b+c=2

babcB
2
abc(u, v, w), (11)

where B2
abc are the Bernstein polynomials and babc ∈ R3. This means that if the vertex points are

x13 = P (1, 0, 0), x14 = P (0, 1, 0), x15 = P (0, 0, 1)

and the interior points were sampled i.e. for i = 1, . . . 12 as

xi = P (λi13, λi14, λi15), (12)

then our algorithm should result in the exact barycentric parameters (λi13, λi14, λi15) for all i = 1, . . . , 12.
In the general case of data points that were not sampled from a quadratic surface, we aim to minimize the
fitting error of the best approximation of the point cloud with a quadratic Bézier surface.

In order to make this task more feasible, we restrict the inputs to point clouds where the orthogonal
projection of the interior points {x1, . . . , x12} into the plane defined by the vertex points x13, x14, x15 lies
inside of the triangle spanned by the vertex points.

Our algorithm consists of three steps:

1. We find the affine transformation that transforms the triangle with vertices x13, x14, x15 into a standard
triangle. The transformation is applied to the 12 interior points. The details are described in Section
3.2.

2. We generate initial parameters by one of two possible methods. A simple way of choosing initial
parameters is projection of the interior points onto the plane generated by the vertex points. In order
to obtain better results, we train a neural network for this task and use its output as initial parameters,
see Section 3.3.

3. We perform a non-linear optimization to find the optimal parameterization starting from our ini-
tial parameterization. We compare classical surface approximation methods that alternate between
parameter correction and minimizing the point distance minimization (PDM), tangent distance mini-
mization (TDM) or squared distance minimization (SDM) functional with simultaneously optimizing
the parameters and the control points using the Levenberg Marquardt (LM) algorithm, see Section 3.5.

Figure 1 presents a graphical summary of the three steps.

3.2. Standardization

The standardization process is only required for the neural network evaluation, since training a network
is more efficient on standardized data

We transform the given points into a standard configuration by mapping the three vertex points x13, x14, x15
to the standard triangle

x̂13 = [0, 0, 0], x̂14 = [1, 0, 0], x̂15 =

[
1

2
,

√
3

2
, 0

]
.

To do so, we find an affine transformation

α(x) = v +Ax

where A is a 3× 3 matrix and v is a vector in R3, see Fig. 2. To find α, we enforce the following conditions:
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x

y

z

x13

x14

x15

Standardization

x

y

z

x̂13

x̂14 x̂15

Neural Network / Projection

u

v

w

1 1

1

PDM, SDM, TDM or LM

Figure 1: Steps followed by the parameterization process.

1. α(xi) = x̂i for i = 13, 14, 15, and

2. α(b+ Ln) = b̂+ L̂n̂, where {b, n, L}, {b̂, n̂, L̂ = 3} are the barycenters, normal vectors and perimeters
of the triangles x13x14x15 and x̂13x̂14x̂15 respectively.

x

y

z

x14

x13

x15

b+ Ln

Transformation α

x

y

z

x̂13

x̂14
x̂15

b̂+ L̂n̂

Figure 2: Standardization process.

The condition α(x13) = x̂13 leads us to v = −Ax13 and the matrix A is found by solving a system of nine
equations involving the remaining three conditions:

α(x14) = A(x14 − x13) = x̂14,

α(x15) = A(x15 − x13) = x̂15,

α(b+ Ln) = A(b+ Ln− x13) = b̂+ L̂n̂.

We transform the points xi to their standard position x̂i = α(xi). Since barycentric coordinates are
preserved under affine transformations, this standardization does not affect the result.
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3.3. Initial parameterization using an artificial neural network

Besides the straightforward initialization of the parameters via orthogonal projection, we propose another
method to estimate the barycentric coordinates, which is based on residual neural networks. More precisely,
we construct a network that takes as input 12 points x̂1 . . . x̂12 in the standard configuration described in
Section 3.2 and gives as output a list of barycentric coordinates (ui, vi, wi) with respect to the vertices x̂13,
x̂14 and x̂15 for i = 1, . . . , 12 with ui, vi, wi ≥ 0 and ui + vi + wi = 1.

3.3.1. Network architecture

To design our network, we use a residual neural network. Residual neural networks were initially intro-
duced for classification problems on image data (He et al., 2016) and have later been adapted to regression
problems (Chen et al., 2020). Recently they have been successfully applied to the problem of curve parame-
terization (Scholz and Jüttler, 2021). The key idea of residual neural networks is that they consist of several
blocks that have an additive shortcut connection between their input and their output. This means that
instead of approximating a function h(x), each residual block approximates the residual f(x) = h(x) − x.
In practice, the use of shortcut connections makes it possible to effectively train deeper neural networks.

Our network architecture is shown in Figure 3. On the left-hand side we show the layout of a single
residual block, which consists of three densely connected layers with batch normalization and ReLu activa-
tion. The shortcut connection is the identity if the dimensions match, otherwise it consists of an additional
densely connected layer with batch normalization.

On the right-hand side, we show the overall layout of the network. Since our input consists of 12 points
in R3, the total input dimension is 36. After an input layer with ReLu activation function, we have four
ResNet blocks and an output layer that transforms the data to the output dimension 36 (three barycentric
coordinates ui, vi, wi per input point). Since the barycentric coordinates need to lie between 0 and 1, we
use the sigmoid function as our output activation function. Finally, we enforce the barycentric coordinates
ui, vi, wi for each point to sum up to one by dividing them by their sum.

3.3.2. Training data generation

For our training data, we create 500, 000 quadratic triangular Bézier surfaces in the standard position
described in Section 3.2, which means that we set the control points b200, b020 and b002 of the quadratic surface
to the points [0, 0, 0], [1, 0, 0] and [1/2,

√
3/2, 0], respectively. The remaining control points b110, b101, b011 are

chosen randomly in a box [−0.4, 0.4]× [−0.4, 0.4]× [−1, 1] around the midpoints of the edges, see Figure 4.
Afterwards, we generate 12 random barycentric coordinates (ui, vi, wi) for i = 0, 1, . . . , 11 with ui, vi, wi >
0.05, thereby ensuring that they are at a minimum distance from the boundary. The corresponding 3D
points are found by evaluating the quadratic Bézier representation with the control points b200, b020, b002,
b110, b101, b011.

3.4. Training

To train our network we use an unsupervised learning strategy, meaning that instead of using labeled
data we use the output of the neural network as parameters (ui, vi, wi) for i = 1, . . . , 12 to fit the best
approximating quadratic triangular Bézier surface P to the input points. We then evaluate P at the
parameters (ui, vi, wi) and compute the mean squared loss with respect to the input points as

1

12

12∑

i=1

‖P (ui, vi, wi)− xi‖2. (13)

We implemented our method in Python using the PyTorch library (Paszke et al., 2019), which includes
methods for solving linear least squares problems that provide the necessary gradients and that can be
run on a GPU. The training process is carried out using the well known algorithm ADAM (A method for
stochastic optimization, see Kingma and Ba, 2014), with a learning rate of 10−4 and batch size 16.
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input

Linear(nin, nhidden)
BatchNorm
ReLu

Linear(nhidden, nhidden)
BatchNorm
ReLu

Linear(nhidden, nout)
BatchNorm

+

ReLu

Only if nin 6= nout:
Linear(nin, nout)
BatchNorm

output

(a) Residual block Res(nin, nhidden,nout)

input

Linear(36, 200)
Relu

Res(200, 200, 200)
Res(200, 400, 400)
Res(400, 400, 400)
Res(400, 200, 200)

Linear(200, 36)
Sigmoid
Enforce ui + vi + wi = 1 for
i = 0 . . . 11

output

(b) Neural network

Figure 3: The residual neural network for surface parameterization. The left diagram shows the layout of a residual block,
while the right diagram shows the layout of the whole network.

b200 b020

b002

b110

b101
b011

b200 b020

b002

b110

b101
b011

Figure 4: Training data generation. Left: Random control points chosen in a box around the edge midpoints. Right: Resulting
control polygon of a quadratic Bézier surface.

3.5. Non-linear optimization of the local parameterization

After obtaining the initial parameters, we perform non-linear optimization to parameterize the 12 interior
points x1, . . . x12 in the optimal way for fitting a quadratic triangular Bézier surface (11). This means that
we minimize (13) by adjusting both the control points bijk of P and the parameters (ui, vi, wi).

Since we assume that vertex points x13, x14, x15 are the vertices of the target surface, we fix the corre-
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sponding control points as

b200 = x13, b020 = x14, b002 = x15 .

The rest of the control points bijk as well as the barycentric parameters (ui, vi, wi) for i = 1 . . . 12 with
respect to the vertices are to be optimized. The final output of our algorithm are then the optimized
parameters

λi13 = ui, λi14 = vj , λi15 = wi

for all i = 1, . . . 12.
We present two different approaches for the optimization: Alternating surface fitting with parameter

correction, and simultaneous surface fitting using the Levenberg Marquardt algorithm. A comparison of the
two strategies is presented in the next section.

3.5.1. Alternating optimization of parameters and control points

Wang et al. (2006) present a full description of point distance minimization (PDM), tangent distance
minimization (TDM) and squared distance minimization (SDM). They establish the equivalence of these
schemes to well-known methods for nonlinear optimization: Variant of the steepest descent, Gauss-Newton
method and Newton method, respectively.

In all these methods, the control points are first optimized such that a specific error functional is minimal.
Depending on the method we consider the PDM functional

1

2

12∑

i=1

(
P (ui, vi, wi)− xi

)2
,

the TDM functional

12∑

i=1

(
(P (ui, vi, wi)− xi) ·N(ui, vi, wi)

)2
,

and the SDM functional

12∑

i=1

max

{
0,

d

d− ρ1

}(
(P (ui, vi, wi)− xi) · T1(ui, vi, wi)

)2
+ max

{
0,

d

d− ρ2

}(
(P (ui, vi, wi)− xi) · T2(ui, vi, wi)

)2

+
(
(P (ui, vi, wi)− xi) ·N(ui, vi, wi)

)2
,

where d is the signed distance to the foot point, N is the unit vector field, ρ1, ρ2 are the principal curvature
radii and T1, T2 are the principal curvature directions. Each of these functionals results in a linear least
squares problem, which can be solved using standard methods.

In the second step, the parameters are adjusted by a process called parameter correction.
Optimization of the control points and parameter correction is performed alternatingly until a stopping

criterion is reached.

3.5.2. Simultaneous optimization of parameters and control points

As an alternative to the classical surface fitting methods described in the previous section, we propose
to directly solve the non-linear problem

1

2

12∑

i=1

(
P (ui, vi, wi)− xi

)2
,

where the objective function is minimized for the parameters (ui, vi, wi) and the control points bijk simul-
taneously. This results in a non-linear least squares problem, which we solve using the Levenberg-Marquardt
algorithm (LM).
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4. Numerical experiments for the local parameterization

Example 1 (Single surface). We sample 12 points x1, . . . , x12 on a quadratic triangular Bézier surface with
control points

b200 = [2, 1, 1], b020 = [1, 2, 1], b002 = [1, 1, 2], b110 = [1.8, 1.4, 1.8], b101 = [1.1, 0.9, 1.7], b011 = [1.8, 1.9, 1.9]

where the control points b200, b020, b002 where fixed representing an equilateral triangle, see Fig. 5.
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Figure 5: Twelve points on the quadratic triangular Bézier surface.

First of all we transform the surface into the standard position via the algorithm presented in Section 3.2,
obtaining the points x̂1, . . . x̂12. We evaluate the neural network at the Cartesian coordinates of the points
x̂1, . . . x̂12 and we obtain an estimation of the barycentric coordinates of the points x1, . . . , x12 with respect
to the vertices b200, b020, b002. Then we optimize the parameterization using all the methods: PDM, TDM,
SDM and LM. The resulting maximum and mean squared error of the parameters and the mean squared
error of the fitted surfaces are presented in Table 1 for all the methods. We observe that the LM process
converged towards the exact parameters that were used to sample the 12 points. Since the surface was not
chosen to be in standard position, this confirms that the standardization process does not spoil the result.
As can be observed in Table 1, the errors after applying PDM are the same as the ones after initialization
since the method diverged.

Initialization PDM TDM SDM LM-algorithm
Max parameter error 9.5e− 02 9.5e− 02 1.1e− 04 1.2e− 05 5.6e− 30
Mean squared parameter error 4.6e− 03 4.6e− 03 1.4e− 08 1.4e− 10 3.2e− 15
Mean squared fitting error 1.9e− 04 1.9e− 04 3.8e− 17 1.2e− 19 1.0e− 32

Table 1: Errors for a single surface with 12 points.

Example 2 (Standard least-squares fitting). We compare the orthogonal projection and the output of the
neural network on surfaces from the same class that was used for training the neural network. To this
end, we generate 1, 000 quadratic triangular Bézier surfaces in standard position (see Section 3.2) with fixed
vertex control points

b200 = [0, 0, 0], b020 = [1, 0, 0], b002 =

[
1

2
,

√
3

2
, 0

]
. (14)

The remaining control points b110, b101 and b011 are chosen randomly in a box [−0.4, 0.4]×[−0.4, 0.4]×[−1, 1]
around the midpoints of the triangle defined by b200, b020 and b002, see Figure 4. We call this class of surfaces
Standard Surfaces.

We then sample from each surface 12 random interior points xi for i = 1, . . . 12 with barycentric coordi-
nates (ui, vi, wi) with ui, vi, wi ≥ 0.05.
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To compare the methods, we obtain two sets of parameters from the points xi for i = 1, . . . , 12 via
orthogonal projection and evaluation of the neural network, respectively. For each set of 12 barycentric
coordinates we compute the mean square error with respect to the original parameters (ui, vi, wi), see Fig.
6(a). Moreover, we fit a quadratic triangular Bézier surface by least squares to the points Qi using the
parameters and show the mean square errors for each surface in Figure 6(b).
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Figure 6: Standard surfaces (degree 2): MSE of the initial parameterizations and MSE of the fitted surfaces.

Note that in all plots the surfaces where sorted in ascending order individually with respect to the mean
square errors to get a better understanding of the results.

We observe that the neural network predicts parameters that are closer to the original ones, compared
to the orthogonal projection. Moreover, the fitting error resulting from the neural network is often smaller
and it generally behaves in a more uniform way. For example, we count the number of surfaces with mean
squared error under the threshold 10−3, which is 654 for projection and 952 for the neural network.

Next, we compare the performance of orthogonal projection and the neural network in the non-zero
residual case, i.e., on data that was not sampled from quadratic surfaces.

In order to generate such surfaces, we generate triangular Bézier parameterizations of degree 3 and 4 of
the planar triangle with vertices as in (14). We then add to all control points except for the vertex control
points a perturbation that is randomly sampled from the box [−0.4, 0.4]× [−0.4, 0.4]× [−1, 1], see Figure 7.

In Figure 8, we show the resulting mean squared errors of the fitted surfaces, both in the cubic and the
quartic case. In both cases, the means squared error resulting from the neural network is small compared to
the ones resulting from orthogonal projection. Counting again the surfaces with mean squared error below
the threshold 10−3, we see that in the cubic cases projection results in 161 surfaces while the neural network
results in 373 surfaces with errors below the threshold. In the quartic case, projection results in 71 surfaces
and the neural network in 183 surfaces with mean squared errors below 10−3.

Example 3 (Standard surfaces: Improving the parameterization via PDM, TDM, SDM and Levenberg–
Marquardt algorithm). We now revisit the previous example for data of degree 2,3 and 4 and additionally
improve the parameterization via quadratic surface fitting as described in Section 3.5. In particular, we
apply the PDM, TDM, SDM and LM algorithms until we reach an error of 10−15 or a maximum number
of 20 iterations. In case the employed non-linear optimization method does not converge, we use the initial
parameters obtained from projection or the neural network, respectively. Figure 9 shows the mean squared
errors of the resulting fitting surfaces for all methods and degrees 2, 3, and 4.

We observe that in many cases PDM, TDM and SDM do not converge. For TDM and SDM, this means
that the resulting error is the same as the initial errors shown in Figures 6 and 8. PDM slightly improves
the error in all cases but still fails to converge. The Levenberg-Marquardt algorithm, however, converges in
a significantly higher number of cases.
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Figure 7: Control net of cubic (left) and quartic (right) Bézier surfaces with random non-vertex control points.
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Figure 8: Surfaces of degree 3 and 4: MSE of the surfaces obtained by standard fitting.

For the quadratic case we report in Table 2 the ratio of surfaces for which the different methods converged.
We observe a large advantage of the neural network initialization over the initialization by projection,
especially for SDM and TDM.

Initialization PDM TDM SDM LM
Projection 0% 12.9% 9.1% 88.7%

Neural network 0% 42.6% 51.8% 95.2%

Table 2: Standard surfaces: Computation time and percentage of quadratic surfaces that converged when applying the different
non-linear surface fitting methods.

In the cubic and quartic cases, TDM and SDM did not improve the result over the initial fitting and
PDM improved slightly. LM, however, largely improves the resulting error. Due to its robustness it gives
almost the same result for both initialization methods.

Example 4 (High curvature surfaces). In the previous section, we observed that the initial fitting error
when using the neural network initialization is significantly lower than when using initialization by projection.
However, due to the robustness of LM, the resulting fitting error after the optimization with LM only differs
slightly. For surfaces with high curvature, projection can lead to a suboptimal initialization since points
that are far from each other on the original surface can be projected to planar parameters that are close to
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Figure 9: Surfaces of degree 2 (top), 3 (center) and 4 (bottom): MSE of the fitted surfaces after applying PDM, TDM, SDM
and LM with initial parameters via projection and neural network evaluation.
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each other. Moreover, the projected parameters can lie outside of the triangle spanned by the three vertices,
leading to negative barycentric coordinates. In this section, we test the behavior of the neural network
initialization as well as the initialization by projection on such surfaces.

To this end, we generate surfaces of degree 2, 3 and 4 in the same way as in the previous sections,
with the modification that instead of varying the control points based on a uniform distribution inside a
prescribed box centered at 0, we vary them in a way that favors large deformations. More precisely, we
generate surfaces by perturbing the non-vertex control points (see Figures 4 and 7) of the parameterization
of the planar triangle with values randomly sampled from [0.3, 0.4] × [0.3, 0.4] × [0.7, 1]. Therefore, the
generated surfaces are in the same class as the ones from the previous section, but the expected value of the
perturbation in each direction is larger than zero.

In Figure 10, we report the standard mean squared fitting errors that result from applying the neural
network and projection as well as the mean squared fitting errors after applying PDM, TDM, SDM and
LM. We observe that the neural network leads to a significantly better initial guess for degree 2, 3 and 4.
This entails much smaller errors after applying the non-linear surface fitting methods. Moreover, we observe
that LM recovers the exact parameterization in the zero-residual case for a large number of surfaces while
the other methods fail to converge in many cases. In Table 3 we report the percentage of surfaces that
converged for all methods in the zero-residual case. Even more, the computational time when applying the
whole method with LM to 1000 quadratic high curvature surfaces is half when using the neural network
initialization than when using projection, see Table 4.

Initialization PDM TDM SDM LM
Projection 0% 0.01% 0.03% 44.7%

Neural network 0% 20.0% 25.6% 78.2%

Table 3: High curvature surfaces: Computation time and percentage of quadratic surfaces that converged when applying the
different non-linear surface fitting methods.

For the cubic and quartic case, one observes an improvement of more than one order of magnitude of
the mean square errors of the fitted surfaces after LM. Moreover, the computational time is around 4 times
faster when using neural network initialization, see Table 4.

Degree 2 Degree 3 Degree 4
Projected Parameters 23s 57s 98s
Neural Network Parameters 11s 14s 14s

Table 4: Computational time in seconds for 1000 high curvature surfaces with degree 2,3 and 4 when applying LM.

5. Parameterization of general point clouds

In this section, we describe the process of choosing the neighborhoods N `
i and the weights λij for the

overdetermined parameterization method described in Section 2.2. First, for an interior point xi1 , we
consider the r−neighborhood Θi. We choose r large enough so that Θi contains at least 15 points.

Second, we construct the convex hull of Θi and we consider the list of triangles L = {xi13xi14xi15} where
the vertices are chosen from the boundary of the convex hull. Afterwards, the list is sorted in decreasing
order with respect to the ratio E/e, where E and e are the lengths of the longest and shortest edge of the
triangle xi13xi14xi15 , respectively. Next, we go over the list of triangles L looking for triangles such that the
projection of 12 interior points including the point xi onto the plane spanned by the triangle lies inside the
triangle. We denote the set of indices of the interior points as Ξ = {i1, i2, . . . i12}.

Based on the robustness and good results obtained in the last section for neural network initialization
and the Levenberg-Marquardt algorithm, we use this approach to estimate the barycentric coordinates λij
for i ∈ Ξ and j = i13, i14, i15 of the interior points {xi1 , . . . xi12} with respect to the vertices xi13 , xi14 and
xi15 . If the residual of LM is less than a fixed threshold, the following equations are added to the global
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Figure 10: High curvature surfaces of degree 2 (top), 3 (center) and 4 (bottom): MSE of the fitted surfaces after applying
PDM, TDM, SDM and LM with initial parameters via projection and neural network evaluation.
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system of equations:

ui =
∑

j∈{i13,i14,i15}
λijuj

for i ∈ Ξ. We repeat these steps until each interior point xi in the point cloud has reached a minimum
number of equations or until each interior point has been visited a prescribed number of times. Moreover,
we ensure that the resulting overdetermined system is boundary connected such that Theorem 3 applies and
we can solve the system in the least-squares sense.

In the rest of this section, we study the application of this method to data fitting. When the point cloud
X = XI ∪ XB is sampled from a quadratic surface with corresponding parameters U = UI ∪ UB , we aim
to reproduce the exact parameters UI (zero-residual case). If the degree is larger than 2 (non-zero-residual
case), then we aim to minimize the mean squared error of the fitting surface.

We compare the results of our method with the three methods (uniform, reciprocal distance and shape-
preserving) proposed by Floater and Reimers (2001) in three numerical examples.

Example 5 (Triangular domain - zero residual case). We sample 500 interior points xi for i = 1, . . . , 500
from a quadratic triangular Bézier surface with corresponding barycentric coordinates ui, vi, wi > 0.03
for i = 1, . . . , 500. We also sample 75 boundary points xi with corresponding parameters ui ∈ D for
i = 501, . . . , 575, see Figure 11.

To generate the surface we use the same method described in Section 3.3.2. To this end, we fix the
control points b200, b020 and b002 as

b200 = [0,−1, 0], b020 = [−1, 3, 2], b002 = [2, 2, 3].

The remaining control points b110, b101 and b011 are chosen randomly in a box [−0.4, 0.4]×[−0.4, 0.4]×[−3, 3]
around the midpoints of the triangle defined by b200, b020 and b002, obtaining

b110 = [0.81, 0.87, 2.93], b101 = [2.13, 0.19, 1.07], b011 = [1.02, 2.44, 0.51].
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Figure 11: Triangular domain - zero residual case: Parameter values (left) and point cloud (right).

We perform a comparison with the three methods proposed by Floater and Reimers (2001), meaning
the uniform, reciprocal distance and shape-preserving parameterizations. Since these methods do not give a
specific way of choosing the radius r, we consider different values of the radius r = 0.2, 0.4, 0.6, 0.8, 1. Table

18



5 reports the mean squared error of the estimated parameters with respect to the original parameterization
for each method and radius. We select for the final fitting the parameters corresponding with the smallest
mean squared error.

Radius r 0.2 0.4 0.6 0.8 1
MSE uniform 4.33e−3 7.79e−3 1.63e−2 2.64e−2 3.73e−2
MSE reciprocal distance 4.61e−3 6.77e−3 1.33e−2 2.10e−2 2.87e−2
MSE shape-preserving 5.11e−4 7.37e−5 7.48e−5 9.91e−5 8.65e−5

Table 5: Triangular domain - zero residual case: MSE of the parameters for different choices of the radius r using Floater and
Reimers’ methods.

For our method we chose the threshold 10−20 for the local parameterizations and we go over the list
of interior points until each point has at least one equation. This results in a system of equations with
dimension 970 × 500 from 82 local parameterizations. Representations of the local parameterizations and
the associated graph to the system of equations are presented in Figure 12. We note that all the interior
points are boundary connected since they all belong to the maximally connected component. This implies
the uniqueness of the solution and moreover, the estimated parameters are contained in the parameter
domain.
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Figure 12: Triangular domain - zero residual case: Local parameterizations (left). Associated graph to the system of equations
(right).

For all four methods we use the estimated parameters to fit quadratic triangular Bézier surfaces. The
MSE of the estimated parameters and the fitted surfaces are reported in Table 6. Clearly, our global
parameterization algorithm estimates the exact parameters, while the methods proposed by Floater and
Reimers (2001) only estimate approximations of the parameters. This exact reproduction of the parameters
for a quadratic surface gives a significant advantage when using our new approach compared to the standard
methods, since we gain approximation power. A significant improvement of the shape-preserving method
with respect to the uniform and reciprocal distance weights is observed.

our method uniform reciprocal distance shape-preserving
MSE parameters 2.09e−24 4.33e−3 4.61e−3 7.37e−5
MSE fitting 3.74e−24 1.01e−2 1.06e−2 5.56e−5

Table 6: Triangular domain - zero residual case: MSE of the parameters and MSE of the fitted surface for all the methods.
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Example 6 (Quadrilateral domain - zero residual case). We revisit the previous example and apply extrap-
olation to the quadratic triangular Bézier surface. Then, we sample 500 interior points and 100 boundary
points over its rectangular domain [0, 1]× [0, 1], see Figure 13.
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Figure 13: Quadrilateral domain - zero residual case: Parameter values (left) and point cloud (right).

Again, we consider different choices of the radius r = 0.2, 0.4, 0.6, 0.8, 1 and we compute the mean squared
error of the estimated parameters with respect to the original parameterization. Once again we keep the
parameters corresponding with the smallest mean squared error for each method.

Next, we use our global parameterization method with the same threshold and ensuring at least one
equation per point. This results in a system of equations of dimension 987× 500 from 83 local parameteri-
zations. Representations of the local parameterizations and the associated graph to the system of equations
are presented in Figure 14. Like in the previous example we notice that all the interior points are boundary
connected and again the obtained parameters were contained inside the parameter domain.
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Figure 14: Quadrilateral domain - zero residual case: Local parameterizations (left). Associated graph to the system of
equations (right).

Table 7 reports the MSE for both the parameters and the fitting surfaces for each method. We notice
that our method estimates the exact parameters while Floaters methods only gives an approximation. More
specifically, a significant improvement of the shape-preserving method with respect to the uniform and

20



reciprocal distance weights is observed, whereas our method outperforms all of the standard methods and
it is able to recover the exact parameters.

our method uniform reciprocal distance shape-preserving
MSE parameters 6.70e−25 1.44e−2 1.50e−2 1.11e−3
MSE fitting 1.50e−24 2.80e−2 2.30e−2 9.79e−4

Table 7: Quadrilateral domain - zero residual case: MSE of the parameters and MSE of the fitted surface for all the methods.

Example 7 (High curvature - Set of bi-quadratic tensor-product Bézier surfaces). In this example we would
like to investigate the performance of our method for a specific class of surfaces. To this end, we generate 50
hyperbolic bi-quadratic tensor-product Bézier surfaces with high curvature. To do so, we create the surfaces
in analogous way described in Section 3.3.2 by fixing c00 = [0, 0, 0], c20 = [1, 0, 0] and c02 = [0, 1, 0] and
choosing the remaining six control points randomly inside boxes of dimension [−0.4, 0.4]× [−0.4, 0.4]× [2, 5]
around the vertices of a regular 3× 3 grid over [0, 1]2 × {0}.

In Figure 15 we report the MSE of the parameters and the MSE of the fitted surfaces. We observe a
significant improvement in the parameterization obtained from our global parameterization algorithm with
respect to the methods proposed by Floater and Reimers (2001), resulting in approximating surfaces with
lower fitting error. This confirms that our method possesses a clear advantage over the standard methods
from Floater and Reimers (2001).
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Figure 15: High curvature - Set of bi-quadratic tensor-product Bézier surfaces: MSE of the parameters (left) and MSE of the
fitted surfaces (right). The label FR refers to the methods of Floater and Reimers (2001).

6. Conclusion

In this paper, we proposed an overdetermined generalization of a standard parameterization algorithm for
unstructured point clouds. Moreover, in order to generate suitable local convex combinations, we proposed
training a neural network for the parameterization of a point cloud of fixed size by barycentric coordinates
with respect to three of them. We showed that in all considered cases the output of the neural network results
in better fitting errors when fitting triangular Bézier surfaces, compared to the standard parameterization via
projection. In particular for surfaces with high curvature, the neural network performs very robustly while
projection leads to suboptimal results. We then studied the use of this parameterization as an initialization
of non-linear methods and concluded that we can recover the original parameterization in the zero-residual
case and find good parameters for fitting quadratic surfaces to data points in the non zero-residual case.
Furthermore, we compared non-linear optimization for surface fitting using the standard methods point
distance minimization (PDM), tangent distance minimization (TDM) and squared distance mininmization
and the Levenberg-Marquardt algorithm (LM) and observed that LM outperforms the other methods in all
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cases. Finally, we showed that good local parameterizations for small subsets of a large point cloud lead
to good global parameterizations of the entire point cloud when they are used to generate equations for
our overdetermined parameterization algorithm. In future work we plan to extend the method to higher
polynomial degrees as well to surface approximations with triangular and tensor-product splines.
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