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Abstract

Finding the optimal parameterization for fitting a given sequence of data points with a parametric curve is
a challenging problem that is equivalent to solving a highly non-linear system of equations. In this work, we
propose the use of a residual neural network to approximate the function that assigns to a sequence of data
points a suitable parameterization for fitting a polynomial curve of a fixed degree. Our model takes as an
input a small fixed number of data points and the generalization to arbitrary data sequences is obtained by
performing multiple evaluations. We show that the approach compares favorably to classical methods in a
number of numerical experiments that include the parameterization of polynomial as well as non-polynomial
data.
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1. Introduction

Approximating a sequence of data points with a polynomial curve is an important problem in geometric
modeling. For standard techniques such as least squares fitting of Bézier curves, a parameterization of the
data points is needed as a prerequisite. However, in many practical applications, only the positions of the
data points are given and the parameterization is unknown. This makes finding an optimal approximation of
the given data with a polynomial curve a challenging problem, even if the data was originally sampled from
a polynomial curve. It is well known that the parameterization has a large impact on the approximation and
that a bad choice of parameterization results in a sub-optimal approximation error (Floater and Surazhsky,
2006; Floater, 2008).

Over the years, many methods have been proposed for the solution of this problem. They can be grouped
into two categories:

Methods in the first category start with an initial guess for the parameterization and optimize it in order
to achieve good approximation results. Typically, this results in a constrained optimization problem that
is solved iteratively. One of the first methods that use this idea is the intrinsic parameterization (Hoschek,
1988) that has later been improved by Saux and Daniel (2003). Speer et al. (1998) presented an iterative
method based on a global optimization procedure. An iterative reparameterization with the aim of achieving
uniform angular speed along the curve was proposed by Yang et al. (2013).

Another approach that falls into this category is to approximate the solution of the system of equations
that define the optimal parameterization. Since this system is highly non-linear, advanced optimizing
methods such as the bat algorithm have been applied to this problem (Iglesias et al., 2015, 2016). The
potential of an improved approximation power when optimizing the parameterization and the control points
simultaneously was studied by Rababah (1995).
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In the squared distance minimization method of Yang et al. (2004) and Wang et al. (2006), the problem
of parameterization for fitting B-spline curves is avoided by finding an initial guess of the approximation
and updating its control points iteratively. Gao et al. (2019) combined this process with results from deep
learning in the context of reconstructing spline curves from image data. Several recurrent neural networks,
that allow for variable input and output sizes, are used to produce good initial guesses to be used in an
optimization method.

The second category includes methods for choosing a fixed parameterization a priori from the given data
points. The most common approaches in this category include the estimation of the parameterization using
uniform parameters or parameters that correspond to the chord lengths of the sequence of data points.
Another commonly applied technique is the centripetal parameterization introduced by Lee (1989) that
has been a foundation for several improvements aiming at avoiding unwanted wiggles, such as the refined
centripetal parameterization (Fang and Hung, 2013) and the dynamic centripetal parameterization (Balta
et al., 2020).

An extension of the centripetal parameterization to the surface case, the augmented parameterization,
has been presented by Antonelli et al. (2016) in the context of approximating surface data by composite
surfaces. Furthermore, the universal parameterization was proposed by Lim (1999, 2002) with the aim of
creating natural looking curves for geometric modeling.

In the present paper we investigate the use of a deep neural network to predict the optimal parameters
for given sequences of data points. Our approach therefore falls into the second category of methods that
estimate a parameterization a priori. We note that – like all methods from this category – our methods
has the potential to be be used in conjunction with methods from the first category by performing further
optimization steps on the resulting parameterization.

We train the neural network on a large data set of sequences that consist of a fixed small number of
points that were sampled randomly from polynomial curves. We propose a method for applying the resulting
model to the parameterization of a point sequence of arbitrary length. Moreover, we show that the model
generalizes to point sequences that were sampled from non-polynomial curves.

A related approach has been proposed by Laube et al. (2018), where a neural network is used for the
parameterization of data points in the context of fitting with spline curves of degree 3. In that paper, the
authors use a standard multi-layer perceptron with a fixed input size of 100 data points and three hidden
layers with 1,000 nodes each. The overall number of parameters of the neural network is therefore more
than 2.2e6. Consequently, the process of training and evaluating the network is quite costly. Moreover, if
the given number of data points is not equal to 100, one has to either increase it (by interpolation) or to
decrease it (by sub-sampling).

In our approach, instead of parameterizing 100 data points from a single curve at a time, we construct
a network for the parameterization of a minimum number of 2d + 1 points for the approximation with
a curve of degree d. This is motivated by results about geometric interpolation with polynomial curves
(Höllig and Koch, 1996; Jaklič et al., 2007; Vavpetič, 2020). Although these contributions focus mostly
on the construction of curve segments from Hermite-type boundary data, they show how to unleash the
full approximation power of polynomial curves – and similarly of Pythagorean-hodograph curves (Farouki
et al., 2021) – by a suitable reparameterization. This approach, however, leads to non-linear computational
problems. In our contribution, we use a deep neural network to implicitly capture the solutions of the
non-linear problems, in order to reduce the computational challenges.

Since no suitable real-world dataset for this problem is publicly available, we rely on randomly generated
training data. In contrast to the training data in (Laube et al., 2018), which is also randomly generated,
we do not exclude self-intersecting curves, and we generate data sets for different polynomial degrees.

After constructing the network, we evaluate the model multiple times in order to parameterize an ar-
bitrary number (> 2d + 1) of data points. This extension makes our method flexible with respect to the
number of input data points. For representing the parameterization, we employ a residual neural network
architecture (He et al., 2016), which enables us to use a very deep network with a relatively small number of
nodes in each layer. Our method results in approx. 5.5e4 degrees of freedom, which is equivalent to ca. 2.5%
of the data required by the network of Laube et al. (2018). This leads to advantages regarding memory
storage, training time and complexity of the evaluation. Summing up the comparison with that previous
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work, our proposed method results in a much sparser network that is easy to train and evaluate, and the
method is moreover directly applicable to any polynomial degree and number of input data points.

The remainder of the paper is organized as follows: We state the problem in Section 2 and analyze its
complexity in Section 3. In Section 4 we describe the deep neural network and its hyperparameters as well
as the training data. We show our numerical results in Section 5 and finalize the paper with a conclusion
and some possible directions for future work.

2. Problem statement

In this paper, we consider the problem of parameterizing a given sequence

(pi)i=1...N ⊂ R2

of data points in R2. This means that we want to obtain a sequence

t1 < t2 < . . . < tN

of real parameters that corresponds to the sequence of data points. In particular, it is our aim to find a
parameterization that is suitable for the approximation of the given data points with a polynomial curve

c : [0, 1]→ R2

of a fixed maximum degree d. In order to quantify the approximation power of c, we use the mean squared
error between the parameterized data points and the evaluations of the polynomial curve:

1

N

N∑

i=1

‖c(ti)− pi‖2. (1)

If a parameterization (ti) of the data points pi is available, finding the polynomial curve c of degree d that
minimizes (1) is a linear problem that can be solved, e.g., by representing the polynomial curves as Bézier
curves

c(t) =
d∑

j=0

cjBj,d(t), (2)

where cj ∈ R2 and Bj,d are the Bernstein polynomials

Bj,d(t) =

(
d

j

)
tj(1− t)d−j .

The control points cj , which define the Bézier curve (2), are obtained by solving the least-squares problem

arg min
c0,...,cd∈R2

N∑

i=1

∣∣∣∣∣∣
pj −

d∑

j=0

cjBj,d(ti)

∣∣∣∣∣∣

2

. (3)

However, while the problem of finding the best approximating polynomial of degree d to a sequence
of parameterized data points is well understood, the task of finding the parameterization ti that leads to
smallest residual in (3) is a complicated problem with no known solution. Standard methods include the
estimation of the parameterization by either the uniform parameterization

ti = (i− 1)
1

N − 1
,
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the parameterization by chord length

t1 = 0

ti =

∑i
k=2 ‖pk − pk−1‖∑N
k=2 ‖pk − pk−1‖

for i = 2 . . . (N − 1)

tN = 1

and the centripetal parameterization

t1 = 0

ti =

∑i
k=2 ‖pk − pk−1‖a∑N
k=2 ‖pk − pk−1‖a

for i = 2 . . . (N − 1)

tN = 1,

where 0 < a < 1 (typically a = 1
2 ). In most cases, the approximating polynomial curves resulting from these

methods do not reach the high accuracy that geometric approximation methods have been shown to achieve
in the context of Hermite interpolation by optimizing both parameters and coefficients.

3. Analysis of the non-linear function to be learned

Let

a(t) =

d∑

j=0

ajt
j (4)

be a polynomial curve with coefficients aj ∈ R2. We evaluate this curve at N parameters

t1 < t2 < . . . < tN , (5)

thus obtaining N data points

pi =

d∑

j=0

ajt
j
i . (6)

If the parameters ti are known, the coefficients of the curve can be recovered from (6) by solving the least
squares problem

arg min
a0,...,ad∈R2

N∑

i=1

∣∣∣∣∣∣
pi −

d∑

j=0

ajt
j
i

∣∣∣∣∣∣

2

, (7)

whose solution has zero residual, since the points were all sampled from the curve. We rewrite this problem
in matrix form by defining the matrix T ∈ RN×d as

Tij = tji .

Then, (7) is equivalent to
arg min
a∈Rd+1

‖p− Ta‖2

and the solution is given by

a =
(
TTT

)−1
TTp. (8)

By inserting (8) into (6) we arrive at

T
(
TTT

)−1
TTp− p = 0. (9)
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This is a system of N rational equations in the parameters (t1, . . . , tN ). If the parameterization (5) of
the data points (6) is not given, the problem of parameterizing pj in such a way that the sequence of
points can be represented exactly by a polynomial curve of degree d is equivalent to solving (9) for the
parameters tj . Note that we used the monomial basis for representing polynomials in this section. For
the theoretical analysis of the problem this is equivalent to representing polynomials with respect to the
Bernstein polynomials.

While (9) defines implicitly the parameterization function of (p1, . . . ,pN ), there is no obvious path to an
efficient evaluation of this function. Moreover, (9) does not have a solution for given data points that cannot
be represented by a polynomial curve. Instead of attempting to solve this system of rational equations, we
approximate the function using an artificial neural network.

4. Description of the deep neural network

4.1. Overview

We use a deep neural network to find a parameterization of (2d+1) data points belonging to a polynomial
curve of degree d. Due to the high complexity of the problem and in order to mitigate the vanishing gradient
problem that occurs when employing neural networks that consist of many layers, we use a residual neural
network.

First introduced by He et al. (2016) in the context of convolutional neural networks for image recognition,
residual neural networks make it possible to efficiently train neural networks with many hidden layers.
A residual neural network consists of stacked building blocks, where each building block has a shortcut
connection between its input and its output. Whenever the input and output have the same dimension, this
shortcut connection is simply an identity, when the dimensions differ an additional layer is introduced to
project the input into the space of the output. Due to this construction, each block (which itself consists
of a small number of layers), instead of approximating a function H(x), approximates a residual function
F (x) = H(x)− x.

The input of our network consists of an ordered list of the 2d edges between neighboring data points. The
use of an edge representation of the curve instead of the vertex representation makes the trained network
translation-invariant. As an output, our network provides two weights λ1i , λ

2
i with λ1i + λ2i = 1 for each

vertex except for the two boundary vertices, whose parameters are set to 0 and 1, respectively. The weights
define the relationship between each vertex and their neighbors. Afterwards, the resulting parameterization
is obtained by solving the linear system

ti = λ1i ti−1 + λ2i ti+1 ∀i ∈ (2, . . . , 2d), (10)

t1 = 0,

t2p+1 = 1.

The extension to a higher number of samples of the curve is treated in Section 5.1.2.

4.2. Layout and degrees of freedom

We adapt the residual neural network for nonlinear regression presented by Chen et al. (2020). Our
neural network consists of a fully connected input layer, five residual building blocks and a fully connected
output layer. Each residual building block itself contains three fully connected layers and an additional layer
in the shortcut connection if the input and output dimensions differ. Batch normalization (Ioffe and Szegedy,
2015) is applied after each layer and after the shortcut connection in residual blocks with differing input
and output dimension. For all hidden layers the rectified linear unit (relu) is used as activation function. In
the output layer we use a sigmoid activation function in order to obtain output values between 0 and 1.

We denote a residual building block by Res(nin, nhidden, nout). The left diagram in Figure 1 shows the
layout of a single residual building block.

The right diagram in Figure 1 shows the complete layout of the neural network for curve parameterization.
Since each residual building block consists of three fully connected layers, the network has a total depth of
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input

Linear(nin, nhidden)
BatchNorm
Relu

Linear(nhidden, nhidden)
BatchNorm
Relu

Linear(nhidden, nout)
BatchNorm

+

Relu

Only if nin 6= nout:
Linear(nin, nout)
BatchNorm

output

(a) Residual block Res(nin, nhidden,nout)

input

Linear(2d, 30)
Relu

Res(30, 50, 70)
Res(70, 70, 70)
Res(70, 70, 70)
Res(70, 50, 30)
Res(30, 30, 30)

Linear(30, 4d− 2)
Sigmoid
Enforce λ1i + λ2i = 1

output

(b) Neural network

Figure 1: The residual neural network for curve parameterization. The left diagram shows the layout of a
building block, while the right diagram shows the layout of the whole network.

17 layers. Together with the two shortcut layers and the batch normalization, the network has 53998 + 244d
learnable degrees of freedom. In our numerical examples, we used the same network layout for all polynomial
degrees d. Since the problem of finding a suitable parameterization is more complicated for higher polynomial
degrees, it can be necessary to increase the number of layers and nodes as d increases.

4.3. Loss function

There are several possibilities to measure the loss of the neural network.

1. In a straightforward way, we can use the weights µ1
i , µ

2
i that correspond to the original parameterization

of the input curve as labels and optimize the mean squared error

1

4d

2d∑

i=2

(λ1i − µ1
i )

2 + (λ2i − µ2
i )

2 (11)

of the network’s output.

2. We can solve the system (10) to obtain the parameterization (si)i=1...(2d+1) and use the original
parameterization (ti)i=1...(2d+1) of the curve as a label in order to measure the mean squared error

1

2d+ 1

2d+1∑

i=1

(ti − si)2. (12)

3. We can use the parameterization to perform a least-squares approximation of the data points with a
Bézier curve c of degree d and evaluate the curve at the parameters. We then use the data points
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themselves as labels and compute the loss as

1

2d+ 1

2d+1∑

i=1

(c(si)− pi)
2. (13)

The advantage of the first approach is, that it is computationally very efficient, since only the trainable
layers of the network are used in the forward and backward pass. In the second and third approach,
additional computational steps are performed that do not directly correspond to trained parameters of the
network. However, measuring the error with respect to the parameters or the fitted data leads to a smaller
number of epochs that is necessary for reaching a minimum validation error when training the network. In
the third approach the input is equal to the label, and the resulting method can therefore be classified as
an unsupervised machine learning method.

In the numerical experiments that we present in Section 5, we used the third approach.

4.4. Generation of the training data

In order to train the network for any given degree, we need a data set that contains a large number of
curves of that degree. Since there is no such data set publicly available, we opt for generating the training
set randomly. To this end, we represent the polynomial curves as Bézier curves and we generate a set of
curves by randomly choosing the coefficients cj according to the standard normal distribution. In order to
arrive at a general model for the parameterization of curves, we do not further reduce the feature space. In
particular, we do not exclude self-intersecting curves from the data set.

For each curve c(t), we define parameters 0 = t1 < t2 < . . . < t2d < t2d+1 = 1 by choosing the parameters
t2 . . . t2d randomly according to the uniform distribution. We evaluate the curve at the parameters to obtain
the data points

pi = c(ti) for i = 1 . . . 2d+ 1.

We normalize the data points by scaling them in such a way that they all lie inside the square [0, 1]2. More
precisely, we transform the points into

p̃i =
1

maxξ∈{x,y}
(

maxj=1...N pξj −minj=1...N pξj

)
(
pi −

(
min

j=1...N
pxj , min

j=1...N
pyj

))
.

Finally, we obtain the edges
ei = p̃i+1 − p̃i for i = 1 . . . 2d

that are used as input for the neural network.
We note that the normalization of the input data does not affect the generality of the neural network’s

results, since the same normalization can be applied to any given input data. After fitting the curve to the
normalized data points, the resulting Bézier curve is then transformed by applying the inverse transformation
to its control points.

4.5. Hyperparameters

We implemented the network using the PyTorch library and trained it in parallel on three 3 NVIDIA
Tesla K40 GPUs. The batch size was set to 16 on each GPU. As an optimizer, we used the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of 10−3. For each polynomial degree d, we trained a model
on a data set containing 100000 polynomial curves that were generated as described in Section 4.4. The
standard technique of splitting the data set into a training and a validation set was used to find the model
with the best generalization properties.
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5. Application of the curve parameterizing residual neural network

While the training of the neural network can take some time (on our computing node, the training
usually took one night to arrive at the optimal generalization error), the evaluation of the trained network
is very efficient and can be performed on a standard CPU. In this section, we apply our network to a
number of sets of curves, both polynomial and non-polynomial in order to analyze the generalization of the
network to unseen data. We compare the results with the classical methods of uniform parameterization
and parameterization by chord length.

In our experiments, we used the same network architecture for the all polynomial degrees. Since the
parameterization problem gets more difficult with increasing polynomial degrees, we expect the resulting
approximation error to be dependent on the polynomial degree. In practice, this should be dealt with by
increasing the number of layers and nodes with the increasing polynomial degree.

5.1. Parameterizing polynomial curves

In the first set of examples, we apply our network to the parameterization of discrete data that was
sampled from polynomial curves.

5.1.1. Minimum number of data points per curve

In this experiment, we use our networks for the task of parameterizing (2d + 1) data points that were
sampled from a polynomial curve of degree d, where d is the same degree that was used to train the network.
We evaluate the network on a test set of 1000 curves that were generated in the same way as the training
data set described in Section 4.4. Note that this data is completely unseen by the neural network and is
also not part of the validation set that was used to optimize the hyperparameters.

We record the mean-squared error and the maximum error of the parameters and the fitted curve at the
parameter values and compare those errors with the errors resulting from the uniform parameterization, the
chord-length parameterization as well as the centripetal parameterization with exponent a = 1

2 . Moreover,
we record the one-sided Hausdorff error

max
i

min
t∈[0,1]

‖pi − c(t)‖.

The results of this experiment are shown in Table 1. We observe that the parameterization that is predicted
by the neural network leads to an improvement of the approximation error compared to the parameterization
by chord length by a factor of approximately 30 for d = 2, approximately 13 for d = 3, approximately 6 for
d = 4 and a factor of approximately 4 for d = 5.

5.1.2. Arbitrary number of data points per curve

In our next experiment, we apply the network to the parameterization of a number of L > 2d + 1 data
points (pi)i=1,...,L that were sampled from a polynomial curve of degree d. Since our network expects a

constant number of (2d + 1) data points as input, there are
(

L
2d+1

)
possible combinations of the sampled

data that can be used as input for our network. Because for large values of L it is clearly computationally
infeasible to evaluate the network on all combinations, we choose a subset of the possible evaluations qi in
the following way:

We always set q1 = p1 and q2d+1 = pL. This is to ensure that each evaluation covers the whole
curve and is not restricted to a region where the curve is almost flat. We then generate for each point
pi ∈ (pi)i=d+1,...,L−d a fixed number of K evaluation sets by setting qd+1 = qi and choosing

(qj)j=2,...,d ⊆ {p2, . . . ,pi−1}

and
(qj)j=d+2,...,2d ⊆ {pi+1, . . . ,pL−1}
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parameterization curve
d = 2 MSE maximum error MSE maximum error Hausdorff error

U 2.5e−2 (260%) 2.6e−1 (186%) 1.6e−2 (696%) 1.7e−1 (333%) 8.5 × 10−2 (189%)
C 9.7e−3 (101%) 1.5e−1 (107%) 4.6e−3 (200%) 8.1e−2 (159%) 5.4 × 10−2 (120%)
L 9.8e−3 (100%) 1.4e−1 (100%) 2.3e−3 (100%) 5.1e−2 (100%) 4.5 × 10−2 (100%)
N 2.7e−3 (28%) 6.6e−2 (47%) 7.8e−5 (3%) 1.0e−2 (20%) 8.2× 10−3 (18%)

parameterization curve
d = 3 MSE maximum error MSE maximum error Hausdorff error
Um 1.9e−2 (136%) 2.4e−1 (133%) 1.0e−2 (588%) 1.5e−1 (300%) 7.9 × 10−2 (172%)
C 1.0e−2 (71%) 1.6e−1 (89%) 3.1e−3 (182%) 7.2e−1 (144%) 5.3 × 10−2 (115%)
L 1.4e−2 (100%) 1.8e−1 (100%) 1.7e−3 (100%) 5.0e−2 (100%) 4.6 × 10−2 (100%)
N 4.7e−3 (36%) 1.0e−1 (56%) 1.3e−4 (8%) 1.5e−2 (30%) 1.2× 10−2 (26%)

parameterization curve
d = 4 MSE maximum error MSE maximum error Hausdorff error

U 1.6e−2 (106%) 2.2e−1 (116%) 6.7e−3 (761%) 1.2e−1 (293%) 6.5 × 10−2 (171%)
C 1.0e−2 (66%) 1.6e−1 (84%) 1.5e−3 (170%) 5.7e−2 (139%) 4.2 × 10−2 (111%)
L 1.5e−2 (100%) 1.9e−1 (100%) 8.8e−4 (100%) 4.1e−2 (100%) 3.8 × 10−2 (100%)
N 5.5e−3 (36%) 1.2e−1 (63%) 1.4e−4 (16%) 1.7e−2 (41%) 1.4× 10−2 (37%)

parameterization curve
d = 5 MSE maximum error MSE maximum error Hausdorff error

U 1.3e−2 (81%) 2.0e−1 (100%) 4.8e−3 (842%) 1.1e−1 (306%) 5.6 × 10−2 (165%)
C 9.0e−3 (60%) 1.5e−1 (75%) 1.0e−3 (175%) 4.9e−2 (136%) 3.7 × 10−2 (109%)
L 1.6e−2 (100%) 2.0e−1 (100%) 5.7e−4 (100%) 3.6e−2 (100%) 3.4 × 10−2 (100%)
N 1.2e−2 (75%) 1.6e−1 (80%) 1.5e−4 (26%) 1.9e−2 (53%) 1.6× 10−2 (47%)

Table 1: Comparison of the errors with respect to the test data set when fitting 2d+ 1 data points samples
from a polynomial curve of degree d for uniform (U), centripetal (C), chord length (L) and neural network-
based (N) parameterization.

randomly without allowing duplicate evaluations. Evaluating the neural network on each of the (L− 2d)K
combinations of input data points, we obtain (L− 2d)K(2d− 1) equations of the form

ti = λata + λbtb, (14)

where λa and λb are the result of an evaluation of the neural network on an input that contains the
sequence (pa,pi,pb). Finally, we solve the least squares problem corresponding to the equations (14) with
the additional conditions

t1 = 0

tL = 1

to obtain the parameterization.
In our numerical example, we set K = 10 and generate test sets for different values of L, each containing

100 curves. The results are shown in Table 2. We observe that even for large numbers of samples on a given
curve, the approximation error is improved by using the parameterization obtained by the neural network.

However, while the neural network approach always leads to an improvement with respect to the chord
length parameterization, the centripetal parameterization also performs well and, for high values of p and
L, where it outperforms the neural network approach. One way that the neural network approach can be
improved here is by increasing the size of the network architecture with the degree that it is trained on.
As described in the beginning of this section, in our examples we employ the same network design for all
polynomial degrees. Moreover, the method of generalizing the result of the neural network to larger numbers
of input data points should be improved in the future.

The computational complexity of evaluating the neural network on all chosen combinations of data points
naturally increases with d, L and K. However, the computation time stays manageable with average total
evaluation times that vary between 2ms for d = 2, L = 5,K = 1 and 1.5s for d = 5, L = 80,K = 10 on a
standard CPU.
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d = 2 L = 20 L = 50 L = 80
MSE Hausdorff MSE Hausdorff MSE Hausdorff

U 3.7e−3 (132%) 5.0e−2 (57%) 2.1e−3 (91%) 8.4e−2 (111%) 1.5e−3 (50%) 7.1e−2 (85%)
C 2.1e−3 (75%) 7.1e−2 (82%) 1.5e−3 (65%) 6.6e−2 (87%) 1.4e−3 (47%) 6.3e−2 (76%)
L 2.8e−3 (100%) 8.7e−2 (100%) 2.3e−3 (100%) 7.6e−2 (100%) 3.0e−3 (100%) 8.4e−2 (100%)
N 5.3e−4 (19%) 3.5e−2 (40%) 7.3e−4 (32%) 4.2e−2 (55%) 7.9e−4 (26%) 4.4e−2 (53%)

d = 3 L = 20 L = 50 L = 80
MSE Hausdorff MSE Hausdorff MSE Hausdorff

U 3.5e−3 (194%) 1.2e−1 (144%) 1.7e−3 (77%) 9.3e−2 (108%) 1.1e−3 (55%) 7.5e−2 (91%)
C 1.7e−3 (94%) 7.9e−2 (95%) 1.2e−3 (55%) 6.8e−2 (79%) 1.1e−3 (55%) 6.3e−2 (77%)
L 1.8e−3 (100%) 8.3e−2 (100%) 2.2e−3 (100%) 8.6e−2 (100%) 2.0e−3 (100%) 8.2e−2 (100%)
N 6.7e−4 (37%) 5.5e−2 (66%) 8.7e−4 (40%) 5.7e−4 (66%) 8.5e−4 (43%) 5.3e−2 (65%)

d = 4 L = 20 L = 50 L = 80
MSE Hausdorff MSE Hausdorff MSE Hausdorff

U 2.3e−3 (261%) 1.0e−1 (167%) 1.3e−3 (118%) 8.4e−2 (118%) 7.6e−4 (76%) 6.7e−2 (98%)
C 8.5e−4 (97%) 6.0e−2 (94%) 7.1e−4 (65%) 5.6e−2 (79%) 5.0e−4 (50%) 4.6e−2 (68%)
L 8.8e−4 (100%) 6.4e−2 (100%) 1.1e−3 (100%) 7.1e−2 (100%) 1.0e−3 (100%) 6.8e−2 (100%)
N 3.3e−4 (38%) 4.1e−2 (64%) 4.3e−4 (39%) 4.4e−2 (62%) 4.1e−4 (41%) 4.3e−2 (63%)

d = 5 L = 20 L = 50 L = 80
MSE Hausdorff MSE Hausdorff MSE Hausdorff

U 2.1e−3 (333%) 9.4e−2 (168%) 1.1e−3 (141%) 8.6e−2 (134%) 6.7e−4 (94%) 6.7e−2 (114%)
C 6.4e−4 (102%) 5.1e−2 (91%) 5.1e−4 (65%) 5.2e−2 (81%) 3.7e−4 (53%) 4.3e−2 (73%)
L 6.3e−4 (100%) 5.6e−2 (100%) 7.8e−4 (100%) 6.4e−2 (100%) 7.1e−4 (100%) 5.9e−2 (100%)
N 4.8e−4 (76%) 4.9e−2 (88%) 5.8e−4 (74%) 6.2e−2 (97%) 5.6e−4 (79%) 6.3e−2 (106%)

Table 2: Mean squared error of the fitted data points for different sample sizes L, averaged over 100 curves
for uniform (U), centripetal (C), chord length (L) and neural network-based (N) parameterization.

5.2. Parameterizing non-polynomial curves

In this section, we apply our method to the problem of fitting non-polynomial data with polynomial
curves of degree d. To this end, we create a test set of 100 complex trigonometric polynomials

c(t) = a0 +

r∑

j=1

aj cos(jt) + i

r∑

j=1

bj sin(jt)

of degree r, where aj ,bj ∈ R. We sample 2d + 1 random points from each curve and use the network to
parameterize these points before computing the best-approximation in the least-squares sense.

Table 3 shows the mean squared error as well as the one-sided Hausdorff error when fitting trigonometric
polynomials of various degrees r with polynomial curves of various degrees d. The parameterizations that
are predicted by the neural network lead to an improvement of the approximation error also in the case of
non-polynomial data. These results verify that the neural network can generalize the information learned
from the data set of polynomial curves to non-polynomial curves, even when these curves are chosen from
spaces of higher dimensions. This property is especially important for practical applications, where it is
usually not known that the measured data can be exactly represented by a polynomial curve of a fixed
degree.

5.3. Approximating data with polynomial curve segments

In our last experiment, we apply the neural network to the task of approximating data points from a
non-polynomial curve with continuous piece-wise polynomials. In order to test the asymptotic behavior of
the approximation error, we sample points from the curve

c(t) =
(
t, sin(8πt2)

)
(15)
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d = 2 r = 2 r = 3 r = 4 r = 5
MSE Hausdorff MSE Hausdorff MSE Hausdorff MSE Hausdorff

U 6.6e−3 (1065%) 1.2e−1 (300%) 1.1e−2 (846%) 1.6e−1 (302%) 1.3e−2 (722%) 1.8e−1 (250%) 1.9e−2 (404%) 2.4e−1 (200%)
C 1.6e−3 (258%) 3.2e−2 (155%) 3.0e−3 (231%) 8.3e−2 (157%) 4.2e−3 (233%) 1.0e−1 (139%) 8.3e−3 (177%) 1.6e−1 (133%)
L 6.2e−4 (100%) 4.0e−2 (100%) 1.3e−3 (100%) 5.3e−2 (100%) 1.8e−3 (100%) 7.2e−2 (100%) 4.7e−3 (100%) 1.2e−1 (100%)
N 7.7e−5 (12%) 1.5e−2 (38%) 1.9e−4 (15%) 2.2e−2 (42%) 3.7e−4 (21%) 3.1e−2 (43%) 1.4e−3 (30%) 6.4e−2 (53%)

d = 3 r = 2 r = 3 r = 4 r = 5
MSE Hausdorff MSE Hausdorff MSE Hausdorff MSE Hausdorff

U 3.6e−3 (3600%) 9.2e−2 (708%) 4.1e−3 (1952%) 2.0e−1 (167%) 6.1e−3 (1298%) 2.4e−1 (150%) 8.9e−3 (1113%) 2.9e−1 (153%)
C 5.1e−4 (510%) 3.4e−2 (262%) 7.0e−4 (333%) 1.4e−1 (117%) 1.4e−3 (298%) 1.8e−1 (113%) 2.8e−3 (350%) 2.2e−1 (116%)
L 1.0e−4 (100%) 1.3e−2 (100%) 2.1e−4 (100%) 1.2e−1 (100%) 4.7e−4 (100%) 1.6e−1 (100%) 8.0e−4 (100%) 1.9e−1 (100%)
N 4.1e−5 (41%) 1.1e−2 (92%) 4.4e−5 (21%) 9.3e−2 (76%) 6.0e−5 (13%) 1.1e−1 (67%) 1.5e−4 (19%) 1.3e−1 (69%)

d = 4 r = 3 r = 4 r = 5 r = 6
MSE Hausdorff MSE Hausdorff MSE Hausdorff MSE Hausdorff

U 2.9e−3 (3222%) 1.8e−2 (194%) 3.4e−3 (1619%) 2.2e−1 (157%) 4.0e−3 (1333%) 2.4e−1 (141%) 5.2e−3 (1283%) 2.8e−1 (165%)
C 4.2e−4 (466%) 1.3e−1 (140%) 6.1e−4 (290%) 1.7e−1 (121%) 7.9e−4 (263%) 1.9e−1 (112%) 1.2e−3 (286%) 2.1e−1 (124%)
L 9.0e−5 (100%) 9.3e−2 (100%) 2.1e−4 (100%) 1.4e−1 (100%) 3.0e−4 (100%) 1.7e−1 (100%) 4.2e−4 (100%) 1.7e−1 (100%)
N 3.3e−5 (37%) 7.9e−2 (85%) 5.2e−5 (25%) 9.7e−2 (69%) 7.0e−5 (23%) 1.1e−1 (65%) 9.6e−5 (23%) 1.2e−1 (71%)

d = 5 r = 4 r = 5 r = 6 r = 7
MSE Hausdorff MSE Hausdorff MSE Hausdorff MSE Hausdorff

U 2.0e−3 (2353%) 1.8e−1 (150%) 2.7e−3 (1800%) 2.1e−1 (131%) 3.4e−3 (1700%) 2.2e−1 (147%) 4.3e−3 (1344%) 2.6e−1 (144%)
C 2.8e−4 (329%) 1.4e−1 (117%) 4.4e−4 (293%) 1.6e−1 (81%) 5.3e−4 (265%) 1.7e−1 (113%) 7.8e−4 (244%) 2.0e−1 (111%)
L 8.5e−5 (100%) 1.2e−1 (100%) 1.5e−4 (100%) 1.3e−1 (100%) 2.0e−4 (100%) 1.5e−1 (100%) 3.2e−4 (100%) 1.8e−1 (100%)
N 4.2e−5 (49%) 9.2e−2 (77%) 5.7e−5 (38%) 1.1e−1 (69%) 6.2e−5 (31%) 1.1e−1 (73%) 1.1e−4 (34%) 1.3e−1 (72%)

Table 3: Mean squared error when approximating complex trigonometric polynomials of degree r with
polynomial curves of degree d. Fitted over 2d + 1 data points using uniform (U), centripetal (C), chord
length (L) and neural network-based (N) parameterization.

by splitting the interval [0, 1] into 2n segments and evaluate the curve at 2d + 1 uniformly distributed
parameters in each segment. In each segment, we apply the normalization described in Section 4.4 and use
the parameterization produced by the neural network to fit a polynomial curve of degree d to the normalized
data points. Finally, the control points of the resulting curve segment are transformed with the inverse of
the normalization. An approximation of the curve with 64 quadratic curve segments is shown in Figure 2.

In Figure 3, we show the mean squared error at the parameter values when approximating (15) with
continuous piece-wise polynomials of various degrees. We compare the approximation resulting from the
neural network with the approximation resulting from a chord length parameterization. The parameteri-
zation predicted by the neural network results in an improved approximation compared to a chord length
parameterization as long as the level of refinement is not to high. This is due to the fact that after some
refinement steps, the curve becomes almost flat in most segments. It is then very hard for the neural network
to make valid predictions for the parameterization. Should this case arise, one can simply keep track of the
mean-squared error during the fitting process and adaptively fall back to the chord-length parameterization
wherever necessary.

6. Conclusion

In the present paper we proposed an efficient method for parameterizing discrete curve data using a
residual neural network, with the aim of using the parameterization for the approximation with polynomial
curves. Due to the architecture of our network and the choice to use only a small number of data points
as an input, we arrived at an efficient and easy to implement method, that can be applied to arbitrary
polynomial degrees and arbitrary numbers of input data points. An important challenge for future research
is the construction of a neural network for the parameterization of discrete surface data, which is needed
for fitting polynomial surfaces. In the surface case, the parameterization can be represented by weights on
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Figure 2: Approximation of the curve (15) with 64 quadratic curve segments.

the edges in similar way as we did in (10), see (Floater and Hormann, 2005). However, the varying number
of neighbors makes it more difficult to handle this type of data with a neural network and methods from
geometric deep learning (Bronstein et al., 2017) will be employed.

In the present work we have focused on optimizing the accuracy (measured the mean square error) of the
approximating polynomial curves with respect to the input data. Other targets are possible and should be
explored in the future. Besides other error metrics, these include measures for the shape of the curve such
as the bending energy. In future work, these targets can be optimized for by adapting the error function
used in the training of the network.

Furthermore, we will study the necessary increase in network size for higher polynomial degrees and
investigate possibilities to further improve the method of generalizing the results of the neural network to
larger numbers of sample points.

Another direction for future research concerns the normalization process presented in Section 4.4. In
general, normalization of the input data is an important tool to decrease the training error and to help the
neural network learn faster. In order to further decrease the range of possible configurations of the (2d+ 1)
input data points that need to be handled by the network, a transformation that maps the first, d-th and
last data point to predefined positions will be investigated.
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