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Abstract

Polar parameterizations of star-shaped domains are based on the line segments that connect a suitably chosen
center point with the points on the domain’s boundary. Valid (i.e., regular everywhere except at the center
point) polar parameterizations are obtained when choosing a center from the kernel of the domain. Recently,
the flexibility of these polar parameterizations has been enhanced by considering so-called arc fibrations
(Jüttler et al. 2019), which are polar parameterizations that use circular arcs in order to connect the center
with the boundary points. We propose and analyze another generalization of polar parameterizations, which
uses parabolic arcs instead of lines or circular arcs. This class of curves is simultaneously simpler (since
admitting polynomial parameterizations) and more flexible.
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1. Introduction1

Polar parameterizations of planar domains, which are formed by a system of parameter lines that connects2

a given center with the points on the boundary, are of recent interest for numerical simulation via the3

scaled boundary finite element method (Lin et al., 2014; Natarajan et al., 2015; Chen et al., 2016; Arioli4

et al., 2019) and for domain boundary parameterization in isogeometric analysis (Gondegaon and Voruganti,5

2018). While the original formulation of the scaled boundary method relies on star-shaped domains and6

polar parameterizations by line segments, the generalization to more general systems of parameter lines will7

greatly increase the geometric flexibility.8

Even the simple case of polar parameterizations with linear parameter plays a fundamental role in9

numerous applications. It leads to the notion of starshapedness, which describes the property that a domain10

possesses at least one center that sees every point on the domain’s boundary, and it motivates the definition11

of the kernel of a domain, which is the set of all the feasible center points.12

Star-shaped planar polygons were investigated thoroughly in the classical literature on Computational13

Geometry. The kernel of a planar polygon (i.e., the intersection of all half-planes defined by its edges) can14

be computed in linear time (Lee and Preparata, 1979), and non-star-shaped polygons can be decomposed15

efficiently into star-shaped ones (Avis and Toussaint, 1981), even though the problem of finding the minimum16

decomposition is NP hard (O’Rourke and Supowit, 1983).17

Many results from classical computational geometry admit generalizations to domains possessing spline18

boundary curves (Dobkin and Souvaine, 1990). Visibility locations – which generalize the notion of the19

center to non-star-shaped domains – have been investigated recently Joshi et al. (2017), extending earlier20

work on charts for continuous curves in the plane Elber et al. (2005).21

Polar parameterizations with circular arcs were investigated recently (Jüttler et al., 2019), in order to22

obtain polar parameterizations with increased geometric flexibility. It was also noted that the computation23
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of the kernel can be performed efficiently for the case of free-form domains with circular arc spline domains24

(Weiß and Jüttler, 2019; Weiß, 2019). Moreover, it was shown that the kernel has again an arc spline25

boundary in this case.26

While the generalizations to circular arcs is particularly elegant, it also imposes the need to use ratio-27

nal (rather than polynomial) curves, which may be considered as a potential disadvantage (Piegl et al.,28

2014). In order to avoid this potential difficulty, the present paper analyzes polar parameterizations with29

parabolic parameter lines. Parabolic arcs are more flexible than circular arcs, which makes this type of30

parameterizations harder to analyze.31

We first introduce a shape parameter ` in order to reduce the complexity of the problem, and we then32

derive sufficient conditions for the regularity of polar parameterizations with parabolic parameter lines of a33

given domain for constant values of that parameter. The extension to a non-constant shape parameter will34

be discussed as well.35

2. Polar parameterizations with parabolic parameter lines36

We are interested in special parameterizations

p(s, t) , s ∈ [0, 1] , t ∈ R ,

of a simply connected planar domain D ⊂ R2. A closed parametric curve

c(t) = (x(t), y(t)) , t ∈ R ,

with positive (i.e., counterclockwise) orientation, rotation index +1 for t ∈ [0, 1], and with C1-smooth37

1-periodic coordinate functions, i.e. c(t) = c(t+ 1), is used to represent the domain boundary ∂D.38

It can be assumed without loss of generality that the domain D contains the origin 0 = (0, 0), which serves39

as the center of the polar parameterization, p(0, t) = 0. The sought-after polar parameterization extends40

the parametric curve by satisfying p(1, t) = c(t) and is 1-periodic with respect to its second argument,41

p(s, t) = p(s, t+ 1).42

Besides parameterizations by lines (which are available for star-shaped domains only) and by circular arcs
(Jüttler et al., 2019), the next interesting case is given by considering polar parameterizations with parabolic
parameter lines t = constant. More precisely, we consider the special class of polar parameterizations

p(s, t) = (1− s)2b0(t) + 2s(1− s)b1(t) + s2b2(t) , (1)

which we construct by using quadratic Bézier curves (i.e., parabolic arcs) for the parameter lines t = constant.43

Consider a smooth 1-quasiperiodic function with shift 2π

α(t) ∈ arg(x(t) + iy(t))1 (2)

that evaluates to the angle of the boundary points. Note that the choice of this function is not unique,
since any integer multiple of 2π may be added. We then consider a smooth function ϕ(t) that fulfills the
inequality

α(t)− π

2
< ϕ(t) < α(t) +

π

2
(3)

and the functional equation f(ξ + 1) = f(ξ) + 2π that characterizes arithmetic quasiperiodic functions with44

quasiperiod 1 and the constant 2π.45

1The function Arg(x + iy) ∈ (−π, π] denotes the principal value of the angle between the positive real axis an the vector
x+ iy, while arg(x+ iy) = {Arg(x+ iy) + 2kπ|k ∈ Z} is the set of all possible values of that angle.
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Figure 1: Parabolic arcs obtained for three different choices ` = 1
4
, 1
2
, 3
4

of the shape parameter. For any choice of the `, the
control point b1(t) is located on one of the red dashed lines, which are perpendicular to the line spanned by b0 and b2 (gray).

We choose the first control point at the center, the second one on the line with angle ϕ(t), and the last
one on the boundary c(t) itself:

b0(t) =

(
0
0

)
, (4)

b1(t) = `
x(t)2 + y(t)2

(x(t) cosϕ(t) + y(t) sinϕ(t))

(
cosϕ(t)
sinϕ(t)

)
, (5)

b2(t) =

(
x(t)
y(t)

)
. (6)

The location of the middle point depends on the shape parameter `. Except for the last section of the46

paper, we will only consider parameterizations with a constant value of that parameter. In particular, we47

get symmetric arcs if ` = 1
2 . We only consider values ` ∈ (0, 1), see Figure 1.48

For a given value of the shape parameter `, the parameterization with parabolic parameter lines is
obtained by specifying the function ϕ(t). We will call it the design function, since it controls the shape of
the parameter lines of the parabolic arcs. The angle ϕ(t) specifies the tangent direction

(
∂

∂s
p

)
(0, t) =

2`(x(t)2 + y(t)2)

x(t) cosϕ(t) + y(t) sinϕ(t)

(
cosϕ(t)
sinϕ(t)

)

of the parabolic arcs at the center. Now we introduce the central notion of this paper:49

Definition 1. The polar parameterization (1), which is defined by the 1-periodic boundary curve c(t), the50

1-quasiperiodic function ϕ(t) with shift 2π satisfying (3) and the shape parameter 0 < ` < 1, is called a51

polar parameterization with parabolic parameter lines if it is regular for all (s, t) ∈ (0, 1]× R.52

The injectivity of polar parameterizations is discussed in the appendix. While the polar parameterizations53

(1) with control points (4)-(6) do not possess a tensor-product structure in general, they may serve as starting54

point when constructing polar tensor-product parameterizations by a fitting procedure.55

Example (Dumbbell). We consider the 1-periodic, cubic spline curve c(t) with uniform knots and control
points
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see Fig. 2, left. The associated domain is neither star shaped nor does it possess an arc fibration. However,56

the domain admits a polar parameterization with parabolic parameter lines for various values of the shape57

parameter `. The choice of this parameter also influences the shape of the parameter lines s = constant,58

which are shown in blue. A shortened (but still not star-shaped) version of the shape (right) admits both59

an arc fibration and a a polar parameterization with parabolic parameter lines, which are quite similar. ♦60

Figure 2: Dumbbell example: A planar domain (left column) that does not admit an arc fibration and an associated parame-
terization with parabolic parameter lines for ` = 6

10
(center) and for ` = 9

10
(bottom). Here we show both families of parameter

lines. A slightly shorter version of the shape (right column) admits an arc fibration (bottom), which is fairly similar to the
corresponding parameterization with parabolic parameter lines for ` = 6

10
(center).
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3. Regularity conditions61

We investigate conditions that guarantee the regularity of the parameterization by parabolas. The partial
derivatives of the polar parameterization take the values

∂p

∂s
(s, t) = 2(1− 2s)b1(t) + 2sb2(t) and

∂p

∂t
(s, t) = 2s(1− s)b′1(t) + s2b′2(t),

with

b′1(t) = `

((
2(x(t)x′(t) + y(t)y′(t))(x(t) cosϕ(t) + y(t) sinϕ(t))

(x(t) cosϕ(t) + y(t) sinϕ(t))2

− (x(t)2 + y(t)2)(cosϕ(t)(x′(t) + y(t)ϕ′(t)) + sinϕ(t)(y′(t)− x(t)ϕ′(t)))
(x(t) cosϕ(t) + y(t) sinϕ(t))2

)(
cosϕ(t)
sinϕ(t)

)

+
(x(t)2 + y(t)2)ϕ′(t)

x(t) cosϕ(t) + y(t) sinϕ(t)

(
− sinϕ(t)
cosϕ(t)

))
and

b′2(t) =

(
x′(t)
y′(t)

)
.

The Jacobian determinant of (1) evaluates to

J(s, t) =
s

(x(t) cosϕ(t) + y(t) sinϕ(t))2
((1− s)2c0(t) + 2s(1− s)c1(t) + s2c2(t)) , (7)

where the Bernstein-Bézier-coefficients of the quadratic polynomial in s take the form

c0(t) =4`2(x(t)2 + y(t)2)2ϕ′(t) , (8)

c1(t) =2`(1− `)(x(t)2 + y(t)2)2ϕ′(t) +
1

2
`g(t)
︸ ︷︷ ︸

=f(t,ϕ(t))

, (9)

c2(t) =2
(
x(t) cosϕ(t) + y(t) sinϕ(t)

)
(

cosϕ(t)
(
y′(t)

(
(1− `)x(t)2 − `y(t)2

)
− x′(t)x(t)y(t)

)

+ sinϕ(t)
(
x′(t)(`x(t)2 − (1− `)y(t)2) + y′(t)x(t)y(t)

))
,

(10)

with

g(t) =
(
(x(t)3 − 7x(t)y(t)2)x′(t) + (7x(t)2y(t)− y(t)3)y′(t)

)
sin 2ϕ(t)

+
(
(3y(t)3 − 5x(t)2y(t))x′(t) + (3x(t)3 − 5x(t)y(t)2)y′(t)

)
cos 2ϕ(t)

− (x(t)2 + y(t)2)(x(t)y′(t)− y(t)x′(t)) .

Clearly the first factor of the Jacobian determinant in (7) is positive and we do not have to consider it, so62

we will focus on the second factor, which is the quadratic polynomial in s.63

First the regularity of the parameterization along the domain boundary will be analyzed, i.e. for s = 1.
This leads us to analyze the third coefficient c2(t), since

J(1, t) =
1

(x(t) cosϕ(t) + y(t) sinϕ(t))2
c2(t) .

Recall from (2) that the function α(t) represents the angle of the boundary points c(t). We use it to represent
the angle of the tangent vectors c′(t) as α(t) + β(t) with another smooth function

β(t) ∈ arg(x′(t) + iy′(t))− α(t) .
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Figure 3: Graphs of the auxiliary function δ`(β) with domain (−π
2
, π
2

) ∪ (π
2
, 3π

2
) and range (−π

2
, π
2

).

With the help of these two angles, we rewrite the Jacobian determinant as

J(1, t) = 2 ‖c(t)‖ ‖c′(t)‖
(
(1− `) sinβ(t) + ` tan(ϕ(t)− α(t)) cosβ(t)

)
.

More precisely, this formula can be derived by using the identities

x(t) = ‖c(t)‖ cosα(t) , y(t) = ‖c(t)‖ sinα(t) , x′(t) = ‖c′(t)‖ cos(α(t)+β(t)) , y′(t) = ‖c′(t)‖ sin(α(t)+β(t)) .

64

First we note that the Jacobian determinant is negative for all choices of ϕ(t) if β(t) = −π2 + 2kπ for
some k ∈ Z. Consequently, no polar parameterization with parabolic parameter lines exists in this case.
Thus, taking the smoothness of β(t) into account, we may assume that

β(t) ∈
(
−π

2
,

3π

2

)

for all t ∈ R. Boundary curves that satisfy this assumption will be said to be admissible.65

Second, a short computation confirms that J(1, t) = 0 if and only if β(t) 6= π
2 and

ϕ(t) = α(t) + δ`(β(t))

with the auxiliary function

δ`(β) = − arctan

(
1− `
`

tanβ

)
for β ∈

(
−π2 , 3π

2

)
\
{
π
2

}
.

Figure 3 visualizes this function for different values of the shape parameter `.66

Lemma 2. The Jacobian determinant J(1, t) is positive if and only if the design function satisfies

ϕmin(t) < ϕ(t) < ϕmax(t)

with

ϕmin(t) = α(t) +

{
δ`(β(t)) if β(t) ∈ (−π2 , π2 )

−π2 if β(t) ∈ [π2 ,
3π
2 )

and

ϕmax(t) = α(t) +

{
π
2 if β(t) ∈ (−π2 , π2 ]

δ`(β(t)) if β(t) ∈ (π2 ,
3π
2 )

.
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Proof. It is easy to see that at most one root of J(1, t) needs to be taken into account, since the design67

function ϕ(t) satisfies (3) and the values of δ` vary in (−π2 , π2 ).68

Clearly, the criterion formulated in Lemma 2 is necessary for the regularity of the parameterization.
Another necessary condition2 is given by

ϕ′(t) ≥ 0 , (11)

since this implies c0(t) ≥ 0, cf. (8). We will now add another inequality to ensure the regularity for the69

entire polar parameterization.70

We focus on the second term in (9), since the first term is already guaranteed to be non-negative by (11).
First we note that the last term in the expression for c1(t), which has been defined in (9), can be rewritten
as 1

2`g(t) = f(t, ϕ(t)) with the function

f(t, ϕ) = A(t) sin(2ϕ+ ArgB(t)) + C(t) , (12)

where the three quantities A(t), B(t), C(t) are defined as

A(t) =
1

2
`(x(t)2 + y(t)2)

√
(x(t)x′(t) + y(t)y′(t))2 + 9(x(t)y′(t)− y(t)x′(t))2 ,

B(t) =(x(t)3 − 7x(t)y(t)2)x′(t) + (7x(t)2y(t)− y(t)3)y′(t)

+ i
(
(3y(t)3 − 5x(t)2y(t))x′(t) + (3x(t)3 − 5x(t)y(t)2)y′(t)

)
and

C(t) =− 1

2
`(x(t)2 + y(t)2)(x(t)y′(t)− y(t)x′(t)) .

We select the two auxiliary functions γmin(t) and γmax(t), which are 1-quasiperiodic with shift 2π, continuous,
and satisfy

γmin(t) ∈ 1

2
arg(B̄(t)Z̄(t)) and γmax(t) = γmin(t) + Arg(Z(t)) +

π

2
(13)

for all t ∈ R, where

Z(t) =

√
1−

(
C(t)

A(t)

)2

+ i
C(t)

A(t)
.

Note that the choice of these two functions is not unique, since any integer multiple of π may be added to71

them.72

A short computation confirms that the absolute value of C(t)/A(t) cannot exceed 1
3 . Therefore, the

argument of the complex number Z(t) lies in
(
−arcsin 1

3 , arcsin 1
3

)
, and thus the difference satisfies

γmax(t)− γmin(t) ∈
(
π

2
− arcsin

1

3
,
π

2
+ arcsin

1

3

)
⊂
(

6

5
, 2

)
(14)

for all t ∈ R.73

We have the following result:74

Lemma 3. The term g(t) is positive, if and only if there exists an integer k such that the two inequalities

γmin(t) < ϕ(t) + kπ < γmax(t)

are satisfied for all t ∈ R.75

2Though ϕ(t) was required to be strictly increasing by Jüttler et al. (2019), the weaker condition is in fact sufficient for
regularity of the parameterization in (0, 1]× [0, 1].
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Figure 4: Graphs of the upper and lower bounds ϕmin(t) and ϕmax(t) (blue) and γmin(t) and γmax(t) (green). The design
function ϕ(t) is shown in red.

Proof. For any value of the parameter t, we consider the π-periodic function f(t, ·), which is a shifted, scaled
and translated copy of sin(2·). A short computation confirms that its roots are given by γmin(t) + πZ and
γmax(t) + πZ. The derivatives of this function (hence the partial derivatives of f with respect to its second
argument) at these roots evaluate to

∂f(t, ϕ)

∂ϕ

∣∣
ϕ=γmin(t)

= +2A(t)

√
1− C(t)2

A(t)2
and

∂f(t, ϕ)

∂ϕ

∣∣
ϕ=γmax(t)

= −2A(t)

√
1− C(t)2

A(t)2
,

hence they are guaranteed to be positive at γmin(t) and negative at γmax(t).76

Based on these results we formulate a sufficient condition for the regularity of parameterizations by77

parabolic arcs:78

Theorem 4. The polar parameterization p(s, t) has parabolic parameter lines if there exists an integer k79

such that the design function ϕ(t) satisfies80

(i) ϕ′(t) ≥ 0 ,81

(ii) ϕmin(t) < ϕ(t) < ϕmax(t) and82

(iii) γmin(t) < ϕ(t) + kπ < γmax(t)83

for all t ∈ R.84

Proof. Using Lemma 2 and Lemma 3, we conclude that the Jacobian determinant of the parameterization85

is positive for all (s, t) ∈ (0, 1]× R, provided that the three conditions (i)− (iii) are fulfilled.86

Example (Dumbbell, continued). Once more, we consider the dumbbell-shaped domain of the Dumbbell87

Example and the shape parameter ` = 9
10 . With the aim of obtaining a parameterization with parabolic88

parameter lines, the design function ϕ(t) is chosen such that it fulfills the assumptions of Theorem 4. It is a89

smooth, increasing quasiperiodic function with period 1 and constant 2π, satisfying ϕmin(t) < ϕ(t) < ϕmax(t)90

and γmin(t) < ϕ(t) < γmax(t). A cubic spline defined by 14 polynomial segments in [0, 1] and manually chosen91

spline coefficients has been designed that meet these conditions. The graphs of the various upper and lower92

bounds and of the design function itself are shown in Figure 4. Figure 2 visualizes the corresponding93

parameterization with parabolic parameter lines on the left-hand side, bottom. ♦94
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4. Computation95

We present an algorithm that decides if there exists a function ϕ(t), which fulfills the three conditions96

of Theorem 4 for a given planar curve c(t) with respect to a certain center point and a specific choice of the97

shape parameter `. Further the algorithm should generate, if possible, a valid function ϕ(t).98

The 1-quasiperiodic functions ϕmin(t), ϕmax(t), γmin(t) and γmax(t), define the ϕ- and the γ-channel

Cϕ =
{

(ξ, η) ∈ R2 : ϕmin(ξ) < η < ϕmax(ξ)
}

Ckγ =
{

(ξ, η) ∈ R2 : γmin(ξ) < η < γmax(ξ)
}

+ kπ , k ∈ Z ,

Cγ =
⋃

k∈Z
Ckγ .

Since the difference of γmin(t) and γmax(t) doesn’t exceed 2 (see (14)), the γ-channel consists of disjoint
branches Ckγ , one for each integer k, since

γmax(t) + kπ < γmin(t) + (k + 1)π ∀k ∈ Z∀t ∈ R .

An increasing, 1-quasiperiodic function ϕ(t) fulfills the conditions of Theorem 4, if the graph is contained
in Cϕ ∩ Cγ . We exploit the monotonicity and define the reduced channels

Ĉϕ =
{

(ξ, η) ∈ R2 : ϕ̂min(ξ) < η < ϕ̂max(ξ)
}

and

Ĉkγ =
{

(ξ, η) ∈ R2 : γ̂min(ξ) < η < γ̂max(ξ)
}

+ kπ ,

Ĉγ =
⋃

k∈Z
Ĉkγ .

with the help of the modified boundary functions

ϕ̂min(t) = max
τ≤t

ϕmin(τ) and ϕ̂max(t) = min
τ≥t

ϕmax(τ) ,

γ̂min(t) = max
τ≤t

γmin(τ) and γ̂max(t) = min
τ≥t

γmax(τ) .

Clearly, it is only possible to find a suitable design function ϕ(t) with its graph contained in the intersection
of the reduced channels, if at least one of the intersections

Ĉk = Ĉϕ ∩ Ĉkγ (15)

is connected. The sufficient conditions

[γ̂min(0), γ̂max(0)] + kπ ∩ [ϕ̂min(0), ϕ̂max(0)] 6= ∅ . (16)

characterize the at most two instances of k that may lead to connected intersection. The associated inter-
section (15) is then connected if

∀t : max{ϕ̂min(t), γ̂min(t) + kπ} < min{ϕ̂max(t), γ̂max(t) + kπ} (17)

holds. Consequently, we may find a design function ϕ(t) that fulfills the conditions of Theorem 4 if the
conditions (17) are fulfilled for some choice of k, and it suffices to analyze the two instances of k that satisfy
(16). In this situation, we generate ϕ(t) as a monotonic spline approximation of the center curve

ψ(t) =
1

2

(
min{ϕ̂max(t), γ̂max(t) + kπ}+ max{ϕ̂min(t), γ̂min(t) + kπ}

)
,

which is 1-quasiperiodic with shift 2π. One particularly simple way to find such an approximation

ϕ(t) =
∑

j∈Z
Np
j (t)ψ(ξj) . (18)

9



is to use B-splines of some degree p ≥ 2 with respect to the bi-infinite knots hZ, where the control points99

are constructed by sampling the center curve at the (also uniformly spaced) Greville abscissae ξj . It is100

contained within Ĉk for sufficiently dense knots, and it inherits the monotonicity of the center curve due to101

the shape-preserving properties of B-splines.102

We summarize these observations in an algorithm, which takes as input the boundary curve c(t) and103

the shape parameter ` and decides if the sufficient conditions of Theorem 4 can be satisfied. If possible, it104

chooses a design function ϕ(t) and computes the parameterization with parabolic parameter lines.105

1. First, it has to be checked if the curve c(t) is admissible, i.e. if β(t) ∈ (−π2 , 3π
2 ) holds for all t ∈ R. The106

computation is aborted if the curve is not admissible. The domain does not possess a parameterization107

with parabolic parameter lines.108

2. Compute the reduced γ-channel Ĉ0
γ and check if it is connected, cf. Eq. (17). The computation is109

aborted if the channel is not connected. With this choice of the center, the sufficient condition of the110

Theorem cannot be fulfilled.111

3. Generate the reduced ϕ-channel Ĉϕ and check if it is connected. The computation is aborted if the112

channel is not connected. With this choice of the shape parameter ` and/or the center, the sufficient113

condition of the Theorem cannot be fulfilled.114

4. Find all integers k that satisfy (16) and check if at least one of the associated channels Ĉk is connected.115

The computation is aborted otherwise. With this choice of the shape parameter ` and/or the center,116

the sufficient condition of the Theorem cannot be fulfilled.117

5. Choose a smooth, increasing, 1-quasiperiodic function ϕ(t) with shift 2π such that the graph of the118

function is contained in (one of) the connected channel(s) Ĉk. For example, one may choose the spline119

approximation defined in Eq. (18).120

6. Generate and return the polar parameterization with parabolic parameter lines for the domain, see121

Eq. (1).122

In our current implementation, we simply discretize the channels numerically in order to check their con-123

nectivity. More advanced methods could be investigated for special classes of boundary curves (similar to124

the case of arc fibrations (Weiß and Jüttler, 2019; Weiß, 2019), where the computations become particularly125

elegant for domains with arc spline boundaries), but this is beyond the scope of the present paper. If the126

computation is aborted, the user may modify the input (the shape parameter ` and the center points) in127

order to obtain a parameterization with parabolic parameter lines. While it is always possible (but also128

expensive) to employ a sampling-based approach, we will outline some preliminary ideas regarding the choice129

of the center in the conclusion.130

5. Examples131

We apply the algorithm to several domains:132

Example (Fish). We consider a fish-shaped domain defined by a uniform cubic spline curve with 12 control133

points, see Figure 5(a), the center shown in the figure and the shape parameter ` = 6
10 . For the first choice134

of the center, the algorithm is aborted after the second step, since the reduced γ-channel (boundaries shown135

in green in (b)) is not connected. When considering another center point (shown in (c)), however, the136

algorithm succeeds to generate a valid parameterization with parabolic parameter lines, since a connected137

Ĉk is found. In Figure 5(d) the design function ϕ(t) is plotted in red. ♦138

Example (Clover). We examine a planar domain in the shape of a four-leaf clover, defined by a uniform139

cubic spline curve with 32 control points, and the center shown in Figure 6(left). We analyze three different140

values 1
10 , 3

10 , 8
10 of the shape parameter `. For the first choice, the algorithm is aborted after the third step,141

since the reduced ϕ-channel is not connected, see Figure 6(right). For the second and the third choice, the142

algorithm succeeds and generates a valid parameterization with parabolic parameter lines, see Figure 7. By143

comparing the two parameterizations we can see how the parameter ` influences the shape of the parameter144

line. While for ` = 3
10 the parameter lines are close to straight lines, in the case of ` = 8

10 the lines are much145

more curved. ♦146
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(a) (b)

(c) (d)

Figure 5: Fish Example: Generating a parameterization with parabolic parameter lines of a fish-shaped domain (left column).
The boundaries of the reduced γ- and ϕ-channels are shown in green and blue, respectively (right column).

Example (Tamper). We consider a tamper-shaped planar domain defined by a uniform cubic spline with 16147

control points and the center shown in Figure 8(a). The algorithm aborts for the first choice of the shape148

parameter ` = 8
10 , stating that the channel Ĉk is not connected. In Figure 8 (b) we see that the individual149

reduced γ- and ϕ-channels are connected but the intersection is not. For the second choice ` = 6
10 of the150

shape parameter, the algorithm succeeds. Figures 8(c,d) visualize the parameterizations and the boundaries151

of the corresponding reduced channels. ♦152

Example (Pi). The simple planar domain in the shape of the Greek letter π is defined by a uniform cubic153

spline with 16 control points, see Fig. 9. The reduced ϕ-channel is connected for all values of ` ∈ [ 1
10 ,

9
10 ].154

Connected intersections Ĉk are obtained for a much smaller range, which includes ` ∈ { 5
10 ,

6
10 ,

7
10}. The155

algorithm generates a valid parameterization with parabolic parameter lines, e.g., for ` = 6
10 , which is also156

shown in Fig. 9. ♦157

6. Extension to non-constant shape parameter158

We present the extension to a non-constant shape parameter `(t). We restrict ourselves to shape param-
eter functions with values `(t) ∈ (0, 1) for all t ∈ R. Moreover, these functions need to be C1-smooth and
1-periodic, i.e.,

`(t+ 1) = `(t) .
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Figure 6: Clover Example: When trying to generate a parameterization with parabolic parameter lines of a clover-shaped
domain (left) for ` = 1

10
, the algorithm aborts and states that the reduced ϕ-channel (blue) is not connected (right).

Figure 7: Clover Example: Generating a parameterization with parabolic parameter lines for two different choice of the shape
parameter ` = 3

10
in the left column and ` = 8

10
in the right column. Top: The boundaries of the reduced γ- and ϕ-channels

are visualized in green and blue, respectively. Bottom: The parameterizations with parabolic parameter lines are plotted.

12



(a) (b)

(c) (d)

Figure 8: Tamper Example: Top: Domain (with center) and the reduced channels for ` = 8
10

. Bottom: Parameterization with

parabolic parameter lines and the reduced channels for ` = 6
10

.

We obtain again polar parameterizations of the form (1) with b0(t), b2(t) defined as in (4) and (6) and with
the middle control point

b1(t) = `(t)
x(t)2 + y(t)2

(x(t) cosϕ(t) + y(t) sinϕ(t))

(
cosϕ(t)
sinϕ(t)

)
.

The Jacobian determinant of this parameterization, now evaluates to

J̄(s, t) =
s

(x(t) cosϕ(t) + y(t) sinϕ(t))2
((1− s)2c0(t) + 2s(1− s)c̄1(t) + s2c2(t)) ,

where the Bernstein-Bézier-coefficients c0 and c2 are defined as in (8) and (10) (but with non-constant shape
parameter `(t)), and the middle coefficient takes the form

c̄1(t) =2`(t)(1− `(t))(x(t)2 + y(t)2)2ϕ′(t) +
1

2
`(t)ḡ(t) + `′(t)h̄(t)
︸ ︷︷ ︸

=f̄(t,ϕ(t))

,

13



` = 1
10

` = 2
10

` = 3
10

` = 4
10

` = 5
10

` = 6
10

` = 7
10

` = 8
10

` = 9
10

Figure 9: Pi Example: The pi-shaped planar domain with the control polygon of the boundary curve (top left) and the resulting
polar parameterization, and the reduced channels for ` = i

10
with i = 1, ..., 9 with the design function (red) for i = 6.
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with

ḡ(t) =((x(t)3 − 7x(t)y(t)2)x′(t) + (7x(t)2y(t)− y(t)3)y′(t)) cosϕ(t) sinϕ(t)+

((y(t)3 − x(t)2y(t))x′(t) + (x(t)3 − 3x(t)y(t)2)y′(t))(cosϕ(t))2+

((3x(t)2y(t)− y(t)3)x′(t) + (x(t)y(t)2 − x(t)3)y′(t))(sinϕ(t))2 and

h̄(t) =(x(t)2 + y(t)2)((x(t)2 − y(t)2) sin 2ϕ(t)− 2x(t)y(t) cos 2ϕ(t)) .

Note that the the derivative of the shape parameter appears in the formula for the second control point
c̄1(t). In order to derive sufficient conditions for positivity, we rewrite the last two terms as

f̄(t, ϕ) = Ā(t) sin(2ϕ+ Arg B̄(t)) + C̄(t) ,

analogously to (12). The three coefficients Ā(t), B̄(t), C̄(t) take the values

Ā(t) =
1

2
(x(t)2 + y(t)2)
√(

2`′(t)(x(t)2 + y(t)2) + `(t)(x(t)x′(t) + y(t)y′(t))
)2

+ 9`(t)2(x(t)y′(t)− y(t)x′(t))2 ,

B̄(t) =`(t)((x(t)3 − 7x(t)y(t)2)x′(t) + (7x(t)2y(t)− y(t)3)y′(t)) + 2`′(t)(x(t)4 − y(t)4)

+ i
(
`(t)((3y(t)3 − 5x(t)2y(t))x′(t) + (3x(t)3 − 5x(t)y(t)2)y′(t))

− 4`′(t)x(t)y(t)(x(t)2 + y(t)2)
)

and

C̄(t) =− 1

2
`(t)(x(t)2 + y(t)2)(x(t)y′(t)− y(t)x′(t)) .

Again we select the two auxiliary functions γ̄min(t) and γ̄max(t), which are 1-quasiperiodic with shift 2π,
continuous, and satisfy (13) with the new quantities Ā(t), B̄(t) and C̄(t). Since the absolute value of
C̄(t)/Ā(t) is bounded by 1

3 , the difference of the auxiliary functions satisfies (14) for all t ∈ R. Accordingly,
the term

1

2
`(t)ḡ(t) + `′(t)h̄(t)

is positive, if and only if the conditions of Lemma 3 are satisfied.159

Summing up, we may use the algorithm and the definition of the channels as before, but with the re-160

defined boundary functions γ̄min(t) and γ̄max(t). It should be noted that the γ̄-channel also depends on the161

choice of the shape parameter `(t), which was not the case for a constant shape parameter.162

Example (Big Tamper). We consider another tamper-shaped planar domain defined by a uniform cubic163

spline with 16 control points and the center shown in Figure 10(a). First we consider a constant value164

for the shape parameter but the algorithm aborts, because the reduced γ-channel is not connected, see165

Figure 10(b). Also when considering different locations of the center point, we did not succeed to obtain a166

reduced γ-channel that is connected. However, when employing the non-constant shape parameter function167

`(t) shown in Figure 10(c), the algorithm succeeds and generates a valid parameterization with parabolic168

parameter lines. ♦169

7. Conclusion170

Polar parameterizations of planar domains with parabolic parameter lines form a potentially useful171

generalization of the arc fibrations that were studied by Jüttler et al. (2019). According to our experience (cf.172

the “Dumbbell” example), these parameterizations give similar results for shapes admitting arc fibrations,173

and are substantially more flexible than those. We presented sufficient conditions for the regularity and174

derived an algorithm for constructing such parameterizations. While the first part of the paper was devoted175

to the case of a constant shape parameter `, which was introduced in order to reduce the geometric complexity176

of the problem, the generalization to non-constant shape parameters was studied as well.177
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(a) (b)

(c) (d)

Figure 10: Big Tamper Example: We compare to the
domain to the first Tamper example (a) and note that
the reduced γ-channel (for a constant value of `) is dis-
connected (b). For a non-constant shape parameter (c),
the algorithm succeeds and generates a valid parameter-
ization with parabolic parameter lines (e), since Ĉk is
connected (d).(e)

Future work should be devoted to the kernel of a domain with respect to this class of polar parame-178

terizations. More precisely, it should be interesting to analyze the set of centers that lead to regular polar179

parameterizations with parabolic parameter lines. Figure 11 reports some preliminary results for the dumb-180

bell example: We sampled various locations of the center point and checked whether the resulting reduced181

γ-channels are connected or not. This information may be useful when choosing the center point. Besides,182

the construction of parameterizations that are optimal with respect to certain quality criteria could be of183

potential interest.184

Appendix: Injectivity of polar parameterizations185

The injectivity of parameterization with non-vanishing Jacobian determinant is well understood (Kestel-186

man, 1971). For the sake of completenes we discuss the extension to the case of polar parameterizations:187

188

Proposition 5. A polar parameterization with positive Jacobian determinant is a bijective mapping between189

(0, 1]2 and D̄ \ {0}.190
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Figure 11: Dumbbell example: Center points that lead to a connected (green) and disconnected (red) reduced γ-channel (left),
and that are suitable (green) and unsuitable (red) for defining an arc fibration.

Proof. We use Green’s theorem to express the area of the domain D as a boundary integral

|D| =
∫∫

D

1 dq1 dq2 =

∮

∂D

0 dq1 + q1 dq2 =

∫ 1

0

p1(1, t)∂tp2(1, t) dt .

This can be extended to an integral

|D| =
∫ 1

0

p1(s, 0)∂sp2(s, 0) ds+

∫ 1

0

p1(1, t)∂tp2(1, t) dt+

∫ 0

1

p1(s, 1)∂sp2(s, 1) ds+

∫ 0

1

p1(0, t)∂tp2(0, t) dt

over the entire boundary of the unit square, since the first and the third term sum to zero (as the parame-
terization is 1-periodic with respect to t) and the fourth therm evaluates to zero (as p(0, t) = 0). Another
application of Green’s theorem confirms

|D| =

∮

∂[0,1]2
p1(s, t)∂sp2(s, t)ds+ p1(s, t)∂tp2(s, t)dt

=

∫∫

[0,1]2
∂sp1(s, t)∂tp2(s, t)− ∂tp1(s, t)∂sp2(s, t) dsdt

After choosing an arbitrary positive integer N , we may split this integral into the N2 sub-integrals

|D| =
N∑

i=1

N∑

j=1

∫∫

Cij

|J(s, t)|dsdt

with respect to the mutually disjoint cells

Cij = (
i− 1

N
,
i

N
]× (

j − 1

N
,
j

N
]

that cover the unit square (0, 1]2, where

J(s, t) = ∂sp1(s, t)∂tp2(s, t)− ∂tp1(s, t)∂sp2(s, t)

denotes the Jacobian determinant, which is guaranteed to be positive due to the regularity assumption. These191

sub-integrals are all positive and are upper bounds on the areas of the subdomains, which are obtained by192

restricting the parameters (s, t) to the interiors C◦ij of the cells. The additivity of the area thus implies that193

all these subdomains are mutually disjoint.194
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Let us assume that the mapping p is not bijective. Then there exist two points satisfying p(s1, t1) =195

p(s2, t2). It is easy to see that no inner point is mapped to the domain boundary, thus both points are inner196

points as the boundary parameterization is bijective on (0, 1]. The two points do not belong to the same197

cell if N > 1/max(|s1 − s2|, |t1 − t2|). Thus we can find an integer N such that the two points are located198

in the interiors of two different cells. (We may consider the mapping p(s + ε, t) for a small perturbation ε199

if s1 = 0 or s2 = 0.) This contradicts the previously noted result that the corresponding image subdomains200

are mutually disjoint.201

Acknowledgement202

Supported by the European Research Council through grant GA no. 694515 ”CHANGE”.203

References204

Arioli, C., Shamanskiy, A., Klinkel, S., Simeon, B., 2019. Scaled boundary parametrizations in isogeometric analysis. Comp.205

Meth. Appl. Mech. Eng. 349, 576–594.206

Avis, D., Toussaint, G., 1981. An efficient algorithm for decomposing a polygon into star-shaped polygons. Pattern Recognition207

13, 396–398.208

Chen, L., Simeon, B., Klinkel, S., 2016. A NURBS based Galerkin approach for the analysis of solids in boundary representation.209

Comp. Meth. Appl. Mech. Eng. 305, 777–805.210

Dobkin, D., Souvaine, D., 1990. Computational geometry in a curved world. Algorithmica 5, 421–457.211

Elber, G., Sayegh, R., Barequet, G., Martin, R., 2005. Two-dimensional visibility charts for continuous curves, in: Proc. Int.212

Conf. Shape Modeling and Applications, pp. 208–217.213

Gondegaon, S., Voruganti, H., 2018. An efficient parametrization of planar domain for isogeometric analysis using harmonic214

functions. J. Braz. Soc. Mech. Sciences Engrg. 40. Article no. 493.215

Joshi, S., Rao, Y., Sundar, B.R., Muthuganapathy, R., 2017. On the visibility locations for continuous curves. Comp. Graph.216

66.217
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