
LSPIA, (Stochastic) Gradient Descent, and Parameter Correction
D. Rios, B. Jüttler

LSPIA, (Stochastic) Gradient Descent, and
Parameter Correction

D. Rios, B. Jüttler

AG Report No. 94
July 13, 2021
www.ag.jku.at

LSPIA, (Stochastic) Gradient Descent, and Parameter Correction

Dany Rios, Bert Jüttler∗

Institute of Applied Geometry, Johannes Kepler University, Linz / Austria

Abstract

We show that the LSPIA method for curve and surface approximation, which was intro-
duced by Deng and Lin (2014), is equivalent to a gradient descent method. We also note
that Deng and Lin’s results concerning feasible values of the stepsize are directly implied by
classical results about convergence properties of the gradient descent method. We propose
a modification based on stochastic gradient descent, which lends itself to a realization that
employs the technology of neural networks. In addition, we show how to incorporate the
optimization of the parameterization of the given data into this framework via parameter
correction (PC). This leads to the new LSPIA-PC method and its neural-network based
implementation. Numerical experiments indicate that it gives better results than LSPIA
with comparable computational costs.

Keywords: progressive iterative approximation, neural networks, parameter correction

1. Introduction

Geometric iterative methods for the construction of curves and surfaces have recently
been surveyed by Lin, Maekawa and Deng [1]. These methods are a valuable alternative to
linear algebra-based procedures, since they possesses a straightforward geometric interpre-
tation and make it easy to incorporate constraints on control points. Consequently, they
have become quite popular and useful for the shape modeling community.

Motivated by de Boor’s analysis of Agee’s method [2], Lin et al. [3] presented the
progressive and iterative approximation (PIA) method as an iterative procedure for per-
forming interpolation by non-uniform B-spline curves (surfaces). The method starts with
a non-uniform B-spline curve (surface), using the given set of points as its control points.
Employing a recursive procedure, it then adjusts the control points, thereby generating
a sequence of control polygons that converges to the control polygon of the interpolating
non-uniform B-spline curve (surface).

Lin et al. in [4] proved the convergence of the method for any normalized and totally
positive basis, which includes the case of B-splines. Later, Lu [5] improved the convergence
of the PIA method for normalized totally positive bases by introducing a weighted PIA

Email addresses: dany.rios_rodas.jku.at (Dany Rios), bert.juettler@jku.at (Bert Jüttler∗)

method. Moreover, Carnicer et al. [6] established a connection of PIA to the classical
Richardson’s iteration method.

Unfortunately, in the classical PIA method, the number of control points must be equal
to the number of data points. This represents a severe disadvantage when the number of
data points is large. In order to overcome this difficulty, Lin and Zhang [7] were the
first to present an extended method, which is suitable for a large number of data points.
The generated limit curve, however, is not equal to the usual least-squares approximation.
Motivated by this deficiency, Deng and Lin in [8] introduced the Progressive and iterative
approximation for least square fitting (LSPIA) method as another improvement of PIA.

Like in the PIA method, the iterations start with an initial curve (or surface) with
control points taken from the set of ordered pair. Sequentially, the LSPIA method adjusts
the control points, thereby generating a sequence of curves (surfaces) that converges to the
least-squares approximation of the data set. It was shown that the limit curve (surface)
is equal to the least-squares approximation, and that the convergence is guaranteed for a
sufficiently small stepsize. The authors even succeed to establish an upper bound on the
stepsize that guarantees convergence. The optimal choice of the stepsize to ensure a fast
convergence rate was further investigated in [9]. A generalization of the LSPIA method
is presented by Zhang et al. in [10], using generalized B-splines and mutually different
stepsizes. Adapted point sampling methods that ensure a high quality of the fitting results
in the context of the LSPIA method were discussed by [11].

In order to accelerate the convergence, Huang et al. [12] propose a new PIA method
with memory (MLSPIA). The acceleration of the method is achieved by introducing a
weighted sum with three different weights that recover information from the previous step.
Another recent extension of the LSPIA method was presented by Wang [13]. The author
proposed the extended (E-) LSPIA method by introducing global and local relaxation
parameters, where LSPIA is a particular instance.

Extensions of the PIA method for tensor product surfaces were presented in [3, 4,
7, 14, 15, 16]. The case of triangular Bézier surfaces was studied by Chen and Wang
[17]. Progressive interpolation (PI) methods for various types subdivision surfaces were
investigated also, e.g. [18].

In the present paper, we establish the relation between LSPIA and the gradient descent
method, which has been overlooked so far. More precisely, we show that LSPIA is equivalent
to a gradient descent method. and that Deng and Lin’s results concerning feasible values of
the stepsize [8] are directly implied by classical results [19, Theorem I] about convergence
properties of the gradient descent method. Furthermore, we demonstrate that the use
of stochastic (rather than standard) gradient descent – which admits a simple neural-
network-based implementation – leads to a more robust version of LSPIA. We also modify
the neural network by adding extra layers that allow us to include the optimization of the
parameterization into the framework.

The optimization of the parameterization for curve and surface fitting is one of the
fundamental problems in digital geometry reconstruction and has continuously attracted
the attention of researchers over the years, see e.g., [20, 21, 22]. We discuss how the
resulting LSPIA-PC method, which is the procedure obtained by training the augmented

2

neural network, is related to the Hoschek’s classical technique [23] of parameter correction
(PC).

The paper is organized as follows. The next section presents the standard LSPIA
method and analyzes its relationship to the gradient descent method. Subsequently we
introduce new stochastic and mini-batch versions of LSPIA and discuss their realizations
via the neural networks framework. In Section 4, we present numerical examples that
show the advantages of using the stochastic version of LSPIA (which is an instance of the
mini-batch version with batch size B = 1) in comparison to the standard method (batch
size B = N). Finally, we propose the new stochastic LSPIA-PC method as an extension
of the stochastic LSPIA, which includes parameter correction. In Section 6 we conclude
the paper and propose directions for future work.

2. Data fitting by LSPIA

We consider a set of data {dj}Nj=1 in RD (typically 1 ≤ D ≤ 3) with associated parameter
values t1, ..., tN satisfying ti < ti+1. We want to fit them by a spline curve

x(t) =
n∑

i=1

βi(t)ci , (1)

where the B-splines βi of degree p are defined with respect to a suitably1 chosen knot
vector. The LSPIA (least-squares progressive iterative approximation) method is a simple
iterative method for solving this problem:

1. Initialize the control points by selecting a suitable subset of the data,

ci ← dji , i = 1, . . . , n,

for a monotonically increasing sub-sequence {j1, . . . , jn} ⊆ {1, . . . , N} such that
βi(tji) > 0.

2. Perform the following update of the control points, until a certain termination crite-
rion is satisfied:

δj ← dj −
n∑

i=1

βi(tj)ci for j = 1, . . . , N ,

∆ci ← µ
N∑

j=1

βi(tj)δj for i = 1, . . . , n ,

ci ← ci + ∆ci for i = 1, . . . , n .

1One needs to make sure that the Schoenberg-Whitney conditions βi(tji) > 0 are satisfied by a sub-
sequence (ji)i=1,...,n. We use open knot vectors with boundary knots t0 = 0 and tN = 1.

3

It has been shown by Deng and Lin in [8, Theorem 2.4] that the sequence of the control
points generated by LSPIA converges to the solution c = (c1, . . . , cn) of the least-squares
fitting problem

E(c) =
N∑

j=1

‖dj − x(tj)‖22 → min , (2)

provided that the parameter µ is sufficiently small. More precisely, the sufficient condition

0 < µ <
2

λmax

(3)

for the choice of µ has been provided, where λmax is the largest eigenvalue of the symmetric
matrix with the elements

aij =
∑

k=1,...,N

βi(tk)βj(tk) .

Here we add the observation that LSPIA is actually equal to the iterations of the standard
gradient descent method, applied to the problem (2). Indeed, a short computation confirms
that the gradient of the objective function satisfies

∇E(c) =

(
−2

N∑

j=1

(
dj −

n∑

k=1

βk(tj)ck

)
βi(tj)

)

i=1,...,n

=

(
−2

N∑

j=1

βi(tj)δj

)

i=1,...,n

= − 2

µ
∆ci ,

(4)

thus the update of the control points ci performed by LSPIA in Step 2 adds a scaled
multiple of the gradient vector,

ci ← ci − %∇E(c) .

with stepsize % = µ
2
.

According to classical results from optimization theory [19, Theorem I], the gradient
descent method converges unconditionally to a local minimum if the step-size satisfies

0 < % <
2

L
(5)

where L is the smallest possible Lipschitz constant of the gradient,

‖∇E(x)−∇E(y)‖2 ≤ L‖x− y‖2 .

We rewrite the gradient (4) as

∇E(c) = 2AT (Ac− d)

4

with
A = (βi(tj))j=1,...,N ;i=1,...,n, c = (ci)i=1,...,n, d = (dj)j=1,...,N .

Thus

‖∇E(c)−∇E(c′)‖2 = 2‖AT (Ac− d)− AT (Ac′ − d)‖2
= 2 ‖ATA(c− c′)‖2
≤ 2 ‖ATA‖2 ‖c− c′‖2 ,

where the spectral norm λmax = ‖ATA‖2 represents the largest singular value of the ma-
trix A. Consequently, the sufficient condition (3) follows directly from the general bound
(5) for the gradient descent method, since the inequalities

% =
µ

2
<

2

2λmax

and (3) are equivalent.

3. Stochastic and mini-batch LSPIA

Several natural generalization of the gradient descent method exist, which include the
use of adaptive step-size control (not considered here) and stochastic gradient or mini-
batch descent. Both variants are based on the observation that the gradient (4) is the sum
of partial gradients

∇jE(c) = (−2 βi(tj)δj)i=1,...,n . (6)

In each step, only a small subset (of size 1 for the stochastic case) of the data is used for
estimating the gradient (4):

• Stochastic Gradient Descent :

– Pick up randomly one single index j0 from the index set J = {1, . . . , N}
– Compute the corresponding update for the control points,

∆c = −η∇j0E(c)

– Repeat until a suitable stopping criterion is satisfied.

• Mini-Batch Gradient Descent :

– Pick randomly a small subset J0 ⊂ {1, . . . , N} of batch size B.

– Compute the corresponding update for the control points,

∆c = −η 1

B

∑

j∈J0
∇jE(c) .

5

– Repeat until a suitable stopping criterion is satisfied.

Efficient implementations of the resulting stochastic and mini-batch LSPIA methods (which
include the standard LSPIA method for batch size B = N) can be established with the
help of neural networks. More precisely, we consider a neural network with only one hidden
layer and B-spline activation functions.

Formally, a feed-forward neural network is define as a directed graph with ` hidden
layers of interconnected nodes (neurons). The information is processed forward, which
means each neuron feeds the signal produced by a weighted-linear combination into an
activation function and then the output is passed to each neuron in the next layer [24].
More precisely, the hidden layers correspond to vectors a1, . . . , a`, which are evaluated
recursively via

a` = σ`(W
`a`−1 + b`), ` = 1, . . . , `+ 1

starting from a vector of input data a0 and generating a vector of output data a`+1. The
elements w`ij and b`j of the matrices W ` and vectors b` are called the weights of the edges and
the biases of the nodes, respectively. The functions σ` are called the activation functions.

We use a neural network with only one hidden layer for implementing the stochastic and
mini-batch LSPIA method, see Fig. 1. Note that we have a different activation function
(i.e., the B-splines βi) for each neuron.

Input

x1

β1

β2

...

βn

y1

y2

Output

B-spline

w2
ijw1

i

Figure 1: B-spline neural network.

The input vector a0 = (t) has only one component, and the output a2 = x(t) possesses
dimension D. The weights of the output layer, which are found by training the network,
are related to the control points via

cij = w2
ij ,

since the output layer (the output of the forward process) satisfies

a2(t) =

(
n∑

i=0

βi(t)w
2
ij

)

j=1,...,D

. (7)

Note that all the biases are zero.
For implementing the stochastic and mini-batch version of LSPIA, we

6

1. randomly select a single data (tj0 , dj0) or a small subset (of specified size) of the data,
respectively, and

2. use it to compute the (sum of the) partial gradient(s) (6), and to update the weights
and biases of the second layer via the back propagation process.

This process repeated until a suitable stopping criterion is satisfied.
In our implementation, which is based on the open-source library Pytorch, the termi-

nation criterion is checked only after each epoch, which consists of N/B update steps. This
choice ensures that the termination gradient is checked after N partial gradient evaluations.

The iterative method is stopped if there is no longer a significant improvement in the
cost function within 100 epochs, i.e.

Eold − Enew < e−10

in our implementation, or if the maximum (103) of epochs is reached. Most codes (including
Pytorch) that implement this framework perform the minimization of the mean square
error E/N , and therefore the learning rate η = Nµ/2 has to be chosen, in order to match
the parameter µ of the LSPIA algorithm.

4. Comparison of stochastic, mini-batch, and standard LSPIA

We study the influence of the batch size B and the learning rate to the convergence of
the iterative method. We always consider data sets consisting of 128 points, batch sizes
1, 2, 4, . . . , 128, and the stopping criterion as described in the previous section.

Example 1 (The zero residual case). We sample the data from the cubic B-spline with
7 control points and uniform knots (0, 0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1, 1) and uniform pa-
rameters in the domain [0, 1], which is shown in Fig. 2. The same knot vector and degree
is used to define the neural network. The number of required partial gradient evaluations
and the resulting mean square error for various values of batch size B and learning rate η
are reported in Fig. 3. ♦

Figure 2: Left: Cubic B-Spline curve with 8 control points. Right: Same curve with noise added.

As shown by this computational result, the performance of the algorithm depends
strongly on batch size B and learning rate η. Our goal is to identify the combinations of

7

Figure 3: Zero residual case: Number of partial gradient evaluations and MSE per batch size for various
values of the learning rate.

both parameters that lead to close-to-minimal value of the objective function while using
a relatively small number of partial gradient evaluations. While Fig. 3 does give some
preliminary insights, we did not succeed to summarize them in a few observations.

Recall that in our implementation, which is based on the open-source library Pytorch,
the termination criterion is checked after each epoch, which comprises N/B update steps.
The total length of the update vectors between two applications of the termination criterion
(i.e., per epoch) can thus be estimated as

N/B∑

i=1

η

B
||
∑

j∈J0
∇jE(c(i))||

≈ N

B
· η
B
·B · “average individual gradient length”.

This motivates us to introduce the effective learning rate

η∗ =
η

B
.

The total length of the update vectors per epoch can then be controlled by the effective
learning rate and its dependence on the batch size B is no longer significant.

Example 2 (The zero residual case (continued)). We revisit the previous example. The
number of required partial gradient evaluations and the resulting mean square error for
various values of batch size B and effective learning rate η? are reported in Fig. 4. For
suitable values of the step size, the optimization finds the global minimum, i.e., the curve

8

with almost zero error. The optimization diverges if the stepsize is too large, and it is
aborted too early (after 103 iterations) if the the stepsize is too small. The method is more
robust for a smaller batch size B, where a larger stepsize can be used, resulting in fewer
partial gradient evaluations. ♦

Figure 4: Zero residual case: Number of partial gradient evaluations and MSE per batch size for various
values of the effective learning rate.

Figure 5: Noisy data: Number of partial gradient evaluations and MSE per batch size for various values
of the effective learning rate.

We present a second example:

Example 3 (Data with noise). We use the same configuration for the neural network as
in Example 1 but added some noise (using the scaled normal distribution 1

20
N (0, 1) for

each coordinate) to the data set, see Fig. 2. The number of partial gradient evaluations
and the resulting mean square error for different batch sizes and effective learning rates is
presented in Figure 5. ♦

9

Three observations are in order:

• First, for configurations of the parameters that lead to optimal fitting results, the
total number of partial gradient evaluations is mostly determined by the effective
learning rate and does not change much as the batch size B varies.

• Second, the algorithm terminates early for small values of the effective learning rate
(since the achieved improvement of the objective function per iteration does not
exceed the threshold any more), which leads to fewer partial gradient evaluation but
also to less accurate fitting result. In other words, a smaller threshold must be chosen
for small learning rates to get the same accuracy.

• Third, the variation of the the batch size B does not have much influence. More
precisely, it seems to be beneficial to combine a larger learning rate with a smaller
batch size (see Fig. 3), but this effect is caused by the smaller total length of the
update vectors between consecutive applications of the termination criterion and it
disappears when one considers the effective learning rate. However, the use of a small
batch size allows for a larger effective learning rate, making the method more robust.

Finally, we note that use of stochastic (rather than standard) gradient descent is well
justified since it possesses approximately the same computational costs.

5. LSPIA-PC: Stochastic LSPIA with parameter correction

We propose an extension of the LSPIA methods, focusing on the stochastic case. Start-
ing from the neural network-based implementation, we add another hidden layer to opti-
mize the parameterization of the curve (1).

More precisely, we re-visit the fitting problem described in Section 2. The given data
will be approximated by a spline curve

x(t) =
n∑

i=1

βi(τ(t))ci ,

with the reparameterization function,

τ(u) =
m−1∑

k=0

σk(u)rk ,

where σk are piecewise linear step functions defined by

σk(u) = max
(

0,min
(

1,m
(
u− k

m

)))
,

see Fig. 6.
Two constraints are imposed on the weights rk. The first constraint ensures that the

reparameterization τ is increasing monotonically. The second one guarantees that the
transformed parameter belongs to the closed interval [0, 1]. More precisely, we ensure that
the weights rk satisfy

10

Figure 6: Four step functions σk defined over the interval [0, 1].

• rk > 0, and

•
m∑

k=0

rk = 1.

Using a suitable neural network, we compute the weights rk and the control points ci
by solving the constrained optimization problem

E(r, c) =
N∑

j=1

‖dj − x(τ(tj))‖22 → min , (8)

using the following constrained gradient descent method:

1. We fix m > 1 step functions σk in the interval [0, 1] and initialize the weights rk,

rk ←
1

m
, k = 0, . . . ,m− 1 ,

2. We initialize the control points by selecting a suitable subset of the data,

ci ← dji , i = 1, . . . , n ,

for a monotonically increasing sub-sequence {j1, . . . , jn} ⊆ {1, . . . , N} such that
βi(tji) > 0.

3. We apply the following update steps to the weights rk and to the control points ci:

δj ← dj −
n∑

i=1

βi(τ(tj))ci, j = 1, . . . , N ,

∆rk ← µ
N∑

j=1

σk(tj)
(n∑

i=1

β̇i(τ(tj))ci

)
· δj, k = 0, . . . ,m− 1 ,

rk ← rk + ∆rk, k = 0, . . . ,m− 1 ,

∆ci ← µ
N∑

j=0

βi(τ(tj))δj, i = 1, . . . , n ,

ci ← ci + ∆ci, i = 1, . . . , n .

11

4. We clamp the parameter for the first layer rk ← max(rk, ε), where ε is a small non-
negative constant.

5. We normalize the weights rk by

rk ←
rk∑m−1
k=0 rk

, k = 0, . . . ,m− 1 .

6. We continue with step 3 if the stopping criterion is not satisfied.

Note that the update step of the weights rk is based on the projections of the error
vectors δj onto the tangent vectors of curve. Since this is similar to Hoschek’s method of
parameter correction (PC) [25], we call the resulting procedure the LSPIA-PC method.

This method can be seen as the training process for a neural network possessing three
hidden layers, see Fig. 7. The weights w1

i and w3
i are fixed parameters equal to 1 and

weights w2
i and w4

ij are the trainable weights rk and ci, respectively. The corresponding
activation functions for the first and third layer are the step functions σk and the B-splines
βi, respectively. While the training method described above is in fact the standard (i.e.,
full batch size) gradient descent, we employ stochastic gradient descent (batch size B = 1)
to generate approximations of the trainable weights. This is motivated by the observations
from the previous section.

Input

tj

σ0

σ1

...

σm−1

Step function

w2
iw1

i

τ(tj)

New parameter
β1

β2

...

βn

xj

yj

Output

B-spline

w4
ijw3

i

Figure 7: B-spline neural network plus reparameterization

In the remainder of this section, we consider the same data sets as in the previous
section 4, and we investigate the influence of the number m of step functions σk and of
the learning rate to the convergence of the iterative method. We always consider data sets
consisting of 128 points, number of step functions ranging from 1, 2, 4 to 128, and we use
the same stopping criterion as in the previous section. The figures report the number of
partial gradient evaluations and the resulting mean square error.

Example 4 (Zero residual case). Again we consider the data sampled from a cubic curve.
However, the parameters are now assigned by the chord-length parameterization. Figure 8

12

reports the number of partial gradient evaluations and the resulting mean square error for
different number of step functions and effective learning rates. The best results (which are
two orders of magnitude lower than the error without parameter correction2) are obtained
for medium to high numbers m of step functions (≥ N/2), independently of the chosen
learning rate. Theoretically one would expect to arrive at a result with zero error (which
should be the same as the one in Figure 3, where we used the original parameterization
of the data, which was also used the sampling) for m = N , but the optimization did not
reach this global minimum. ♦

Figure 8: Zero residual case: Number of partial gradient evaluations and MSE per number of step functions
in the first layer for various values of the effective learning rate.

Figure 9: Noisy data: Number of partial gradient evaluations and MSE per number of step function in
the first layer for various values of the effective learning rate.

Example 5 (Noisy data). Now we turn to the data with noise, again with a chord-length
parameterization. Figure 9 reports the number of partial gradient evaluations and the

2This is included in the experiment by considering the case of only one step function, i.e. m = 1.

13

resulting mean square error for different number of step functions and effective learning
rates. The best fitting result shows an improvement by one order of magnitude with respect
to the MSE without parameter correction (which is again included for m = 1). Note that
it suffices to use a relatively small number (only 16) of step functions to get a near-optimal
result. ♦

The following observations are in order:

• The use of LSPIA-PC substantially improves the fitting result. The result of the
LSPIA algorithm (which is included in the graphs as the limit case of only 1 step
function) is improved by almost 3 orders of magnitude in the first case, and by more
than one order of magnitude in the second case.

• The method reaches the best accuracy of the fitting result for a large number of step
functions (m ≥ N/2) and a fairly small effective learning rate. Fewer step functions
are sufficient for noisy data.

• In terms of computational effort, the LSPIA-PC method needs a similar number of
partial gradient evaluations than the standard LSPIA algorithm.

6. Conclusions

It is well understood that the progressive and iterative (PIA) method of Lin, Wang and
Dong in 2004 [3] is closely related to the use of Richardson’s method for solving the asso-
ciated linear system of equations [6]. More recently, Deng and Lin (2014) have introduced
the least-squares (LS) PIA method, which improves the capabilities with respect to the
size of the data [8]. No relation to classical methods for solving the fitting problem had
been established so far. In the present paper we provided the missing link by establishing
a connection to the standard gradient descent method. We also noted that Deng and Lin’s
observations concerning the feasible values of the stepsize are implied by classical results
from the theory of the gradient descent method.

We also proposed a modification based on stochastic gradient descent, which lends
itself naturally to a realization that employs the technology of neural networks. Moreover
we showed how to incorporate the optimization of the parameterization of the given data
into this framework via parameter correction (PC). According to the presented numerical
experiments, for non-smooth and noisy data, the resulting new LSPIA-PC method and
its neural-network based implementation gives better results than LSPIA with comparable
computational costs.

In the future work we plan to improve the framework even further by leveraging the
wealth of knowledge that is available in the field of machine learning, especially with respect
to the training algorithms. For instance, the use of Nesterov accelerated gradient methods
or similar techniques that employ the concept of momentum, which is a well-established
approach to improve the speed of convergence [26], might be related to the memory-based
(M) LSPIA variant of Huang and Wang [12]. Last, but not least, the extension is the
approach to the case of surface fitting in promising and of vital interest.

14

References

[1] H. Lin, T. Maekawa, C. Deng, Survey on geometric iterative methods and their applications,
Computer-Aided Design 95 (2018) 40–51.

[2] C. de Boor, How does Agee’s smoothing method work?, in: ARO report 79-3, Proc. 1979 Army
Numerical Analysis and Computers Conference, 1979, pp. 299–302.

[3] H. Lin, G. Wang, C. Dong, Constructing iterative non-uniform B-spline curve and surface to fit data
points, Science in China Series: Information Sciences 47 (3) (2004) 315–331.

[4] H.-W. Lin, H.-J. Bao, G.-J. Wang, Totally positive bases and progressive iteration approximation,
Computers & Mathematics with Applications 50 (3-4) (2005) 575–586.

[5] L. Lu, Weighted progressive iteration approximation and convergence analysis, Computer Aided Ge-
ometric Design 27 (2) (2010) 129–137.

[6] J. Carnicer, J. Delgado, J. Peña, On the progressive iteration approximation property and alternative
iterations, Computer Aided Geometric Design 28 (9) (2011) 523–526.

[7] H. Lin, Z. Zhang, An extended iterative format for the progressive-iteration approximation, Comput-
ers and Graphics 35 (5) (2011) 967 – 975.

[8] C. Deng, H. Lin, Progressive and iterative approximation for least squares B-spline curve and surface
fitting, Computer-Aided Design 47 (2014) 32–44.

[9] A. Ebrahimi, G. Loghmani, A composite iterative procedure with fast convergence rate for the
progressive-iteration approximation of curves, Journal of Computational and Applied Mathematics
359 (2019) 1–15.

[10] L. Zhang, J. Tan, X. Ge, G. Zheng, Generalized B-splines’ geometric iterative fitting method with
mutually different weights, Journal of Computational and Applied Mathematics 329 (2018) 331–343.

[11] L. Lu, S. Zhao, High-quality point sampling for B-spline fitting of parametric curves with feature
recognition, Journal of Computational and Applied Mathematics 345 (2019) 286–294.

[12] Z.-D. Huang, H.-D. Wang, On a progressive and iterative approximation method with memory for
least square fitting, Computer Aided Geometric Design 82 (2020) 101931.

[13] H. Wang, On extended progressive and iterative approximation for least squares fitting, The Visual
Computer (2021) 1–12.

[14] H. Lin, Local progressive-iterative approximation format for blending curves and patches, Computer
Aided Geometric Design 27 (4) (2010) 322–339.

[15] C. Liu, Z. Liu, X. Han, Preconditioned progressive iterative approximation for tensor product Bézier
patches, Mathematics and Computers in Simulation 185 (2021) 372–383.

[16] M. Liu, B. Li, Q. Guo, C. Zhu, P. Hu, Y. Shao, Progressive iterative approximation for regularized
least square bivariate B-spline surface fitting, Journal of Computational and Applied Mathematics
327 (2018) 175–187.

[17] C. Liu, X. Han, J. Li, Preconditioned progressive iterative approximation for triangular Bézier patches
and its application, Journal of Computational and Applied Mathematics 366 (2020).

[18] Z. Chen, X. Luo, L. Tan, B. Ye, J. Chen, Progressive interpolation based on Catmull-Clark subdivision
surfaces, Computer Graphics Forum 27 (7) (2008) 1823–1827.

[19] B. T. Polyak, Introduction to Optimization, Translation Series in Mathematics and Engineering,
Optimization Software Inc., Publications Division, New York, 1987.

[20] V. Weiss, L. Andor, G. Renner, T. Várady, Advanced surface fitting techniques, Computer Aided
Geometric Design 19 (1) (2002) 19–42.

[21] E. Saux, M. Daniel, An improved Hoschek intrinsic parametrization, Computer Aided Geometric
Design 20 (8) (2003) 513–521.

[22] W. Zheng, P. Bo, Y. Liu, W. Wang, Fast B-spline curve fitting by L-BFGS, Computer Aided Geo-
metric Design 29 (7) (2012) 448–462.

[23] J. Hoschek, Intrinsic parametrization for approximation, Computer Aided Geometric Design 5 (1)
(1988) 27–31.

[24] C. F. Higham, D. J. Higham, Deep learning: An introduction for applied mathematicians, SIAM
Review 61 (4) (2019) 860–891.

15

[25] J. Hoschek, D. Lasser, Fundamentals of computer aided geometric design, AK Peters, Ltd., 1993.
[26] N. Qian, On the momentum term in gradient descent learning algorithms, Neural Networks 12 (1)

(1999) 145–151.

16

