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Arc Fibration Kernels of Arc Spline Domains

Bastian Weiß, Bert Jüttler and Franz Aurenhammer

AbstractAny star-shaped domain can be parameterized by using a point in its kernel
as the center of a polar parameterization. An arc fibration is a regular polar param-
eterization whose parameter lines are circular arcs. The existence of arc fibrations
has been studied recently for domains defined by 𝐶2-smooth boundary curves. The
set of feasible center points forms the arc fibration kernel of a planar domain. We
extend these results in two ways: First, the notion of arc fibration is generalized to
domains with boundary curves that are only 𝐶1 smooth. These include the class of
piecewise circular curves (arc splines), which are of particular interest since they
combine computational simplicity with high accuracy. Second, we examine the arc
fibration kernel for domains bounded by arc splines. An algorithm is presented that
extracts the kernel of such a domain. Its performance is demonstrated by several
examples.

1 Introduction

The computation of parameterizations of planar domains, which are defined by their
boundary curves, is a fundamental task in geometric modeling, computer graphics,
isogeometric analysis, and related fields. A particularly simple solution is available
for the class of star-shaped domains, which are characterized by the fact that there
exists a center point in the domain’s interior that sees all boundary points. The set
of all such center points then forms the kernel of the domain.
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Kernels of polygons are well understood. An optimal algorithm that computes the
kernel of a polygon with linear complexity was proposed by Lee and Preparata [8].
Icking and Klein [6] presented a competitive strategy for walking into the kernel of
a yet unknown star-shaped polygon. Any polygon can be partitioned into star-shaped
polygons in O(𝑛 log 𝑛) time, as shown by Avis and Toussaint [3].
Dobkin and Souvaine [4] extended algorithms for straight-edged polygons to

polygons with curved edges. Various classical problems, such as convex hull com-
putation, kernel computation and monotonicity testing, are analyzed for curved edge
polygons. Aichholzer et al. [2] studied algorithms for the particular class of arc
splines, i.e., for piecewise circular curves. These curves provide efficient representa-
tions of planar free form shapes. In particular, they arewell suited for the computation
of offset curves and of the medial axes, see Aichholzer et al. [1]. Mitered offsets of
arc polygons (and the associated skeletons) were studied recently byWeiß et al. [13].
Star-shaped domains admit polar parameterizations by straight line segments.

Utilizing the more general class of circular arcs as parameter lines leads to the notion
of arc fibrations, which was introduced by Jüttler et al. [7]. These arc fibrations are
available for a wider class of domains that includes star-shaped ones. Similar to the
kernel of a star-shaped domain, the arc fibration kernel is formed by all points that
are suited to serve as center points of an arc fibration. The analogous construction
for parabolic arcs was explored recently by Trautner et al. [10].
The contributions of this paper are, on the one hand, the investigation of arc

fibrations for arc spline domains, i.e., domains represented by arc spline boundary
curves. We will use the notion of discrete osculating circles in order to extend the
results of [7], which apply to domains with 𝐶2-smooth boundary curve only, to
arc spline domains. On the other hand, we propose a simple geometric algorithm
that computes the arc fibration kernel. It will be shown that this kernel possesses
a piecewise circular boundary for arc spline domains, which makes it accessible
for computations. This is quite different from the case of general boundary curves,
which was explored by Jüttler et al. [7].
The remainder of the paper is organized as follows. Section 2 recalls the theoret-

ical foundations of arc fibrations, which were originally established for 𝐶2 smooth
boundary curves, and extends to 𝐶1-smooth arc splines. The 𝜑–channel and arc
fibration kernel are introduced and discussed in Sections 3 and 4, respectively. In
the subsequent chapter, we develop an algorithm that computes the arc fibration
kernel of an arc domain by generating a super-set of its boundary curve elements
from which the kernel can be extracted. The algorithm’s performance is analyzed by
applying it to various arc domains, manually designed ones and approximations of
free-form splines in Section 6. Finally, possible extensions and applications of our
approach are discussed.
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2 Arc fibrations of arc spline domains

We consider a closed, simply connected and bounded domain Ω ⊂ R2 which is
defined by a 𝐶1-smooth boundary curve 𝑏 such that 𝜕Ω = 𝑏. Therefore, 𝑏(𝑡) is a
closed and simple curve.
Recall that a function 𝑓 is quasi-periodic with quasi-period 𝑞 and constant 𝐷 if

𝑓 (𝑡 + 𝑞) = 𝑓 (𝑡) + 𝐷 holds. This notion also applies to sequences, in which case its
elements satisfy 𝑡ℓ+𝑞 = 𝑡ℓ + 𝐷.
An arc spline is a𝐶1-smooth (with respect to arc-length parameterization), piece-

wise circular curve. We consider simple, closed curves with positive orientation,
which are represented by 𝐿-periodic parametric arc spline curves 𝑏 : R→ C, where
𝐿 denotes the total arc length.
More precisely, for any curve 𝑏(𝑡), there exists a strictly increasing bi-infinite

quasi-periodic sequence 𝐽 = (𝑡ℓ)ℓ∈Z of knots 𝑡ℓ ∈ R with quasi-period 𝑛, i.e.,
𝑡ℓ+𝑛 = 𝑡ℓ + 𝐿. Each knot span [𝑡ℓ , 𝑡ℓ+1) is equipped with a center 𝑚ℓ ∈ C, a signed
radius 𝑟ℓ ∈ R \ {0} and an angle 𝛼ℓ ∈ R. The condition

0 < |𝛼ℓ+1 − 𝛼ℓ | < 2𝜋

ensures that each arc is traced exactly once. We use consecutive angles 𝛼ℓ and 𝛼ℓ+1
to define

𝜎ℓ (𝑡) = 𝑡 − 𝑡ℓ
𝑡ℓ+1 − 𝑡ℓ 𝛼ℓ+1 +

𝑡ℓ+1 − 𝑡
𝑡ℓ+1 − 𝑡ℓ 𝛼ℓ

which is the affine function that satisfies 𝜎ℓ (𝑡ℓ) = 𝛼ℓ and 𝜎ℓ (𝑡ℓ+1) = 𝛼ℓ+1. The
periodicity of the knots carries over to the centers, radii and angles by

𝑚ℓ = 𝑚ℓ+𝑘𝑛, 𝑟ℓ = 𝑟ℓ+𝑘𝑛 and 𝛼ℓ = 𝛼ℓ+𝑘𝑛 for all 𝑘.

Choosing the signs of the radii as

sign 𝑟ℓ = sign(𝛼ℓ+1 − 𝛼ℓ) (1)

ensures that arcs with positive or negative orientation get a positive or negative
radius, respectively. The arc spline thus takes the form

𝑏(𝑡) = 𝑚ℓ + 𝑟ℓ𝑒i𝜎ℓ (𝑡) for 𝑡 ∈ [𝑡ℓ+𝑛𝑘 , 𝑡ℓ+𝑛𝑘+1) ∀ℓ, 𝑘 .

Its 𝐶1-smoothness is guaranteed by two conditions: First, we choose the knots such
that

𝑟ℓ (𝛼ℓ+1 − 𝛼ℓ) = 𝑡ℓ+1 − 𝑡ℓ .

This causes 𝑏(𝑡) to have unit speed everywhere. Second, adjacent centers 𝑚ℓ and
𝑚ℓ+1 satisfy
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𝑚ℓ + 𝑟ℓ𝑒i𝜎ℓ (𝑡ℓ+1) = 𝑚ℓ+1 + 𝑟ℓ+1𝑒i𝜎ℓ+1 (𝑡ℓ+1)

or, equivalently,

𝑚ℓ − 𝑚ℓ+1 = (𝑟ℓ+1 − 𝑟ℓ)𝑒i𝛼ℓ+1 .

The transition points between adjacent arcs are called the joints, 𝑣ℓ = 𝑏(𝑡ℓ). The
individual arcs of an arc spline are denoted by 𝑏ℓ . Arc spline domains are domains
with arc spline boundaries. Figure 1 shows the centers, joints and angles that are
necessary to describe an arc domain boundary.

𝑟ℓ

𝛼ℓ 𝛼ℓ+1

𝛼ℓ+1

𝛼ℓ+2

𝑟ℓ+1

𝑚ℓ

𝑚ℓ+1

𝑣ℓ+1

𝑣ℓ

𝑏ℓ

𝑣ℓ+2

𝑏ℓ+1

Fig. 1 Two boundary arcs and their associated centers, angles and joints

A polar parameterization of the domain Ω is a continuous mapping

𝑝 : [0, 1] × R→ Ω

with center 𝑝(0, 𝑡) = 𝑧 and 𝑝(1, 𝑡) = 𝑏(𝑡), which is 𝐿-periodic with respect to 𝑡,
𝑝(𝑠, 𝑡) = 𝑝(𝑠, 𝑡 + 𝐿). In particular, we consider a smooth (i.e., differentiable) polar
parameterization by circular arcs where the parameter lines are segments of circles.

Definition 1 An arc fibration is a regular (except in the center 𝑧 = 𝑝(0, 𝑡)) smooth
polar parameterization with the property that the parameter lines 𝑝(·, 𝑡) are circular
arcs.

Fig. 2 shows a simple example of an arc fibration. A special case of an arc
fibration is the polar parameterization of a star-shaped domain Ω by straight line
segments. Such a parameterization exists for any center 𝑧 in the domain’s kernel, but
it is not available for non-star-shaped domains. In order to increase the flexibility of
this construction, we investigate the possibility to construct a parameterization for a
given center point in Ω by using circular arcs as parameter lines. For simplicity we
fix the center at the origin, 𝑧 = 0.
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Fig. 2 An arc fibration of a
planar domain

According to a result of Zubė [14], the polar parameterization with circular arcs
as parameter lines takes the form

𝑝(𝑠, 𝑡) = (1 − 𝑠)𝑏(𝑡) (0 + i0) + 𝑠𝑒i𝜑 (𝑡)𝑏(𝑡)
(1 − 𝑠)𝑏(𝑡) + 𝑠𝑒i𝜑 (𝑡) , (𝑠, 𝑡) ∈ [0, 1] × R (2)

where 𝜑(𝑡) is quasi-periodic with constant 2𝜋 and quasi-period 𝐿. Indeed, this
equation defines rational linear Bézier curves with control points 𝑧 = 0 + i0 and 𝑏(𝑡)
and associated weights 𝑏(𝑡) and 𝑒i𝜑 (𝑡) . We denote 𝜑(𝑡) as the tangent angle function
since (

𝜕𝑝

𝜕𝑠

)
(0, 𝑡) = 𝑒i𝜑 (𝑡) .

Consider the normal vector 𝑛(𝑡) of 𝑏(𝑡), which is given by

𝑛(𝑡) = − sign(𝑟ℓ)𝑒i𝜎ℓ (𝑡) 𝑡 ∈ [𝑡ℓ , 𝑡ℓ+1) .

The vector

𝑢(𝑡) = −𝑏(𝑡)𝑛(𝑡)
𝑏(𝑡)

. (3)

is the normal vector 𝑛(𝑡) reflected at the bisector of 𝑏(𝑡) and the origin, see Fig. 3
left. We use it to define the angle 𝜓(𝑡) such that

𝑒i𝜓 (𝑡) = 𝑢(𝑡) . (4)

More precisely, we choose the unique smooth quasi-periodic function𝜓(𝑡) ∈ arg 𝑢(𝑡)
with constant 2𝜋 and quasi-period 𝐿 that satisfies

𝜓(0) = Arg 𝑢(0) ∈ (−𝜋, 𝜋] .

The angles
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·
b(t)

n(t)

u(t)
z

· ·

eiϕmax(t )

eiϕmin(t )

u(t)
z

b(t)

Fig. 3 Left: Boundary curve 𝑏 (𝑡) (solid), its normal vector 𝑛(𝑡) and the reflected normal vector
𝑢 (𝑡) . Right: 𝜑max (𝑡) and 𝜑min (𝑡) specify the circular arcs that touch the boundary at 𝑏 (𝑡)

𝜑min (𝑡) = 𝜓(𝑡) − 𝜋

2
and 𝜑max (𝑡) = 𝜓(𝑡) + 𝜋2

specify the two circular arcs that touch the boundary at 𝑏(𝑡), see Fig. 3 right.
More precisely, the parameter lines 𝑝(·, 𝑡) represent these arcs if 𝜑(𝑡) = 𝜑min (𝑡) or
𝜑(𝑡) = 𝜑max (𝑡).
We summarize the main result of Jüttler et al. [7]:

Theorem 1 The polar parameterization Eq. (2) is an arc fibration if and only if 𝜑(𝑡)
satisfies

𝜑min (𝑡) + 2𝑘𝜋 < 𝜑(𝑡) < 𝜑max (𝑡) + 2𝑘𝜋

for some 𝑘 ∈ Z and 𝜑′(𝑡) > 0 for all 𝑡 ∈ R.

Proof See Jüttler et al. [7], in particular Theorem 3 and Lemma 5. The proof also
applies to the case of boundary curves that are only 𝐶1-smooth. �

3 The 𝝋–channel

We define the 𝜑–channel Φ as the region in R2 that is above the lower boundary
𝜑min (𝑡) and below the upper boundary 𝜑max (𝑡):

Φ = {(𝑡, 𝜉) ∈ R2 | 𝜑min (𝑡) < 𝜉 < 𝜑max (𝑡)} .

Figure 4 is an example of an arc domain (top) and its associated 𝜑–channel (bottom).
The graph shows the upper and lower boundary of one quasi period ofΦ. The values
of the knots 𝑡ℓ are indicated by dashed vertical lines. Each 𝑏ℓ has a unique color that
corresponds to the color ofΦ’s (lower and upper) boundary in the interval [𝑡ℓ , 𝑡ℓ+1).
According to Theorem 1, the polar parameterization Eq. (2) is an arc fibration

if and only if 𝜑(𝑡) is monotonically increasing and its graph is contained in the
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𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6
𝑧1

0 L

−π

0

π

2π

b1 b2 b3 b4 b5 b6

Fig. 4 The six arcs forming the arc domain from Fig. 2 (top) and the associated 𝜑–channel (bottom)
at the center 𝑧1

𝜑–channel. This is only possible if the reduced 𝜑–channel

Φ̂ = {(𝑡, 𝜉) ∈ R2 | max
𝜏≤𝑡 𝜑min (𝜏) < 𝜉 < min𝜏≥𝑡 𝜑max (𝜏)} ,

which is obtained by eliminating the upper and lower “pockets”, is connected. Fig. 4
shows the reduced 𝜑–channel in gray.
We note that extremal points of the channel’s boundary appear at knots only:

Lemma 1 The function 𝜓(𝑡), which specifies the direction of the reflected normal
vector, is monotonic within each span 𝑡 ∈ (𝑡ℓ , 𝑡ℓ+1). More precisely,

sign𝜓 ′(𝑡) = sign(𝑟ℓ ( |𝑟ℓ | − |𝑚ℓ |)), 𝑡 ∈ (𝑡ℓ , 𝑡ℓ+1) .

Proof A suitable scaling and rotation transforms the center of the ℓ–th circular arc
into 𝑚ℓ = 1. We consider two cases:

(I) |rℓ | = 1 : The arc passes through the origin, hence the reflected normal 𝑢 is
constant, which implies 𝜓 ′(𝑡) = 0, see Fig. 5.
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(II) |rℓ | ≠ 1 : Evaluating the derivative 𝜓 ′(𝑡) with the assistance of Eq. (4) for the
first equality and Eq. (3) for the second equality gives

𝜓 ′(𝑡) = −i𝑢𝑢′ = (𝑟2ℓ − 1)𝜎′
ℓ (𝑡)

(𝑟ℓ + cos𝜎ℓ (𝑡))2 + sin2 𝜎ℓ (𝑡)
.

The denominator of the right–hand side is positive, and the first factor of the
numerator satisfies

sign(𝑟2ℓ − 1) = sign( |𝑟ℓ | − |𝑚ℓ |) .

Moreover, condition (1) ensures that 𝑟ℓ and 𝜎′
ℓ (𝑡) have the same signs.

𝑛(𝑡′) 𝑛(𝑡)

𝑢 (𝑡)= 𝑢 (𝑡′)
𝑧 𝑚ℓ

𝑏 (𝑡)𝑏 (𝑡′)

𝑣ℓ

𝑣ℓ+1

Fig. 5 The reflected normal vector is constant for |𝑟ℓ | = |𝑚ℓ |

We introduce the notion of discrete osculating circles, which will be useful for
characterizing the connectivity of the reduced 𝜑–channel:

Definition 2 A discrete osculating circle (DOC) at a joint 𝑣ℓ is a circle that touches
the boundary curve at 𝑣ℓ while changing its side from the interior to the exterior of
the domain Ω, or vice versa.

Each DOC possesses an orientation (which is specified by its radius) that is
derived from the boundary curve at the point where it touches the boundary. We
analyze the location of the possible centers 𝑚 of DOCs, see Fig. 6: They form the
line segment𝑚ℓ−1𝑚ℓ if the joint 𝑣ℓ is not an inflection point. Otherwise, the possible
centers of DOCs are all the other points on the line through 𝑚ℓ−1 and 𝑚ℓ .
We say that the interior (exterior) of a circle with positive or negative radius lies

to its left (right) or right (left), respectively.

Lemma 2 There exists a DOC at 𝑣ℓ through the center 𝑧 of the parameterization if
it is located on different sides of 𝑏ℓ−1 and 𝑏ℓ .
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𝑏ℓ−1

𝑏ℓ

𝑚ℓ−1

𝑚ℓ

𝑣ℓ

𝑚

(a) non-inflection joint 𝑣ℓ

𝑏ℓ−1

𝑏ℓ

𝑚ℓ−1

𝑣ℓ
𝑚ℓ

𝑚

(b) inflection joint 𝑣ℓ

Fig. 6 The one parameter family of discrete osculating circles (dashed, red)

Proof This can be proved by analyzing the various cases defined by the signs and
the differences of the radii 𝑟ℓ−1 and 𝑟ℓ . See Fig. 7, which shows two of the six
possibilities. The first case, as shown in (a), is characterized by 𝑟ℓ−1 > 𝑟ℓ > 0. We
assume that the center 𝑧 lies left of 𝑏ℓ−1 and right of 𝑏ℓ , i.e., within the gray region.
We consider the DOCs at 𝑣ℓ and let their centers 𝑚 vary continuously from 𝑚ℓ−1
to 𝑚ℓ . By varying 𝑚, the associated DOCs sweep the entire gray area. Thus, if 𝑧 is
located within the swept area, there exists a point 𝑚𝑧 on 𝑚ℓ−1𝑚ℓ , which is the center
of a DOC at 𝑣ℓ = 𝑏(𝑡ℓ). The remaining five cases can be dealt with similarly. �

𝑏ℓ−1

𝑏ℓ

𝑚ℓ−1

𝑚ℓ

𝑣ℓ

𝑚𝑧

𝑧

(a) non-inflection point 𝑣ℓ

𝑏ℓ−1

𝑏ℓ

𝑚ℓ−1

𝑣ℓ
𝑚ℓ

𝑚𝑧
𝑧

(b) inflection point 𝑣ℓ

Fig. 7 The discrete osculating circle (dashed) with center 𝑚𝑧 passes through the center 𝑧
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The function 𝜓(𝑡) possesses a stationary point at 𝑡ℓ if 𝜓 ′(𝑡) ≤ 0 for 𝑡 ∈ [𝑡ℓ−1, 𝑡ℓ)
and 𝜓 ′(𝑡) ≥ 0 for 𝑡 ∈ [𝑡ℓ , 𝑡ℓ+1), or vice versa.
Lemma 3 The function 𝜓(𝑡) possesses a stationary point at 𝑡ℓ if a DOC at 𝑣ℓ passes
through the center 𝑧 of the parameterization.

Proof We consider the case where the DOC through 𝑧 at 𝑣ℓ lies left of 𝑏ℓ−1 and right
of 𝑏ℓ (cf. Lemma 2). Then |𝑟ℓ−1 | > |𝑚ℓ−1 | (see Fig. 7) and 𝜓(𝑡) is monotonically
increasing for 𝑡 ∈ [𝑡ℓ−1, 𝑡ℓ), according to Lemma 1. Analogously, one can verify that
𝜓 ′(𝑡) < 0 for 𝑡 ∈ [𝑡ℓ , 𝑡ℓ+1). Therefore 𝜓(𝑡) has a local maximum at 𝑡 = 𝑡ℓ . A local
minimum is obtained if the DOC at 𝑣ℓ through 𝑧 lies right of 𝑏ℓ−1 and left of 𝑏ℓ . �

We remark that the monotonicity properties of 𝜓(𝑡) (Lemma 1) are inherited by
the functions 𝜑min (𝑡) and 𝜑max (𝑡). This fact is also illustrated in Fig. 4.
Two curves are said to be in oriented anti-contact if they touch each other with

opposite orientation.

Lemma 4 If a minimum 𝜑max (𝑡𝑘 ) of the upper boundary and a maximum 𝜑min (𝑡ℓ)
of the lower boundary satisfy 𝜑max (𝑡𝑘 ) = 𝜑min (𝑡ℓ) then there exist DOCs at 𝑣𝑘 and
𝑣ℓ that are in oriented anti-contact at the center 𝑧.

Proof Since both extrema have equal ordinates we observe that

0 = 𝜑max (𝑡𝑘 ) − 𝜑min (𝑡ℓ)
= 𝜓(𝑡𝑘 ) − 𝜓(𝑡ℓ) + 𝜋 ,

which means that the difference 𝜓(𝑡𝑘 ) − 𝜓(𝑡ℓ) is equal to 𝜋. Therefore the reflected
normal vectors 𝑢(𝑡𝑘 ) and 𝑢(𝑡ℓ) are anti-parallel, i.e., 𝑢(𝑡𝑘 ) = −𝑢(𝑡ℓ) and the DOCs
through the center 𝑧 at 𝑣𝑘 and 𝑣ℓ touch. We conclude this proof by noting that the
DOCs at 𝑣𝑘 and 𝑣ℓ through 𝑧 are in oriented anti-contact since the reflected normal
vectors point to their left. �

4 The arc fibration kernel

We say that the 𝜑–channel is disconnected if there exists no strictly increasing
function 𝜑(𝑡) through Φ. Given an arc domain Ω, we consider varying locations of
the center 𝑧. We are interested in situations that lead to connected 𝜑–channels:

Definition 3 The arc fibration kernel 𝐾 of an arc domain Ω is the set of all centers
in Ω for which an arc fibration exists.

𝐾 (Ω) = {𝑧 ∈ Ω | 𝑧 admits an arc fibration}

The transition case between locations of the center 𝑧 that correspond to connected
and disconnected 𝜑–channels is characterized by the assumptions of Lemma 4
and, additionally 𝑡ℓ < 𝑡𝑘 : Indeed, since 𝜑(𝑡) ∈ Φ satisfies 𝜑(𝑡ℓ) ≥ 𝜑min (𝑡ℓ) and
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𝜑(𝑡𝑘 ) ≤ 𝜑max (𝑡𝑘 ), there must be an interval in [𝑡ℓ , 𝑡𝑘 ] where 𝜑(𝑡) is constant or
decreasing.
We identify the locations of the centers 𝑧 that correspond to transition cases:

Lemma 5 The points of oriented anti-contact of DOCs at two joints 𝑣𝑘 and 𝑣ℓ are
located on a circle.
Proof The 𝐺1 interpolation of a pair of point-tangent pairs, (𝑣𝑘 , 𝑏′(𝑡𝑘 )) and
(𝑣ℓ , 𝑏′(𝑡ℓ)) using two smoothly joined circular arcs is known as biarc interpola-
tion. For each such pair there is a one parameter family of points at which these two
circular arcs touch. The touching points are located on a circle – the so called joint
circle, see Šír et al. [9] for a proof. Since we consider DOCs that are in oriented
anti-contact, one of the tangents has to be inverted, i.e., we use (𝑣𝑘 , 𝑏′(𝑡𝑘 )) and
(𝑣ℓ ,−𝑏′(𝑡ℓ)) for the biarc interpolation. �

The anti-joint circle (AJC) of two joints 𝑣𝑘 and 𝑣ℓ is the circle formed by the
oriented anti-contact points, see the previous lemma. An example is shown in Fig. 8.
For any center 𝑧 located on the AJC we obtain, two pairs (red and blue) of DOC arcs

𝑏′ (𝑡ℓ )
𝑏′ (𝑡𝑘 )

𝑣𝑘
𝑣ℓ

𝑧

Fig. 8 There are two paths (red and blue) which connect 𝑣𝑘 and 𝑣ℓ along any 𝑧 on the anti-joint
circle (gray)

with opposite orientation touching at 𝑧. It should be noted that the information about
these arcs depends on the domain boundary and cannot be derived solely from the
point tangent pairs (𝑣𝑘 , 𝑏′(𝑡𝑘 )) and (𝑣ℓ , 𝑏′(𝑡ℓ)). As shown in Fig. 8, there are always
two possible DOC arc pairs, but at most one of them is valid, see Fig. 10 the red
valid path. This discussion will be continued when describing the orientation filter
in the next section.

Theorem 2 The boundary of the arc fibration kernel 𝜕𝐾 (Ω) of an arc domain
consists of arcs of anti-joint circles and of the domain boundary.

Proof This follows from the definition of the arc fibration kernel and fromLemmas 4
and 5. �
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Figure 9 shows the subdivision of the plane, which is defined by the anti-joint
circles of the arc domain from Fig. 4. The 𝜑–channel for a valid center point 𝑧1 of

10 15 20 25 30
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fig. 9 The anti-joint circles (shown in dif-
ferent colors) of the arc domain from Fig. 2
(black)

𝑣ℓ

𝑣𝑘
𝑧

Fig. 10 The anti-joint circle (gray) of two
joints

the parameterization is depicted in Fig. 4 (bottom). In addition, we visualize the 𝜑–
channels for invalid centers (𝑧2 and 𝑧3) taken from adjacent faces of the subdivision
in Fig. 11.

5 Kernel computation

Based on Theorem 2 we formulate a method to compute the arc fibration kernel for
a given arc domain that consists of 𝑛 circular arcs. We compute a super-set of the
kernel’s boundary. Inactive components are eliminated by trimming and by applying
various filters, which we will describe later in this section.
Algorithm 1 is an outline of our method. We initializeZ to be the empty set and

use it to collect arcs that may contribute to the kernel’s boundary.
The main loop of the algorithm iterates over the set of pairs

𝑃 = {(𝑣𝑘 , 𝑣ℓ) | 𝑘, ℓ = 1, . . . , 𝑛 for 𝑘 < ℓ} ,

which hasO(𝑛2) elements. Each iteration considers a particular pair (𝑣𝑘 , 𝑣ℓ) ∈ 𝑃 and
performs four operations, which are listed below. Further details will be presented
in the subsequent text.
i) We create the set of contributing arcs (sca) and initialize it with the anti-joint

circle (Line 4).
ii) Trimming (Line 5) is applied to sca. After this operation, sca consists of zero,
one or two arcs.
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𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6
𝑧2 𝑧3

(a) The sixCircles example

0 L

0

π

2π

b1 b2 b3 b4 b5 b6

(b) Center 𝑧2

0 L

−π

0

π

2π

b1 b2 b3 b4 b5 b6

(c) Center 𝑧3

Fig. 11 Reduced 𝜑–channels for two centers
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Algorithm 1: Arc fibration kernel
Input: Arc spline 𝑏 (𝑡)
Output: Arc fibration kernel 𝐾 (Ω)

1 Initialize Z as the empty set.
2 for 𝑘 = 1, . . . , 𝑛 − 1 do
3 for ℓ = 𝑘 + 1, . . . , 𝑛 do
4 Create the anti-joint circle ajc associated with the pair (𝑣𝑘 , 𝑣ℓ ) and initialize sca.
5 Trim the sca.
6 Apply the orientation filter to sca.
7 Apply the pear filter to sca and augment arcs by side information.
8 Add sca to Z. /* nothing is added if sca= ∅ */
9 end

10 end
11 Extract the kernel using Z and 𝑏 (𝑡) .

iii) The orientation filter (Line 6) removes arcs of sca with non-matching orienta-
tions of the associated DOCs.

iv) The pear filter (Line 7) identifies and removes a specific type of arcs from sca
which are known not to contribute to 𝜕𝐾 (Ω).
The resulting set sca is added toZ. Clearly, the trimming and the two filters may

result in an empty sca. In that case we proceed to the next element of 𝑃. Finally, we
extract the arc fibration kernel using the potential kernel boundary arcsZ and 𝑏(𝑡).
Anti-joint circle Recall that all oriented anti-contacts of DOCs lie on anti-joint
circles, see Lemma 5. The center of the AJC for (𝑣𝑘 , 𝑣ℓ) can be computed as the
intersection of two bisectors: The first one is defined by 𝑣𝑘 and 𝑣ℓ , and the second
one by the two points 𝑣𝑘 + 𝑏′(𝑡𝑘 ) and 𝑣ℓ − 𝑏′(𝑡ℓ). The radius of the AJC is the
distance from its center to 𝑣𝑘 .
We initialize sca with the anti-joint circle. Each element of sca stores its center,

radius, angular range (which is initialized with the full circle) and a pointer to the
associated pair (𝑣𝑘 , 𝑣ℓ) ∈ 𝑃. The range is needed to identify particular arcs on the
AJC, which are created by the (following) trimming step.

Trimming The restriction of possible centers of DOCs (cf. Definition 2) results
in a restriction of possible oriented anti-contact points on the AJC. The trimming
procedure sets sca to be those arcs of the AJC in which every center point 𝑧 (of the
parameterization) corresponds to two DOCs, i.e., the DOC’s center point restrictions
are met. Each of two systems of DOCs at 𝑣ℓ and 𝑣𝑘 defines an angular range for the
points on the AJC. The intersection of these two ranges results in zero, one or two
ranges that are included into the sca.
Figure 12 illustrates the DOCs at 𝑣𝑘 (green) and 𝑣ℓ (red) together with their

centers on the dashed lines. The points of oriented anti-contact on the AJC lie on the
blue arc. In this example sca is the blue arc after trimming.

Orientation filter Given a point 𝑧 on an arc of the sca, we consider the two DOCs
defined by it. Each of them splits into two arcs that connect 𝑧 with the associated
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𝑏𝑘−1

𝑏𝑘

𝑏ℓ

𝑏ℓ−1

𝑣ℓ

𝑣𝑘
𝑚𝑘−1

𝑚𝑘

𝑚ℓ

𝑚ℓ−1

Fig. 12 The anti-joint circle’s valid arc (blue) with respect to 𝑣𝑘 and 𝑣ℓ

points 𝑣ℓ and 𝑣𝑘 on the boundary. These four arcs form two possible paths (red and
blue of Fig. 8) that connect 𝑣ℓ and 𝑣𝑘 and are compatible with the orientations of
the DOCs.
Now we analyze the behavior of these paths with respect to the domain boundary

in the vicinity of 𝑣ℓ and 𝑣𝑘 . A path is valid, if it enters the domain at its starting
point, and it approaches the domain boundary from the interior at its end point, see
Fig. 13a. Otherwise a path is said to be invalid, see Figs. 13b to 13d. We say that a
valid path is formed by an entering and a leaving arc.
The two possible paths are either both invalid, or one of them is valid and the

other one is invalid. We filter out configurations without a valid path. For this, it
suffices to analyze a test point on each arc of sca, e.g. its midpoint. Depending on
the geometry of the domain boundary in the vicinity of 𝑣ℓ and 𝑣𝑘 we either find a
valid path (either the red one or the blue one) or we filter out the arc of the sca under
consideration.
Summing up, we loop over all arcs 𝜌 of sca and perform three actions: First,

a test point 𝑧 on 𝜌 is chosen. Second, we construct the DOCs that are in oriented
anti-contact at 𝑧 and their two paths. Third, we remove 𝜌 from sca if there is no path
that consists of an entering and a leaving arc.

Pear filter We consider a test point 𝑧 on an arc of sca and its two associated DOCs
at 𝑣𝑘 and 𝑣ℓ . This configuration characterizes a transition case between connected
and unconnected Φ̂ under the assumptions of Lemma 4 and 𝑡𝑘 > 𝑡ℓ . We refer to this
configuration as sting case, see Fig. 14 (right). However, 𝑧 is not a transition point
if 𝑡𝑘 < 𝑡ℓ . The latter configuration is referred to as pear case, see Fig. 14 (left). In a
pear case the arc on which the test point is located may be removed from the sca.
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𝑏′ (𝑡ℓ )

𝑏′ (𝑡𝑘 )

𝑣𝑘
𝑣ℓ

𝑧

(a) Valid path

𝑏′ (𝑡ℓ )

𝑏′ (𝑡𝑘 )

𝑧

𝑣𝑘
𝑣ℓ

(b) No entering arc

𝑏′ (𝑡ℓ )
𝑏′ (𝑡𝑘 )

𝑧

𝑣𝑘
𝑣ℓ

(c) No leaving arc

𝑏′ (𝑡ℓ )

𝑏′ (𝑡𝑘 )

𝑣𝑘
𝑣ℓ

𝑧

(d) Neither entering nor leaving arc

Fig. 13 Various configurations of entering and leaving arcs

We handle pear cases by performing three operations on all arcs 𝜌 of sca (Al-
gorithm 2). First, we choose a test point 𝑧 (e.g. the arc’s midpoint) and compute
the corresponding path. Note that there is exactly one path that connects 𝑣𝑘 and 𝑣ℓ .
We denote the signed radius of the entering arc by 𝑟in and the signed radius of the
leaving arc by 𝑟out. After obtaining those two radii we determine the type of the
configuration with Table 1, which provides criteria on 𝑟in and 𝑟out to identify pear
(and sting) cases. If a pear case is determined, we remove 𝜌 from sca.
The choice of the test point 𝑧 on 𝜌 is arbitrary.While different choices of 𝑧 result in

different signs and absolute value of 𝑟in and 𝑟out, it does not change the classification
in pear and sting cases. We discuss the effects of relocating 𝑧 on the signs of DOC
radii. The classification depends on the signs of the DOCs radii and their absolute
values.



Arc Fibration Kernels of Arc Spline Domains 17

𝑧 𝑧

Fig. 14 Pear (left) and sting (right) case

Algorithm 2: Pear filter
Input: Set of contributing arcs sca
Output: The pear filtered sca

1 foreach 𝜌 in sca do
2 Choose a test point 𝑧 on 𝜌.
3 Create the to 𝑧 associated path and compute the DOC arc’s radii.
4 if 𝑧 constitutes a pear case then
5 Remove 𝜌 from sca.
6 else
7 Augment 𝜌 with arc fibration kernel side information.
8 end
9 end

Table 1 Pear filter
sign 𝑟in

1 -1

sign 𝑟out
1 pear |𝑟out | > |𝑟in | sting

|𝑟out | < |𝑟in | pear
-1 |𝑟out | > |𝑟in | pear sting|𝑟out | < |𝑟in | sting

• The radius of a DOC cannot change its sign by going over zero due to their
definition and the fact that the boundary curve does not consist of circular arcs
with radius zero.

• The radius of a DOC can change its sign by going over infinity: The value of a
DOC’s radius might increase (decrease) to∞ (−∞) and come back with opposite
sign. These changes lead always to the same classification.
Consider for instance the pear case in which |𝑟out | > |𝑟in |. Moving 𝑧 may result
in 𝑟out approaching minus infinity and then back with positive radius at which
point both radii are positive and the classification according to Table 1 remains
pear.
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• We consider the transition case in which DOC’s radii have opposite signs but
equal absolute value. The DOC’s centers are then identical, which means that
𝑣𝑘 , 𝑣ℓ are located on the DOC and their tangents are tangents of the DOC. We
do not examine this case since it has probability zero (i.e. it is non-generic).

All six cases portrayed in Table 1 are illustrated in Fig. 15. We discuss the two
cases of the left column in more detail.
The example on the top left illustrates a pear case configuration. The black arrow

indicates the orientation of the boundary from which the entering and the leaving
arcs (red) inherit their orientations. The point of oriented anti-contact is 𝑧 and the
gray circle is the anti-joint circle. Intuitively it is clear that an entering and a leaving
arc still exists if we move 𝑧 within a small neighborhood of its current position. The
arc on which 𝑧 is located is therefore not in 𝐾 (Ω).

𝑧

(a) 𝑟in, 𝑟out > 0

𝑧

(b) 𝑟out < 0 < 𝑟in < |𝑟out |

𝑧

(c) 𝑟in < 0 < 𝑟out < |𝑟in |

𝑧

(d) 𝑟in, 𝑟out < 0

𝑧

(e) 𝑟in < 0 < |𝑟in | < 𝑟out

𝑧

(f) 𝑟out < 0 < |𝑟out | < 𝑟in
Fig. 15 Illustrations of pear (top row) and sting (bottom row) cases according to Table 1

A sting case is illustrated on the bottom left of Fig. 15. One may observe that a
valid path can be obtained if we move 𝑧 to the left. However, no valid path exists if
𝑧 is moved to the right. Clearly, that arc of sca must not be deleted by the pear filter
since it might belong to 𝐾 (Ω).
Remark 1 Although arcs of sca that form sting cases are not deleted, their detection
is beneficial since the side of the arc on which the arc fibration kernel lies can be
identified.

Kernel extraction Due to the local nature of the trimming and filter procedures,
which we discussed above, there may still be arcs which do not contribute to the
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kernel’s boundary. Therefore we need an additional step to extract the kernel: We
consider the planar circular subdivision of Ω that is induced by Z. Elements of Z
outside of Ω are ignored.
We consider the directed dual graph DG of the planar circular subdivision. The

direction of an edge is the side on which the kernel is located, see Fig. 16. A sink is a
node of a graph, whose edges are directed towards itself. All faces of the subdivision,
which potentially belong to 𝐾 (Ω), are identified as sinks of DG. For each sink we
choose a test point 𝑧 on the corresponding face and compute the associated reduced
𝜑–channel Φ̂. The face is part of the kernel 𝐾 (Ω) if Φ̂ is connected.

Fig. 16 Dual graph of the planar subdivision of Ω induced by arcs of anti-joint circles

Computational complexity We analyze the time complexity of Algorithm 1 in two
steps. First, the main loop iterates over all 𝑁 =

(𝑛
2
)
pairs of joints. All procedures

within that loop entail only modifications on sca and have constant complexity.
Second, the planar circular subdivision of the kernel extraction procedure is

constructed in O(𝑁 log 𝑁 + 𝑘) time (cf. [5]) with 𝑘 being the number of intersections
between the elements of Z (|Z| ≤ 2𝑁). The complexity of the dual graph DG is
O(𝑁 + 𝑘). We determine in O(𝑛) time whether a face, which corresponds to a sink
of DG, is in the arc fibration kernel.
The analysis of the space complexity consists of two parts: First, the main loop

can be implemented in such a way that it only requires storage in the size of the
kernel’s boundary, which is typically O(𝑛) as we will demonstrate in Section 6.
However, in the worst case, space can become quadratic in 𝑛. Second, the kernel
extraction requires O(𝑁 + 𝑘) space, see [5].
Finally we note that the time and space complexity analysis is very pessimistic.

In practice, Algorithm 1 runs in O(𝑛2) time and linear space.
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6 Experimental results and examples

We apply our algorithm to the sixCircles example Fig. 17: The boundary is shown
as black solid bold line and consists of six circular arcs. In the top left figure all 15
(complete) scas are shown. The results after trimming are shown on the top right.
The application of the orientation filter (bottom left) further reduces the number of
sca elements. Finally, the pear filter reduces the number of sca arcs once more and
augments them with an orientation indicating the side of the kernel (dashed arcs).
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(b) after trimming
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(c) after orientation filter (d) after pear filter. The dashed lines indicate
the side on which the kernel (gray) lies.

Fig. 17 The sixCircle example at various stages of Algorithm 1. The black curve is the boundary
of the arc domain Ω

Figure 18 shows the result of our algorithm applied to the sixCircles example
together with three center points of the parameterization: The center 𝑧1 is located in
the interior of the kernel and its associated reduced 𝜑–channel is therefore connected,
see Fig. 4. The centers 𝑧2 and 𝑧3 are both in the exterior of the arc fibration kernel
and their Φ̂’s are disconnected, cf. Figs. 11b and 11c.
We study the behavior of Algorithm 1 for the two domains, hourGlass (top row)

and waveGlass (bottom), shown in Fig. 19. The kernels of the three examples are
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𝑏5

𝑏6

𝑧2
𝑧1 𝑧3

Fig. 18 The arc fibration boundary with three center points 𝑧1, 𝑧2 and 𝑧3

shaded in gray and labeled with 𝐾 (Ω). The boundary of the hourGlass example is
an approximation of a spline curve by an arc spline. On the left, 48 circular arcs are
used to approximate the spline and 216 circular arcs on the right. One may notice
that the size of the induced subdivision grows linearly, the number of intersections
among arcs ofZ seem to stay constant.
Figure 20 shows the (initial) quadratic number of elements inZ (blue) and after

applying trimming and the two filters to the hourGlass example. Trimming (red)
leavesmost scas empty and only a linear number of scas remain inZ. The orientation
and pear filter further reduce the size ofZ. The dashed reference lines indicate linear
and quadratic complexity. An analogous analysis holds for the waveGlass example.
Clearly, it is possible that the arc fibration kernel is empty, see Fig. 22.

7 Conclusion

The main contribution of this paper is twofold: First, we defined arc fibrations
of arc domains and showed that the kernel’s boundary consists solely of circular
arcs, with the help of discrete osculating circles. Second, the proposed algorithm
massively reduces the number of potential boundary elements (from initially O(𝑛2))
of the kernel by using local features (e.g. trimming, orientation filter and pear filter).
The algorithm is easy to implement, uses only elementary data structures and its
parallelization is straightforward. Note that the algorithm, unlike the theoretical part
in Section 2, does not make use of the parameterization of 𝑏(𝑡), it uses only the
sequence of boundary arcs.
The location of the parameterization’s center point may be subject to optimization

since we compute the entire kernel of the domain, i.e., we may choose the center
point that is most suitable for a specific application. The investigation of suitable
optimality criteria could be of interest.
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𝐾 (Ω) 𝐾 (Ω)

𝐾 (Ω)

Fig. 19 The hourGlass (top row) and waveGlass (bottom) examples. Different colors indicate
different anti-joint circle arcs
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Fig. 20 Size of Z (initial value and after applying the various filters) for varying size 𝑛 of the input
arc spline hourglass. The dashed lines indicate quadratic and linear complexity

Our numerical experiments indicate that the algorithm’s run-time is influenced
by the number of curvature extrema. It should be interesting to develop an algorithm
with lower than quadratic complexity. It is well known (e.g. [11, 12]) that splines
can be approximated by arc splines that preserve spirals and therefore the number
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Fig. 21 Size of Z (initial value and after applying the various filters) for varying size 𝑛 of the input
arc spline waveGlass. The dashed lines indicate quadratic and linear complexity
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Fig. 22 This domain has an empty arc fibration kernel

of curvature extrema. Other interesting problems for future investigations are the
extension to 3D and the analysis of fibrations with more general parameter lines,
such as (low degree) Bézier curves (cf. [10]) and conic sections.
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