
Fast Formation of Matrices for Least-Squares Fitting by Tensor-Product Spline Surfaces
S. Merchel, B. Jüttler, D. Mokrǐs, Maodong Pan

Fast Formation of Matrices for Least-Squares
Fitting by Tensor-Product Spline Surfaces

S. Merchel, B. Jüttler, D. Mokrǐs, Maodong Pan

AG Report No. 96
May 9, 2022

www.ag.jku.at

Fast Formation of Matrices for Least-Squares Fitting by Tensor-Product Spline Surfaces

Sandra Merchela, Bert Jüttlerb, Dominik Mokriša, Maodong Panc,∗

aMTU Aero Engines AG, Munich, Germany
bInstitute of Applied Geometry, Johannes Kepler University Linz, Austria

cSchool of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Abstract

Least-squares fitting by tensor-product spline surfaces is a classical method for approximating unstructured data, which is widely used
in industry. However, assembling the system of equations via the straightforward approach can be quite time–consuming. In this
paper, we propose to accelerate this process by employing the technique of sum factorization, which is frequently used in the context
of isogeometric analysis.

Our approach consists of two steps. First, we introduce a regular grid onto which the parameters of the data are projected. Con-
sequently, the expressions of the matrix entries take a form that admits the use of sum factorization, which is then employed in the
second step. We provide a detailed complexity analysis and quantify the expected relative assembly costs. Several examples, including
an example involving industrial data, demonstrate how the choice of the grid influences speed and precision, and confirm the expected
time savings of the proposed method.

Keywords: least-squares fitting; scattered data approximation; matrix formation; sum factorization; tensor-product splines;
computational cost.

1. Introduction

The task of creating mathematical representations of free-form
surfaces from scattered data is an important and therefore well-
studied problem, which is particularly challenging and useful in
industrial applications. It has attracted the attention from nu-
merous researchers over the years. The fundamentals of least-
squares approximation by tensor-product spline surfaces are de-
scribed in the classical textbook of Hoschek and Lasser [1]. We
briefly list some of the contributions to this topic.

In order to make this process more efficient, Cheng and Gosh-
tasby proposed to split the problem into several curve fitting
problems, see [2], thereby exploiting the tensor-product struc-
ture. Even though this reduces the computational effort, it is ap-
plicable only if the parameter values of the data form a regular
grid, which is usually not the case for industrial data. Other ex-
tensions of the original framework make use of adaptive spline
refinement, which has been pioneered by Forsey and Bartels
[3]. Various advanced techniques for least-squares surface fitting
were summarized by Weiss et al. [4].

Krishnamurthy and Levoy [5] described a method for convert-
ing dense polygon meshes into tensor-product surfaces plus as-
sociated displacement maps, in order to facilitate animation and
rendering. Simultaneously, Eck et al. [6] showed how to deal
with data of arbitrary topology, approximating them by a collec-
tion of tensor-product B-spline patches. Greiner and Hormann
[7] also discussed surface reconstruction in the context of scat-
tered data fitting, focusing on techniques for representing details
via hierarchical spline refinement, and for improving the fair-
ness of the surface. Various techniques for geometry reconstruc-
tion from scattered data – a process which is sometimes called

∗Corresponding author.
Email addresses: sandra.merchel@mtu.de (Sandra Merchel),

bert.juettler@jku.at (Bert Jüttler), dominik.mokris@mtu.de (Dominik
Mokriš), mdpan@mail.ustc.edu.cn (Maodong Pan)

“reverse engineering” – are described in the survey article by
Várady and Martin [8].

The parameterization of the data is a critical task in the context
of data fitting. Floater [9] (see also [10]) established powerful
and easy-to-use methods to assign parameter values to unstruc-
tured sets of data, which are suitable for surface approximation
and widely used in practice. Methods for optimizing the param-
eterization have attracted the attention of numerous researchers,
see e.g. [11–13].

Further topics that have been discussed include constructions
for convex surfaces [14], lofted B-spline surfaces [15], and fitting
with adaptive refinement via truncated hierarchical B-splines [16,
17]. Recent contributions address extensions to T-spline surfaces
[18–20] and surface fitting via the method of progressive iterative
approximation [21, 22], which is closely related to the gradient
descent method as noted in [23].

In order to improve the efficiency of methods for surface
reconstruction from scattered data, we propose to combine
the mathematical technology of least-squares approximation by
tensor-product spline surfaces with the use of sum factorization
for fast matrix formation. This technique was originally pro-
posed for assembling the matrices that arise when performing
numerical simulation via spectral methods [24]. More recently,
it has been successfully applied in the context of isogeometric
Galerkin discretizations [25–31].

The initial paper [25] performed the assembly process in an
element-wise way. Later, Bressan and Takacs [27] improved this
work by introducing a global variant of sum factorization, which
dramatically reduces the computational cost.

An efficient assembling approach was proposed in [26] by use
of weighted quadrature and sum factorization techniques. The
application of this method to isogeometric linear elasticity [28]
was also explored. However, this approach achieves its efficiency
by sacrificing the symmetry of the resulting matrices.

In order to address this issue, Pan and Jüttler [29] introduced a
fast matrix assembly algorithm based on the interpolation, look-

up and sum factorization techniques. This algorithm is competi-
tive with the previous method [26] in terms of the computational
cost, while preserving the symmetry of the system matrices.

More recently, the use of sum factorization has been further
extended to the case of bivariate hierarchical B-splines [30] and
later even to hierarchical B-splines in any dimension [31].

Since matrix formation requires a substantial part of the over-
all computation time of scattered data approximation by tensor-
product spline surfaces, we propose to extend the applicability
of sum factorization to least-squares fitting with tensor-product
spline surfaces. The application of sum factorization is not
straightforward in this context, since we initially do not have
the required structure of nested sums in the equations govern-
ing the matrix elements appearing in the linear system for the
least-squares approximation problem. Therefore, we first need to
project the parameters of the data onto a regular grid to achieve
this type of formulation, and are consequently able to perform
sum factorization. This novel approach has the potential of sig-
nificantly reducing the computational effort of the matrix assem-
bly and therefore the total cost of the least-squares approxima-
tion.

The paper is structured as follows: We start with introducing
the standard least-squares fitting and derive the equivalent lin-
ear system of equations. The straightforward matrix assembly
method is presented and its costs are analyzed. Section 3 shows
how to transform the linear system into a form that is suitable for
the use of sum factorization, by projecting the parameters of the
data onto a regular grid. After applying sum factorization, the al-
gorithm of the resulting fast matrix assembly is presented. This is
followed by a detailed analysis of the computational complexity.
Based on this analysis we estimate the relative assembly costs of
our method compared to the standard method. Section 4 presents
several examples that demonstrate the influence of the grid pro-
jection on the precision and speed for several grid choices. Fur-
thermore we compare the convergence rate of the new method
to the standard method for data without and with noise. We also
use an example from industry to underline the efficiency and use-
fulness of the new method. Finally we conclude the paper and
discuss future work.

2. Preliminaries

We consider two bases {βi(u)}mi=1 and {γ j(v)}nj=1 of univariate
B-splines of degree d on the interval [0, 1]. We use these spline
bases to define the tensor-product spline surface

s(u, v) =

m∑

i=1

n∑

j=1

bi jβi(u)γ j(v)

of degree (d, d) with control points bi j ∈ R3. These control points
(which are represented by row vectors) are collected in a matrix
b of dimension mn × 3. The second index corresponds to the xyz
coordinates, while the first one is used for enumerating of control
points, which is done lexicographically with respect to (i, j).

The problem we are interested in can be stated as follows:
Given the point data {fk}Nk=1 in R3, our task is to find the asso-
ciated parameters {(uk, vk)}Nk=1 in [0, 1]2 and the control points b
such that the least-squares sum

N∑

k=1

‖s(uk, vk) − fk‖2 + R(b) (1)

is minimized, where R(b) might be an additional regularization
term. The established method for this task proceeds in two steps:

• First, we assign the parameter values (uk, vk) ∈ [0, 1]2 to
the given data fk, k = 1, . . . ,N. This can be done by using
the Floater’s parameterization method, which is well estab-
lished in the literature [9].

• Second, the control points b are obtained by minimizing the
least-squares sum (1), which leads to the linear system

Mb = r (2)

with a sparse and banded matrix M of size mn × mn and
right-hand-side matrix r of size mn × 3.

The elements of M take the form

M(i, j)(i′, j′) =

N∑

k=1

βi(uk)γ j(vk)βi′ (uk)γ j′ (vk), (3)

if no regularization is used. The mn row vectors of the right-hand
side can be written as

r(i, j) =

N∑

k=1

βi(uk)γ j(vk)fk. (4)

The linear equations (2) can be solved with the help of direct or
iterative solvers.

We are interested in algorithms that generate the elements of
the system matrix M. The standard approach to compute the ma-
trix elements appearing in (3) and (4) proceeds by looping over
all the data points, and then evaluating the nonzero basis func-
tions at each point. The resulting procedure, which we call the
standard algorithm for matrix assembly for least-squares fitting,
is summarized in the following algorithm:

Standard algorithm for matrix assembly
for i = 1 to m do

for j = 1 to n do
for i′ = 1 to m do

for j′ = 1 to n do
M(i, j)(i′ , j′) = 0 . initialization

for k = 1 to N do
Evaluate the d + 1 active basis functions βi′′ at the point uk
Evaluate the d + 1 active basis functions γ j′′ at the point vk
for i ∈ B(uk) do . βi(uk) , 0

K1 = βi(uk)
for j ∈ G(vk) do . γ j(vk) , 0

K2 = K1γ j(vk)
for i′ ∈ B(uk) do

K3 = K2βi′ (uk)
for j′ ∈ G(vk) do

M(i, j)(i′ , j′)+ = K3γ j′ (vk) . summation

The index sets B(uk) and G(vk) are defined by

B(uk) = {i′|βi′ (uk) , 0} and G(vk) = { j′|γ j′ (vk) , 0},
respectively, where we note that the sizes of the index sets satisfy

|B(uk)| ≤ d + 1 and |G(vk)| ≤ d + 1 .

In fact, they are equal to d + 1 unless uk or vk is a knot.

Proposition 1. The standard algorithm takes

N(d + 1)2(2d2 + 5d + 4) (5)

floating point operations (flops), and additionally 2N(d+1) eval-
uations of univariate B-splines to assemble the matrix M.

2

Proof. The evaluation of the matrix elements proceeds by loop-
ing over all the parameters {uk, vk}Nk=1:

1. For each parameter, we perform 2(d + 1) evaluations of uni-
variate B-splines and visit (d + 1)2 index pairs (i1, j1).

2. For each pair (i1, j1), the calculation of K2 requires one flop,
and d + 1 instances of the index i′ are visited.

3. For each i′, the evaluation of K3 needs one flop, and d + 1
instances of the index j′ are visited.

4. Finally we compute the element M(i, j),(i′, j′) for each j′. It
needs 2 flops per loop.

Summing up, assembling the matrix M via the above standard
procedure needs

N(d + 1)2(1 + (d + 1)(1 + (d + 1)2)) = N(d + 1)2(2d2 + 5d + 4)

flops and
2N(d + 1)

evaluations of univariate B-splines.

Here we only discuss the matrix M, since the right-hand-side
one can be dealt with analogously. We note that the cost of as-
sembling the matrices M and r via the standard algorithm con-
stitutes a significant portion of the overall computational effort.
Therefore, we focus on deriving a faster method for the assembly
process.

3. Fast matrix assembly

In order to improve the computational efficiency, we apply the
sum factorization technique to the process of matrix assembly.
In order to enable this approach, we introduce auxiliary gridded
parameters and replace the original ones by a suitable subset of
those. On the one hand, this allows us to accelerate the matrix
assembly, since we may systematically re-use some of the com-
puted quantities. On the other hand, this may compromise the
quality of the fitting result, since we modify the parameterization
of the data.

This section describes the approach in more detail and focuses
on the first aspect. The second effect will be analyzed in the
subsequent section, based on numerical experiments.

3.1. The algorithm

In order to enable the sum factorization, we introduce the grid-
ded parameters

(ûp, v̂q), p = 1, . . . , m̂, q = 1, . . . , n̂,

which form a grid of size m̂× n̂. Each data parameter (uk, vk) has
the associated gridded parameter

(ûpk , v̂qk), k = 1, . . . ,N,

which is its nearest point among all the gridded parameters.
Thus, the index pair

(pk, qk)

identifies the grid point, which is associated to the data point with
index k.

Let µpq be the number count (multiplicity) of data points that
are associated with the given grid point (ûp, v̂q). We rewrite the
matrix elements M(i, j)(i′, j′) as

M(i, j)(i′, j′) ≈ M̂(i, j)(i′, j′) =

N∑

k=1

βi(ûpk)γ j(v̂qk)βi′ (ûpk)γ j′ (v̂qk)

=

m̂∑

p=1

n̂∑

q=1

µpqβi(ûp)γ j(v̂q)βi′ (ûp)γ j′ (v̂q).

Note that µpq is zero if no data points are assigned to the grid
parameter (ûp, v̂q).

When applied in assembling the matrices arising from iso-
geometric discretizations, the technique of sum factorization
achieves its efficiency by exploiting the tensor-product structure
of multivariate B-splines. Using this approach in our case, the
matrix elements M̂(i, j)(i′, j′) take the form

M̂(i, j)(i′, j′) =

m̂∑

p=1

βi(ûp)βi′ (ûp)
n̂∑

q=1

µpqγ j(v̂q)γ j′ (v̂q)

︸ ︷︷ ︸
= H j j′p

, (6)

where we introduce the auxiliary tensor H = (H j j′p) of order 3.
All the elements M̂(i, j)(i′, j′) in (6) are calculated in a recursive

way: The first stage of the recursion evaluates and stores all the
nonzero elements of the tensor H, which are used for computing
M̂(i, j)(i′, j′) in the second stage. The detailed description of the new
assembly algorithm is summarized in the following algorithm,
which consists of two parts.

The first one generates the auxiliary tensor H = (H j j′p):

Fast algorithm for matrix assembly – part 1
Create the tensor H and initialize its elements by zero
for k = 1 to N do

Evaluate the d + 1 active (i.e., nonzero) basis functions γ j′′ at v̂qk
for j ∈ G(v̂qk) do . γ j(v̂qk) , 0

for j′ ∈ G(v̂qk) do . γ j′ (v̂qk) , 0
H j j′ pk += γ j(v̂qk)γ j′ (v̂qk) . summation

The second part performs the evaluation of the matrix ele-
ments:

Fast algorithm for matrix assembly – part 2
for i = 1 to m do

for j = 1 to n do
for i′ ∈ B(i) do . supp(βiβi′) , ∅

for j′ ∈ G(j) do . supp(γ jγ j′) , ∅
M̂(i, j)(i′ , j′) = 0 . initialization

for p = 1 to m̂ do
Evaluate the d + 1 active basis functions βi′′ at the point ûp
for j = 1 to n do

for j′ ∈ G(j) do . supp(γ jγ j′) , ∅
if H j j′ p > 0 then

for i ∈ B(ûp) do . βi(ûp) , 0
K = βi(ûp)H j j′ p
for i′ ∈ B(ûp) do . βi′ (ûp) , 0

M̂(i, j)(i′ , j′) += βi′ (ûp)K . summation

The index sets B(ûp) and G(v̂qk) are defined as before. The new
index sets B(i) and G(j) are given by

B(i) = {i′| supp βiβi′ , ∅} and G(j) = { j′| supp γ jγ j′ , ∅},
respectively. We note that the sizes of these index sets are
bounded by

|B(i)| ≤ 2d + 1, |G(j)| ≤ 2d + 1.

3

3.2. Complexity analysis

The proposed approach for least-squares fitting consists of two
steps: projecting each data parameter to the associated gridded
parameter and assembling the matrices via sum factorization.

The cost of the first step is negligible compared to the overall
complexity of the new method. The second step of the proposed
approach assembles the elements of the matrices and consists of
the two parts as described above.

The first part, which computes the auxiliary tensor H, calcu-
lates at most N(d +1)2 nonzero elements H j j′pk by summing over
N(d + 1)2 index triplets (k, j, j′) and needs 2 flops per term. This
amounts to

2N(d + 1)2

flops. In addition, it requires

(d + 1) min(N, n̂)

evaluations of univariate B-splines.
The second part, which computes the matrix elements

M̂(i, j),(i′, j′), proceeds by iterating over the nonzero elements H j j′p
and the index pairs (i, i′), requiring two flops per term. It also
generates the intermediate elements K used for subsequent eval-
uations, which needs d+1 flops per nonzero element H j j′p. More-
over, this loop also performs

(d + 1) min(N, m̂)

evaluations of univariate B-splines.
In order to estimate the cost of the second part, we need an

estimate of how many nonzero elements H j j′p exist. In order to
derive this estimate, we make the following assumption:

We assume that the parameters of the data are random
variables with values in [0, 1]2, which are uniformly
distributed.

Moreover, we restrict the analysis to the case of uniform knot
vectors with single knots.

We consider the probability

ξ| j− j′ | = P(H j j′p = 0) ,

and note that it is independent of p and depends solely on the
absolute value of the index difference j − j′, if one does not take
the effects of the patch boundary into account (as we shall do
from now on).

Next, we note that H j j′p = 0 exactly if

n̂∑

q=1

µpqγ j(v̂q)γ j′ (v̂q) = 0 ,

i.e., exactly if the overlapping domain of the supports of γ j and
γ j′ in row p do not contain any gridded data. The overlap has
length max(d+1−`

n , 0) without taking boundary effects into ac-
count. Consequently, we evaluate ξ` as

ξ` =

(
1 − d+1−`

m̂n

)N
if 0 ≤ ` ≤ d ,

1 if ` > d ,
(7)

which is the probability for a random distribution of N data points
not to possess any instance in a box of width max(d+1−`

n , 0) and
height 1

m̂ (that corresponds to the considered row p of the grid).

We use these results to evaluate the expected costs of the sec-
ond loop in part 2 of the fast matrix assembly and arrive at

(m̂∑

p=1

n∑

j=1

∑

j′∈G(j)

(1 − ξ| j− j′ |)
)
(d + 1)(1 + 2(d + 1)) (8)

flops.
In order to analyze the effect of the random distribution of the

parameter values, we introduce the auxiliary quantity ξavg via the
identity

(2d + 1) m̂n ξavg =

m̂∑

p=1

n∑

j=1

∑

j′∈G(j)

ξ| j− j′ |

=

d∑

k=0

m̂∑

p=1

∑

j, j′ : | j− j′ |=`
ξ`

︸ ︷︷ ︸
(?)

.
(9)

This quantity ξavg describes the expected share of the cases where
the condition of the “if” statement in the algorithm is not satis-
fied. Indeed, we consider

(2d + 1)m̂n

terms (ignoring boundary effects) in the sums that correspond to
the loops of the algorithm.

Note that the summands ξ` in (?) in Eq. (9) are independent
of the summation indices p, j, j′. We count the number of these
summands,

2m̂n if 1 ≤ ` ≤ d
m̂n if ` = 0 ,

and this allows us to arrive at the formula

ξavg =
1

2d + 1
(
ξ0 + 2

d∑

`=1

ξ`
)
. (10)

Finally we use this result to rewrite (8) with the help of (9). This
confirms that the expected computational costs of part 2 amount
to

(2d + 1)m̂n(1 − ξavg)(d + 1)(1 + 2(d + 1))
flops and

(d + 1) min(N, m̂)
evaluations of univariate B-splines. Summing up, if we do not
consider effects caused by the patch boundaries, we obtain the
following result:

Proposition 2. The fast algorithm for matrix assembly is ex-
pected to take

2N(d + 1)2 + (1 − ξavg)(d + 1)(2d + 1)(2d + 3)m̂n (11)

flops, where ξavg is given by Eq. (10), and

(d + 1)(min(N, m̂) + min(N, n̂))

evaluations of univariate B-splines to generate the matrix M.

For instance, the expected number of flops evaluates to

32N + 252(1 − ξavg)m̂n

with

ξavg =
(m̂n−4)N + 2(m̂n−3)N + 2(m̂n−2)N + 2(m̂n−1)N

7(m̂n)N

for bicubic spline surfaces (d = 3).

4

3.3. Expected relative assembly costs as N → ∞
In order to analyze the behaviour of the quantity ξavg and to

quantify the expected relative assembly costs of the fast matrix
assembly procedure with respect to the standard approach we
shall consider the limit N → ∞. Moreover, we introduce the
three quantities ∆, δ and %, which are defined by

∆ =
mn
N
, δ =

N
m̂n̂

, and % =
δ

∆

respectively. The first and the second one quantify the number of
control points per data point and the number of data points per
grid point, respectively. These two quantities are expected to be
significantly smaller than 1. The third quantity % is the double
ratio of the two ratios.

Well-known identities can be invoked to confirm

lim
N→∞

(
1 − C

m̂n

)N

= lim
N→∞

1 − C√

N
δ

√
N∆

N

= e−
C
√
δ√

∆ = e−C
√
% ,

which gives

Ξ(d, %) = lim
N→∞

ξavg =
1

2d + 1

(
e−(d+1)

√
% + 2

d∑

k=1

e−k
√
%
)
. (12)

We use this observation to quantify the expected value of the rel-
ative assembly costs (which is obtained as the ratio of the num-
bers of required flops of the two algorithms) for large data sets.
Here we do not take the number of B-spline evaluations into ac-
count, since the total effort is dominated by the number of flops.
Moreover, the fast method needs at most the same number of
evaluations as the standard approach.

Theorem 3. The expected value Ψ of the relative assembly costs
of the fast matrix assembly with respect to the standard method
takes the value

Ψ(d, %) =

2(d + 1) +
1 − Ξ(d, %)√

%
(2d + 1)(2d + 3)

(d + 1)(2d2 + 5d + 4)
, (13)

as N → ∞, where Ξ(d, %) is defined in (12). We note that this
quantity depends solely on the degree d and the double ratio %.

Proof. We use (5) and (11) from Proposition 1 and Proposition 2
to evaluate the quotient of the numbers of required flops, and we
simplify it with the help of the quantities ∆, δ and %.

As an example, we evaluate the expected value of the relative
assembly costs of the cubic splines (d = 3) and get

2
37

+

1 −
1
7

e
−4
√
% + 2

3∑

k=1

e−k
√
%

1√
%

63
148

.

We list a few values of this quantity:

% 0.25 0.5 1.0 3.0 9.0
Ψ 59.77% 50.37% 41.14% 28.48% 19.38%

Table 1: Expected relative assembly costs for d = 3 and different values of %

3.4. The case of sparsely populated grids
In this situation, the number of grid points is very large com-

pared to the number of data points. This can be seen as using the
original parameterization of the data points, where the quality of
the fitting result is not affected by the process of matrix assembly.
Indeed, the use of floating point numbers automatically imposes
a grid, although a very fine one. The scenario corresponds to the
limit

%→ 0 .

We use de l’Hôpital’s rule to confirm the identity

lim
%→0

1 − Ξ(d, %)√
%

=
(d + 1)2

2d + 1

and use it to evaluate the limit of the expected relative assembly
costs as

lim
%→0

Ψ(d, %) = 1 +
1

2d2 + 5d + 4
.

While it is slightly larger than 1 – which means that the fast
method is slower than the standard one in the worst case – the
costs of both approaches are virtually identical in this scenario.
Considering low degrees d = 2, 3, 4, this ratio is equal to

23
22
,

38
37
, and

57
56

,

respectively. We conclude that the use of the fast assembly algo-
rithm does not incur significant additional costs even in the limit
case of sparsely populated grids.

4. Numerical results

We present six examples, which support the theoretical find-
ings regarding the computational complexity and demonstrate
the influence of the gridding on the quality of the resulting sur-
face.

4.1. Accuracy of ξavg, Ξ and Ψ

In the first example, we compare the estimates for ξavg and Ξ
(see Equations (10) and (12)) with the actual share of the cases
where the condition of the “if” statement in the algorithm is not
satisfied. We consider four sets of randomly generated parameter
values (which are uniformly distributed in [0, 1]2) of different
sizes N and various values of degrees of freedom and of the grid
size, all for cubic splines (d = 3). For simplicity, we choose
symmetric grids, m = n and m̂ = n̂.

Table 2 reports the observed share of the cases and compares
it with the predicted share ξavg and the expected limit Ξ of that
share for N → ∞. We see that the estimates are fairly accurate.
(The values of ξavg and Ξ are actually different, but they share
the first digits.) As expected, the deviation is larger for smaller
instances of data sets, since the estimates do not take boundary
effects into account.

∆ δ N % ξavg Ξ actual share
0.01 0.0625 122, 500 6.25 2.55e−2 2.55e−2 2.23e−2
0.01 0.0625 4, 900 6.25 2.55e−2 2.55e−2 4.92e−3
0.01 0.01 122, 500 1.0 1.61e−1 1.61e−1 1.50e−1
0.01 0.01 36, 100 1.0 1.61e−1 1.61e−1 1.42e−1

0.0361 0.128 10, 000 3.53 5.13e−2 5.14e−2 4.60e−2
0.01 0.0025 122, 500 0.25 3.61e−1 3.61e−1 3.48e−1

Table 2: First example – estimates for ξavg and Ξ and actual share of cases

5

In the second example, we consider a single data set with
N = 122, 500 and ∆ = 0.01 (i.e., m = n = 35) for various values
of the grid size m̂ = n̂, again for d = 3. We compare the actual
and the estimated relative assembly costs, based on the number of
flops needed to assemble the matrix, including evaluations of the
basis functions. The differences between the observed numbers
and the estimates are due to boundary effects and also caused
by the cost of the evaluations, which are not considered for Ψ.
The results, which are reported in Table 3, indicate a good agree-
ment between the theoretically predicted and the experimentally
observed numbers.

relative assembly costs
% Ψ experimentally observed

1.0 41.1% 35.8%
2.78 29.2% 25.4%
6.25 22.0% 19.1%

Table 3: Second example – expected and numerically observed relative assembly
costs for different values of the double ratio %.

4.2. The trade-off between accuracy and computational costs
Clearly, one expects to see a trade-off between accuracy and

computational costs, as the use of large grids eliminates the com-
putational advantage of the fast assembly algorithm, while large
values of δ will compromise the quality of the fitting result. This
effect is demonstrated in the third example.

We consider N = 40, 000 points, which are randomly sam-
pled (i.e., using random variables with a uniform distribution in
[0, 1]2) from the graph surface of the function

f (u, v) =
1
3

sin(4πu) sin(4πv) ,

and approximate them using a bicubic spline surface with

n × m = 20 × 20

control points, i.e., we get ∆ = 0.01. Table 4 reports the mean
square error and the relative assembly costs (both with respect to
the number of flops and the actual computation times) for various
values of the grid size.

We use the mean square error (“MSE/def”) defined by

MSE/def =
1
N

N∑

k=1

‖s(uk, vk) − fk‖2,

whereas the mean square error with use of parameter correction
(“MSE/pc”) is defined as

MSE/pc =
1
N

N∑

k=1

min
(u,v)∈[0,1]2

‖s(u, v) − fk‖2.

m̂ = n̂ 200 400 800 1600 3200 6400 standard
δ 1 0.25 6.25e−2 1.56e−2 3.91e−3 9.77e−4 0

MSE/def 4.8e−4 2.4e−4 1.4e−4 9.9e−5 8.6e−5 8.1e−5 7.9e−5
MSE/pc 9.5e−5 5.5e−5 4.1e−5 3.6e−5 3.4e−5 3.4e−5 3.4e−5

flops 8.34% 11.86% 18.66% 30.31% 46.48% 63.37% 100%
time 3.85% 6.03% 10.00% 17.48% 28.25% 38.01% 100%

Table 4: Third example – mean square error (MSE) and share of the computa-
tional costs for various values of δ and d = 3.

Two observations are in order:

First, the use of parameter correction (“pc”) significantly de-
creases the measured error, compared to the default (“def”) way
of evaluating the MSE. In particular, this difference is significant
when using the fast method with coarser grids.

Second, the expected trade-off between computational effort
and accuracy is clearly present and visualized in Fig. 1, left. The
choice of δ possesses an impact both on the error and on the costs
of our method. In the considered setting, choosing a value in the
interval

δ ∈ [0.00391, 0.0625]

seems to be reasonable as it decreases the computational costs
significantly without too much impact on the approximation
quality of the result.

We carry out the same experiment for degree d = 5 and again
observe the mean square error and the relative assembly costs.
The results are listed in Table 5 and depicted graphically in Fig. 1,
right. As expected, the behaviour is similar to d = 3 but the
overall error is smaller. Taking values in the interval

δ ∈ [0.000977, 0.00391]

offers a good compromise between noticeable speedup and error
comparable to that of the standard method.

m̂ = n̂ 200 400 800 1600 3200 6400 standard
δ 1 0.25 6.25e−2 1.56e−2 3.91e−3 9.77e−4 0

MSE/def 4.7e−4 2.3e−4 1.2e−4 1.2e−4 3.1e−5 1.6e−5 3.0e−6
MSE/pc 9.8e−5 4.6e−5 2.4e−5 1.2e−5 6.2e−6 3.4e−6 1.2e−6

flops 4.88% 7.36% 12.24% 21.13% 35.27% 53.10% 100%
time 2.59% 3.85% 6.78% 12.75% 20.93% 31.97% 100%

Table 5: Third example – mean square error (MSE) and share of the computa-
tional costs for various values of δ and d = 5.

4.3. Rate of convergence
We consider again the graph surface of the previous exam-

ple and use it to investigate the influence of the grid on the rate
of convergence in the fourth example. More precisely, we ran-
domly sample data from the surface, which is then approximated
by dyadically refined bicubic spline surfaces, where the number
m × n of control points varies between 5 × 5 and 131 × 131.

The number N of sample points is chosen such that the number
of control points per data point evaluates to ∆ = 0.01. We con-
sider different grid sizes, which correspond to the four different
values

δ1 = 0.0625, δ2 = 0.0278, δ3 = 0.01 and δ4 = 0.0025

of δ. The experimentally observed relative assembly costs are
roughly equal to 20%, 25%, 33% and 50%, respectively; we note
that in this example the assembly took more than 85% of the
total approximation time when using the standard method. The
plot in Fig. 3 depicts the impact of the choice of δ on the rate
of convergence, which is equal to h4 when using the standard
assembly algorithm, where h denotes the mesh size. We note
that the fast assembly method slows the rate of convergence for
spline surfaces with many control points. This effect sets in later
for smaller values of δ, which, however, increase the relative as-
sembly costs. We conjecture that the rate of convergence tends to
the same limit (approximately h2) for any choice of δ as h→ 0.

We show the fitting result of the last configuration (h = 2−7)
for the standard assembly method and for the fast assembly
method with respect to δ1 in Fig. 2. Since the difference be-
tween these results is visible only after significant zooming (cf.

6

 3×10-5

 4×10-5

 5×10-5

 6×10-5

 7×10-5

 8×10-5

 9×10-5

 1×10-4

 0.001 0.01 0.1 1
 0

 20

 40

 60

 80

M
S

E

re
la

tiv
e

as
se

m
bl

y
co

st
 in

 %

δ

MSE
observed cost
observed time

expected 𝛹

 0×100

 1×10-5

 2×10-5

 3×10-5

 4×10-5

 5×10-5

 6×10-5

 7×10-5

 8×10-5

 9×10-5

 1×10-4

 0.001 0.01 0.1 1
 0

 20

 40

 60

 80

M
S

E

re
la

tiv
e

as
se

m
bl

y
co

st
 in

 %

δ

MSE
observed cost
observed time

expected 𝛹

Figure 1: Third example – the trade-off between accuracy and computational costs. Left: d = 3, right: d = 5

Figure 2: Fourth example – fitting results for h = 2−7. Left and bottom right: Fast assembly with δ1. Top right: Standard assembly.

Fig. 2, right), we show the entire surface only for the fast method
in Fig. 2, left. We note that the oscillations of the control net
(black lines) induced by the grid projection are barely visible.

4.4. Influence of noise in the data

The fifth example is devoted to the impact of noise in the data,
which is always present in applications. We repeat the computa-
tions of the previous example for the largest instance δ = 0.0625
– with relative assembly costs of approximately 20% – but this
time we add randomly generated noise to the data. More pre-
cisely, the data points are perturbed by random vectors, which
are uniformly distributed in balls of radii r1 = 2e−6, r2 = 1e−5,
r3 = 5e−5, and r4 = 2.5e−4.

Fig. 4 shows the impact of the noise on the mean square er-
ror, both for fast (solid lines) and standard (dashed lines) assem-
bly. We observe that the difference of the error is negligible if
the noise level is high, while the computational costs of the fast
method are significantly lower. For a lower noise level, however,
the fast assembly algorithm needs more control points to achieve
the same accuracy of the fitting result.

4.5. Industrial example

Finally, we present an example from industry, where we ap-
proximate a scan of a turbine airfoil consisting of 301,219 points.
This is an unusually large number of data for a part of this size.
Due to (among other causes) the high computational costs of the
standard method, one would normally decimate (and possibly
smoothen) the data, in order to arrive at a point cloud with fewer
vertices. However, the use of the fast assembly method allows us
to deal with the full data set directly.

Fig. 5 visualizes the results obtained by fitting a bicubic spline
surface1 with 50×200 control points and uniform knot vectors to
this point cloud, obtained with the standard method (left) and via
fast matrix assembly (right) with m̂ = 1000 and n̂ = 4000. Note
that the surface has a rectangular (i.e., non-square) shape, hence
we choose now different values of these two parameters. There
are no visible differences between the two surfaces, which indi-
cates that a (well chosen) grid projection has no negative effect
on the quality of the resulting surface.

1We use a non-periodic spline surface even though the data were scanned
from a periodic surface, hence we get a non-watertight result.

7

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

2-7 2-6 2-5 2-4 2-3 2-2 2-1

M
S

E

mesh size h

δ1
δ2
δ3
δ4

standard
h4

Figure 3: Fourth example – rate of convergence for different values of δ.

10-6

10-5

10-4

10-3

10-2

10-1

100

2-7 2-6 2-5 2-4 2-3 2-2 2-1

M
S

E

mesh size h

r1=2e-6 fast
r1=2e-6 standard

r2=1e-5 fast
r2=1e-5 standard

r3=5e-5 fast
r3=5e-5 standard

r4=2.5e-4 fast
r4=2.5e-4 standard

Figure 4: Fifth example – rate of convergence for data with noise.

We investigate the influence of the choice of the grid on the
quality and precision of the resulting surface and the computa-
tional costs in more detail. Table 6 lists the results for three grid
configurations and for the standard method. While the errors are
comparable, both in terms of the maximum error and the per-
centage of points that fulfill the tolerance (10−5m), we note that
the computational costs of the fast assembly method are much
lower. The experimentally observed numbers of flops are even
smaller than the estimate Ψ (note that, unlike in Theorem 3, we
have m , n and m̂ , n̂). The measured values of the assembly
time confirm these observations. Even the finest grid provides a
computational advantage, as in this configuration the assembly
step takes around 70% of the total fitting time when using the
standard method. 2

Fig. 6 shows the control nets for three grid configurations in
a region corresponding to the top left part of Fig. 5, and com-
pares them to the results obtained by the standard method. The
reflection lines of the corresponding region are shown for each
grid configuration and the standard method in Fig. 7. We can
see that the standard method and the finest of the three projection
grids (which are the two settings shown in Fig. 5) yield simi-
lar mesh quality. While the remaining two configurations give
surfaces that satisfy the fitting requirements with respect to the
maximum error and the percentage of points fulfilling the toler-

2Note however, that for a fixed number of data points h-refinement leads to
a bigger linear system while the assembly costs remains more or less the same;
consequently, the cost of solving the system dominates as h→ 0.

ance, the oscillating control nets indicate that a wrong choice of
m̂ and n̂ may have a negative impact on the surface quality. This
can be observed in the reflection lines as well, where the oscilla-
tions from the control net clearly show on the upper edge of the
surface in the coarsest setting (Fig. 7 (d)) and are already notica-
ble for the grid size in the middle (Fig. 7 (c)). Note that we did
not use any regularization or smoothing terms in this example.

5. Conclusion

Least-squares fitting by tensor-product spline surfaces is a
classical approach for approximating unstructured data and is
widely used in industry. However, assembling the system
of equations via the straightforward approach can be time-
consuming. In this paper, we proposed to accelerate this process
by employing the technique of sum factorization, which is al-
ready a well-established tool in the context of isogeometric anal-
ysis. We showed that it is possible to obtain significant gains
concerning the computation time. However, we also identified
two limitations of the method:

First, the fast assembly method may lead to a reduction of fit-
ting accuracy. In particular, this is true when using coarse grids
in the case of highly accurate data. For very precise data, we
recommend to employ either the standard assembly algorithm
or fine grids, which do not lead to computational disadvantages,
as noted in Section 3.3. Nevertheless, the full potential of the
method should definitely be exploited in the case of data with a
significant level of noise.

Second, the fast assembly algorithm may entail a deterioration
of the control mesh quality. Further investigations are needed to
understand this phenomenon, and how it can be addressed by in-
voking additional regularization or fairing terms (which are well
known to admit efficient assembly algorithms). However, it is
clear that a reasonably fine grid size has to be selected in appli-
cations.

Finally, we note that the generalization to adaptive spline re-
finement, e.g., via hierarchical B-splines, is of vital interest and
deserves to be studied in more detail.

Acknowledgement

The authors express their appreciation for supports provided
by the Austrian Science Fund (Project No. S11708) and by the
European Research Council through the CHANGE project (GA
No. 694515). Maodong Pan was also supported by the Na-
tional Natural Science Foundation of China (No. 12101308) and
the Natural Science Foundation of Jiangsu Province, China (No.
BK20210268). This support is gratefully acknowledged.

References

[1] J. Hoschek, D. Lasser, Fundamentals of computer aided geometric design,
AK Peters, Ltd., 1993.

[2] F. Cheng, A. Goshtasby, A parallel B-spline surface fitting algorithm, ACM
Transactions on Graphics 8 (1) (1988) 41–50.

[3] D. Forsey, R. Bartels, Surface fitting with hierarchical splines, ACM Trans-
actions on Graphics (TOG) 14 (2) (1995) 134–161.

[4] V. Weiss, L. Andor, G. Renner, T. Várady, Advanced surface fitting tech-
niques, Computer Aided Geometric Design 19 (1) (2002) 19–42.

[5] V. Krishnamurthy, M. Levoy, Fitting smooth surfaces to dense polygon
meshes, in: Proc. 23rd Ann. Conf. on Computer Graphics and Interactive
Techniques (SIGGRAPH), 1996, pp. 313–324.

[6] M. Eck, H. Hoppe, Automatic reconstruction of B-spline surfaces of arbi-
trary topological type, in: Proc. 23rd Ann. Conf. on Computer Graphics
and Interactive Techniques (SIGGRAPH), 1996, pp. 325–334.

8

Figure 5: Industrial example – result of least-square fitting with the standard matrix assembly (left) and with the fast matrix assembly.

grid size maximum error % of points within tolerance relative assembly costs time
Ψ experimentally observed

m̂ = 250, n̂ = 1000 6.84e−5 94.04% 12.47% 11.02% 8.02%
m̂ = 500, n̂ = 2000 6.82e−5 93.95% 19.33% 16.60% 11.86%

m̂ = 1000, n̂ = 4000 6.84e−5 93.85% 31.38% 25.54% 19.35%
standard method, m̂ = n̂ = ∞ 6.84e−5 93.84% n/a 100% 100%

Table 6: Industrial example – comparison of errors and assembly costs for various grid sizes.

(a) (b)

(c) (d)

Figure 6: Industrial example – B-spline control nets of the surfaces obtained by least-squares fitting with (a) standard matrix assembly and fast matrix assembly with
(b) m̂ = 1000, n̂ = 4000, (c) m̂ = 500, n̂ = 2000, (d) m̂ = 250, n̂ = 1000.

[7] G. Greiner, K. Hormann, Interpolating and approximating scattered 3D data
with hierarchical tensor product B-splines, in: Surface Fitting and Multires-
olution Methods, Vanderbilt University Press, 1997, pp. 163–172.

[8] T. Várady, R. Martin, Reverse engineering, in: G. Farin, J. Hoschek, M.-
S. Kim (Eds.), Handbook of Computer Aided Geometric Design, North-
Holland, 2002, Ch. 26, pp. 651–682.

[9] M. Floater, Parametrization and smooth approximation of surface triangu-
lations, Computer Aided Geometric Design 14 (3) (1997) 231–250.

[10] M. Floater, K. Hormann, Surface parameterization: A tutorial and survey,
in: Advances in Multiresolution for Geometric Modelling, Springer, Berlin
Heidelberg, 2005, pp. 157–186.

[11] J. Hoschek, Intrinsic parametrization for approximation, Computer Aided

9

(a) (b)

(c) (d)

Figure 7: Industrial example – Enlarged view of the reflection lines of the four surfaces in the previous figure.

Geometric Design 5 (1988) 27–31.
[12] B. Sarkar, C.-H. Menq, Parameter optimization in approximating curves

and surfaces to measurement data, Computer Aided Geometric Design 8 (4)
(1991) 267–290.

[13] H. Pottmann, S. Leopoldseder, M. Hofer, Approximation with active B-
spline curves and surfaces, in: 10th Pacific Conference on Computer
Graphics and Applications, IEEE, 2002, pp. 8–25.

[14] B. Jüttler, Surface fitting using convex tensor-product splines, Journal of
Computational and Applied Mathematics 84 (1) (1997) 23–44.

[15] J. Hoschek, R. Müller, Turbine blade design by lofted B-spline surfaces,
Journal of Computational and Applied Mathematics 119 (1–2) (2000) 235–
248.

[16] G. Kiss, C. Giannelli, U. Zore, B. Jüttler, D. Großmann, J. Barner, Adaptive
CAD model (re-)construction with THB-splines, Graphical Models 76 (5)
(2014) 273–288.

[17] C. Bracco, C. Giannelli, D. Großmann, A. Sestini, Adaptive fitting with
THB-splines: Error analysis and industrial applications, Computer Aided
Geometric Design 62 (2018) 239–252.

[18] C. Feng, Y. Taguchi, FasTFit: A fast T-spline fitting algorithm, Computer–
Aided Design 92 (2017) 11–21.

[19] Z. Lu, X. Jiang, G. Huo, D. Ye, B. Wang, Z. Zheng, A fast T-spline fitting
method based on efficient region segmentation, Computational and Applied
Mathematics 39 (2020) 55.

[20] G. Kermarrec, P. Morgenstern, Multilevel T-spline approximation for scat-
tered observations with application to land remote sensing, Computer–
Aided Design 146 (2022) 103193.

[21] C. Deng, H. Lin, Progressive and iterative approximation for least squares
B-spline curve and surface fitting, Computer–Aided Design 47 (2014) 32–
44.

[22] M. Liu, B. Li, Q. Guo, C. Zhu, P. Hu, Y. Shao, Progressive iterative ap-
proximation for regularized least square bivariate B-spline surface fitting,
Journal of Computational and Applied Mathematics 327 (2018) 175–187.

[23] D. Rios, B. Jüttler, LSPIA, (stochastic) gradient descent, and parameter
correction, Journal of Computational and Applied Mathematics 406 (2022)
113921.

[24] S. Orszag, Spectral methods for problems in complex geometrics, in: Nu-
merical Methods for Partial Differential Equations, Elsevier, 1979, pp. 273–
305.

[25] P. Antolin, A. Buffa, F. Calabrò, M. Martinelli, G. Sangalli, Efficient matrix
computation for tensor-product isogeometric analysis: The use of sum fac-
torization, Computer Methods in Applied Mechanics and Engineering 285
(2015) 817–828.

[26] F. Calabrò, G. Sangalli, M. Tani, Fast formation of isogeometric Galerkin
matrices by weighted quadrature, Computer Methods in Applied Mechan-
ics and Engineering 316 (2017) 606–622.

[27] A. Bressan, S. Takacs, Sum factorization techniques in isogeometric analy-
sis, Computer Methods in Applied Mechanics and Engineering 352 (2019)
437–460.

[28] R. Hiemstra, G. Sangalli, M. Tani, F. Calabrò, T. Hughes, Fast formation
and assembly of finite element matrices with application to isogeometric
linear elasticity, Computer Methods in Applied Mechanics and Engineering
355 (2019) 234–260.

[29] M. Pan, B. Jüttler, A. Giust, Fast formation of isogeometric Galerkin ma-
trices via integration by interpolation and look-up, Computer Methods in
Applied Mechanics and Engineering 366 (2020) 113005.

[30] M. Pan, B. Jüttler, A. Mantzaflaris, Efficient matrix assembly in isogeo-
metric analysis with hierarchical B-splines, Journal of Computational and
Applied Mathematics 390 (2021) 113278.

[31] M. Pan, B. Jüttler, F. Scholz, Efficient matrix computation for isogeomet-
ric discretizations with hierarchical B-splines in any dimension, Computer
Methods in Applied Mechanics and Engineering 388 (2022) 114210.

10

