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Abstract

We generate hierarchical T-meshes by repeatedly inserting new line segments, in order to
adapt both the size and the shape of the cells to the specific requirements of the underlying
application. The associated spaces of bilinear spline functions are spanned by the locally
refined (LR) B-splines of Dokken et al. (2013), which are products of univariate B-splines
defined over local knot vectors. Our method guarantees that these functions are linearly
independent for the obtained class of hierarchical T-meshes. Furthermore, they even possess
the property of local linear independence, since exactly 4 functions take non-zero values on
each cell of the mesh, and they form a partition of unity without the need to perform
additional scaling or truncation.

The correctness of our refinement algorithm is verified by enumerating the (newly in-
troduced) local configurations, which represent the possible topologies of the mesh in the
vicinity of a cell. It is then shown that the method works well in all the resulting situations.
The fairly large number (385) of cases sheds some light on the challenges associated with
linear independence in the context of LR B-spline refinement.

Additionally we apply our method to meshes that possess the additional property lo-
cal semi-regularity (first studied by Weller and Hagen, 1995), where only 49 topologically
different situations may arise. However, we observe that the resulting class of hierarchi-
cal T-meshes is less flexible, which leads to a substantial amount of excess refinement in
applications.

Finally we note that the same construction can be applied to generate basis functions
for Cs–smooth spline spaces of degree p = 2s + 1, again with the property of local linear
independence.
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1. Introduction

Generalizations of tensor-product splines that support adaptive refinement form an im-
portant mathematical technology for Geometric Modeling and Isogeometric Analysis (IGA).
Several options are available:

Hierarchical B-splines were established by Forsey and Bartels (1988), who introduced
the concepts of local refinement and multi-resolution editing, thereby breaking the tensor-
product nature of traditional NURBS. The problem of their linear independence was ad-
dressed in the PhD thesis of Kraft (1998). He provided a specific selection mechanism that
creates a system of (linearly independent) basis functions. While linear independence is not
essential in some geometric design applications, it is a basic requirement in IGA. More than
ten years later, Giannelli et al. (2012) introduced the truncation mechanism that modifies
Kraft’s basis to obtain a partition of unity. These splines found applications in geometric
design and IGA (Kiss et al., 2014; Zheng and Chen, 2022).

T-splines were invented by Sederberg et al. (2003) in order to address the limitation of
NURBS regarding T-junctions in the control meshes for geometric modeling. The linear
independence of the T-spline blending functions was discussed by Li et al. (2012) and Scott
et al. (2012), who noted that this property can be guaranteed only for the restricted sub-
set of “analysis-suitable” (AS) T-splines. T-splines were used for geometric modeling and
numerical simulation (Bazilevs et al., 2010; Wang et al., 2013). The truncation mechanism
was extended to T-splines by Wei et al. (2017).

Polynomial splines over hierarchical T-meshes (PHT-splines) were introduced by Deng
et al. (2008) in the bicubic case as spaces of functions with C1 smoothness. For meshes
created by cross insertion, the spaces are equipped with a non-negative basis that forms
a partition of unity, which is constructed by locally modifying tensor-product B-splines
with the help of their Bézier representations. The potential of PHT-splines for geometric
modeling and analysis has been demonstrated in a number of publications (Li et al., 2007;
Wang et al., 2011; Li et al., 2016). Several variants of PHT-splines were studied in order to
avoid the so-called decay phenomenon and to increase the flexibility (Kang et al., 2015; Zhu
and Chen, 2017; Ni et al., 2019).

Locally refined B-splines (LR B-splines), which were invented by Dokken et al. (2013),
provide another approach to the local refinement of spline spaces. Some properties of these
splines were established by Bressan (2013), in particular the non-nested support (N2S) condi-
tion that characterizes local linear independence. Based on these results, Bressan and Jüttler
(2015) proposed a refinement strategy that mimics the construction of hierarchical splines.
Furthermore, Patrizi et al. (2020) proposed the non-nested support & structured refinement
(N2S2) strategy, which uses local tensorization with respect to one direction – similar to the
notion of local semi-regularity studied by Weller and Hagen (1995) – in order to eliminate
pairs of basis functions with nested supports. Patrizi and Dokken (2020) explored necessary
conditions for guaranteeing the linear independence of LR B-splines. Various applications to
geometric design and simulations and generalizations to non-polynomial spline spaces have
also been presented in the literature (Johannessen et al., 2014; Skytt et al., 2015; Bracco
et al., 2016).
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In the present paper, we discuss a simple algorithm that generates hierarchical T-meshes
by repeatedly inserting new line segments, in order to adapt freely the size and the shape
of the cells to the specific requirements of the underlying application. Compared to the
existing constructions, we gain additional flexibility for the geometry of the mesh.

More precisely, we adopt the framework of LR B-splines to construct the basis functions
for PHT-splines, i.e., for the Cs-smooth bivariate tensor-product spline spaces of degree
p = 2s+ 1 on hierarchical T-meshes. Our method guarantees that the generated functions
possess the properties of local linear independence and partition of unity. Furthermore, we
apply the proposed refinement algorithm to the more restricted meshes with the additional
property of local semi-regularity. The correctness of the new algorithm is verified both
theoretically and experimentally.

The paper is organized as follows. Section 2 establishes the basic concepts and notations
needed to describe the new refinement algorithm. In Section 3, we introduce the (standard-
ized) local configurations for analyzing the properties of the corresponding spline space. The
refinement algorithm is presented in Section 4 and its correctness is verified theoretically in
Section 5. Several numerical results are presented in Section 6 to validate the effectiveness of
the proposed algorithm. Finally, we summarize the paper and identify directions for future
work.

2. Preliminaries

This section establishes the notation needed to describe the refinement algorithm. Fur-
thermore, we discuss basic properties of the resulting spline basis.

2.1. B-splines and the sets of local knots

We construct spaces of spline functions with domain Ω = (a, b)2, where we assume that
the boundaries satisfy a < b. The spaces are spanned by sets of bilinear B-splines

β(X,Y )(u, v) = N1
X(u)N1

Y (v) (1)

that are defined by two local knot vectors X = (x, x′, x′′) and Y = (y, y′, y′′). For visu-
alization we associate the anchor point (x′, y′) with each B-spline. In order to build the
generating system

B(`) = {β(X,Y ) : (X, Y ) ∈ K(`)} (2)

that spans the spline space, we employ pairs (X, Y ) that vary in the finite sets of local knots
(more precisely, of pairs of knot vectors)

K(`) ⊂ {((x, x′, x′′), (y, y′, y′′)) : x < x′ < x′′, y < y′ < y′′} .
These sets will be created by an iterative refinement procedure, and the upper index ` =
0, 1, 2, . . ., which is called the level, indicates the number of steps. The iteration is initialized
by choosing

K(0) = {((a− 1, a, b), (a− 1, a, b)), ((a− 1, a, b), (a, b, b+ 1)),

((a, b, b+ 1), (a− 1, a, b)), ((a, b, b+ 1), (a, b, b+ 1))} . (3)
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This set of local knots corresponds to the four bilinear tensor-product Bernstein polynomials
B(0) (which are obtained as restrictions of bilinear B-splines) on Ω. Note that we use
additional “phantom” knots at a− 1 and b+ 1.

In each step of the iteration we generate a new set K(`+1) by splitting all the knot vector
pairs in K(`), using refinement operators that are based on sets of splits. These sets and the
operators are described in the next two sections:

2.2. The sets of splits

We employ vertical and horizontal splits, which are simply line segments

V =
{
{x} × [y, y′] : x, y, y′ ∈ [a− 1, b+ 1], y < y′

}
and

H =
{

[x, x′]× {y} : x, x′, y ∈ [a− 1, b+ 1], x < x′
}
,

(4)

respectively. The end points of each split (line segment)

v = {x} × [y, y′] ∈ V or h = [x, x′]× {y} ∈ H

are denoted as

∂v = {x} × {y, y′} or ∂h = {x, x′} × {y} , (5)

respectively.
We consider a sequence (S(`))`=0,1,... of sets of splits. Each instance is the union of a finite

number of vertical and horizontal splits, and the sequence is initialized by the set

S(0) = {a− 1, a, b, b+ 1}×[a− 1, b+ 1] ∪ [a− 1, b+ 1]×{a− 1, a, b, b+ 1} (6)

that covers the knot line segments of the four bilinear B-splines in B(0).
In each step of the iteration, we generate the next set of splits iteratively by adding a

single split (line segment) s, which is called the new split, to the previous set of splits. The
new split is either horizontal or vertical and it is required to connect two points from the
previous level,

∃s ∈ V ∪H : S(`+1) = s ∪ S(`) ∧ ∂s ⊂ S(`) . (7)

The sets of splits S(`) define the cells

C(`) = CC(Ω \ S(`)), (8)

where CC(S) is the set of connected components of a set S. The closures of the cells C(`)

form a hierarchical T-mesh that covers the closure Ω of the domain.
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2.3. The fixed-point refinement operator

For a given sequence of sets of splits S(`), we generate the associated sets of local knots
K(`) with the help of the fixed-point refinement operator, which is defined as follows:

Firstly, each vertical (or horizontal) line segment v or h defines an associated refinement
operator Rv (Rh) that acts on the knot vector pairs according to

Rv(X, Y ) =





{((x, x̂, x′), (y, y′, y′′)), ((x̂, x′, x′′), (y, y′, y′′))} if x̂ ∈ (x, x′) ∧ [y, y′′] ⊆ [ŷ, ŷ′] ,

{((x, x′, x̂), (y, y′, y′′)), ((x′, x̂, x′′), (y, y′, y′′))} if x̂ ∈ (x′, x′′) ∧ [y, y′′] ⊆ [ŷ, ŷ′] ,

{((x, x′, x′′), (y, y′, y′′))} otherwise ,

where v = {x̂} × [ŷ, ŷ′], X = (x, x′, x′′) and Y = (y, y′, y′′) (and analogously for a horizontal
line segment). See Fig. 1 for a visualization. Note that we do not allow multiple knots.

x x̂ x′ x′′
y

y′

y′′

x x̂x′ x′′
y

y′

y′′

x̂x x′
y

y′

y′′

x′ x̂ x′′
y

y′

y′′

x̂ x′ x′′
y

y′

y′′

y

y′

y′′

x x̂ x′

Figure 1: Refining a bilinear B-spline by applying a vertical split v = x̂ × [ŷ, ŷ′] with [y, y′′] ⊆ [ŷ, ŷ′] and
x̂ ∈ (x, x′) (left) or x̂ ∈ (x′, x′′) (right).

Secondly, these refinement operators are extended to the sets of local knot vectors K(`),

RvK
(`) =

⋃

(X,Y )∈K(`)

Rv(X, Y ) and RhK
(`) =

⋃

(X,Y )∈K(`)

Rh(X, Y ) .

Furthermore we generalize them to sets of splits via

RS(`+1)K(`) =
⋃

v∈V
v⊂S(`+1)

RvK
(`) ∪

⋃

h∈H
h⊂S(`+1)

RhK
(`) .

Note that we consider all the vertical or horizontal line segments in
⋃
S(`+1).

Finally we apply the splits repeatedly until the local knots are not modified anymore,

R?
S(`+1)K

(`) = Rn
S(`+1)K

(`) such that n ∈ N fulfills Rn+1
S(`+1)K

(`) = Rn
S(`+1)K

(`) ,
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where
Rn
S(`+1)K

(`) = RS(`+1)(RS(`+1)(. . . RS(`+1)(︸ ︷︷ ︸
n times

K(`)) . . .)) .

We shall refer to R?
S(`+1) as the fixed-point refinement operator.

Summing up, the local knots of level ` + 1 are generated by applying the fixed-point
refinement operator with respect to the splits of level `+ 1 to the local knots of the previous
level,

K(`+1) = R?
S(`+1)K

(`) .

As shown by Dokken et al. (2013), the associated generating system – and hence also the
space spanned by it – is independent of the splits and their ordering. In other words, each
set K(`) of local knot vectors is fully determined by the set S(`).

2.4. TABs: T-meshes with Associated Bilinear B-splines

Summing up, for each level ` we get a triplet

µ(`) = (Ω, S(`), K(`)) ` = 0, 1, . . . (9)

that defines a T-mesh with Associated Bilinear B-splines (TAB) on the domain Ω. We chose
the Greek character µ to represent specific instances of these triplets since we essentially
refer to a mesh.

In the next sections we will also consider more general TABs, independently of an iter-
ative refinement procedure. They take the form

µ = (∆, S,K) (10)

with an arbitrary domain ∆ that is either equal to Ω or to a subset thereof (e.g., a single cell).
As before, the sets S and K consist of splits and local knots, respectively. The associated
bilinear B-splines then form the set

B = {β(X,Y ) : (X, Y ) ∈ K}

and the cells C = CC(∆ \ S) are again the connected components of ∆ \ S.

3. The local and the standardized local configurations

In order to study the properties of the spline space, we analyze the active B-splines on
a single cell c ∈ C.

3.1. The local configurations

We consider the relevant basis functions and their knot vectors,

Bc = {β(X,Y ) ∈ B : β(X,Y )|c 6= 0} and Kc = {(X, Y ) ∈ K : β(X,Y )|c 6= 0} ,
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and we collect the knots1 in two vectors

Xc =
⋃

(X,Y )∈Kc

X and Yc =
⋃

(X,Y )∈Kc

Y .

The support extension of the cell

ĉ =
⋃

β(X,Y )∈Bc

supp β(X,Y ) (11)

is the closed set formed by the union of the supports of all the B-splines that are non-zero
on it. The geometry of the mesh in the vicinity of a cell is described by the set of local splits

Sc =
⋃

x∈Xc; y,y′∈Yc
{x}×[y,y′]⊂S∩ĉ

{x} × [y, y′] ∪
⋃

x,x′∈Xc; y∈Yc
[x,x′]×{y}⊂S∩ĉ

[x, x′]× {y}

that are relevant for the cell. The local configuration λ of a cell c ∈ C is the triplet

λ = (c, Sc, Kc) . (12)

The local configurations characterize two properties of the TAB:

• The system Bc of B-splines for a cell c possesses the property of local linear indepen-
dence (LLI) if |Bc| = 4 is satisfied by all cells c. Clearly, local linear independence
implies the linear independence of B.2 LLI also implies that the B-splines form a
partition of unity without scaling (Bressan and Jüttler, 2015, Theorem 4).

• The local configuration is vertically semi-regular (Weller and Hagen, 1995) if |Xc| = 4
and the knot vector pairs Kc satisfy

X ∈ {(x, x′, x′′), (x′, x′′, x′′′)} ∀(X, Y ) ∈ Kc , (13)

where Xc = (x, x′, x′′, x′′′). Horizontally semi-regular cells are defined analogously.
We say that a TAB has the property of local semi-regularity (LSR) if all the local
configurations are vertically or horizontally semi-regular. LLI is implied by LSR.

3.2. Standardized local configurations

Even if the knot numbers are bounded, the local configurations vary in an infinite set.
However, the behaviour of the refinement algorithm (which will be specified later) depends
solely on the topology, which is captured by the standardized local configuration.

We use the two standardization functions

ξc : Xc 7→ 2Z + 1 and ηc : Yc 7→ 2Z + 1 ,

which are uniquely determined by requiring that

1Applying the set union operator to the local knot vectors X and Y involves a slight abuse of notation
since these vectors need to be considered as sets. Moreover, we represent the results again as vectors, with
elements sorted in ascending order.

2LLI is an essential requirement for the construction of hierarchical spline bases (Kraft, 1998), and it
simplifies the derivation of spline projectors (Giust et al., 2020).
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Figure 2: Left: All the active basis functions on the blue cells are represented by their anchor points (red
squares). A new split is depicted in red. Middle and right: The associated standardized configurations are
shown for the left cell (middle) and for the right cell (right). The standardized split can be seen for the
second configuration.

• they are strictly increasing,

• values at adjacent knots differ by 2 and

• the knots bounding the x- and the y-range of c are transformed into −1 and 1.

Applying them to the local configuration gives the standardized set of local knots

K̃c = {(ξc(X), ηc(Y )) : (X, Y ) ∈ Kc}

and the standardized sets of local splits

S̃c =
⋃

{x}×[y,y′]⊂Sc; y<y′

{ξc(x)} × [ηc(y), ηc(y
′)] ∪

⋃

[x,x′]×{y}⊂Sc;x<x′

[ξc(x), ξc(x
′)]× {ηc(y)} .

The cell c is transformed into (−1, 1)2, see Fig. 2. This procedure transforms any local
configuration (12) into an associated standardized local configuration

σ = ( (−1, 1)2, S̃c, K̃c)

that possesses the same characteristics (number of basis functions, local linear independence,
semi-regularity) as the original configuration.

For further reference, we establish the algorithm

Extract&Standardize(TAB µ) (14)

that transforms any TAB (see Eq. (10)) into the associated set

{( (−1, 1)2, S̃c, K̃c) | c ∈ CC(∆ \ S)}

of standardized local configurations.
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Algorithm: Insert&Extend(new split s, TAB µ))

1 global LSR;
2 finished ← false;
3 while not finished do
4 S ← s ∪ S;
5 K ← R?

SK;
6 B ← {β(X,Y ) : (X, Y ) ∈ K}; /* see also Eq. (2) */

7 C ← CC(∆ \ S); /* see also Eq. (8) */

8 finished ← true;
9 for c ∈ C do

10 if |Bc| 6= 4 or (LSR = “on” and (c, Sc, Kc) is not semi-regular) then
11 s← s+ ∩ ĉ;
12 if s 6⊂ S then
13 finished ← false;
14 break; /* exit the for loop */

15 return (∆, S,K);

4. The split insertion algorithm

Our refinement procedure, which is described by Algorithm Insert&Extend (see page 9),
inserts a new split s into a TAB µ = (∆, S,K). It proceeds as follows:

• The input consists of a new split s and a TAB µ.

– The TAB is a triplet that contains the domain ∆, the set S of already existing
splits and the set K of local knots, cf. (10).

– The new split s is required to be feasible, in the sense that it splits at least one
basis function and contains no parts that are unnecessary. More precisely, a split
s ∈ V ∪H is said to be elementary feasible, if

∃(X, Y ) ∈ K : Rs(X, Y ) 6= {(X, Y )} ∧ s ⊂ supp β(X,Y ) .

A feasible new split is an element of V∪H, which is a union of elementary feasible
splits and splits that are already present in S.

In addition, the globally defined flag LSR specifies which local configurations are ac-
cepted by the algorithm. While local linear independence is always required, local
semi-regularity is additionally enforced if this variable is set to “on”. We say that a
TAB is acceptable if the local configurations of all cells are acceptable (i.e., they do
not pass the test in line 10).

• The algorithm proceeds by adding the new feasible split s to S and simultaneously
extending it – while keeping the feasibility – until all configurations are acceptable or if
the remaining violations (i.e., non-acceptable local configurations) cannot be resolved
by extending it further.
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• First, we apply the refinement operator to the set of local knots. Second, we generate
the associated basis functions and we identify the cells. This enables us to check the
acceptability of the local configurations for all the cells (see line 10).

• In order to deal with non-acceptable local configurations, we perform extensions of the
new split (see line 11). These are defined with the help of the support extension ĉ,
see (11), and the vertical or horizontal line

s+ =

{
{x} × R if s = {x} × [y, y′] ∈ V
R× {y} if s = [x, x′]× {y} ∈ H

(15)

that contains the initial new split s. The feasibility of the new split is preserved by
this extension. We keep only the information about the extended part of the new split
since the remaining part has already been added to the set of splits S at this stage.

• The control variable “finished” takes the value false (line 13) only if the remaining
violations lead to a further extension of the new split s. Thus, the algorithm terminates
if either all local configurations are acceptable or if the split extensions triggered by
the remaining violations are already present in S.

5. Generating acceptable meshes

We state the main result:

Theorem. For each sequence (s(`))`=1,2,... of feasible splits, the algorithm Insert&Extend
generates acceptable T-meshes with associated bilinear B-splines (TABs)

µ(`+1) = Insert&Extend(s(`+1), µ(`)) , ` = 0, 1, 2, . . . , (16)

from the tensor-product mesh µ(0) = (Ω, S(0), K(0)), cf. Eqns. (3) and (6). The B-splines
span the full bilinear spline space associated with the T-mesh.

More precisely, the algorithm enables refinement by inserting feasible new splits into
TABs, while simultaneously maintaining the properties of local linear independence or local
semi-regularity. The remainder of this section presents the proof of this fact.

5.1. Standardized new splits

First we prepare the proof by presenting a few auxiliary facts and notions. The stan-
dardized local configurations of a TAB created by Insert&Extend depend solely on the
topological relation of the new split and the initial TAB. In order to capture this formally,
we generalize the extraction and standardization procedure.

Firstly, we extend the standardization function ξc (and similarly ηc) by assigning even
integers to the remaining arguments (that are not in Xc) while keeping the monotonicity.
More precisely, the extended standardization function takes the values

ξ+c (x) =





ξc(x) if x ∈ Xc ,

ξc(x)− 1 where x = min{x̃ ∈ Xc : x̃ > x} if x 6∈ Xc and x < maxXc ,

ξc(x) + 1 where x = max{x̃ ∈ Xc : x̃ < x} if x 6∈ Xc andx > minXc .
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Note that the second and the third branch give equivalent results if minXc < x < maxXc.
Secondly, the standardized form of the vertical new split s = {x} × [y, y′] is given by

s̃c = {ξ+c (x)} × [ηc(min([y, y′] ∩ Yc), ηc(max([y, y′] ∩ Yc)] .

Horizontal new splits are dealt with analogously. As an example, Fig. 2 includes a split (left,
shown in red) and the associated standardized split (right, shown in red).

Finally, we use this procedure to establish the generalized version

Extract&Standardize+(new split s, TAB µ)

of the algorithm in (14). It transforms the input of the algorithm Insert&Extend (a split
and a TAB) into the associated set

{
(
s̃c,
(

(−1, 1)2, S̃c, K̃c

))
| c ∈ CC(∆ \ S)}

that is formed by standardized local configurations and the associated standardized splits.

5.2. Compatibility of Extract&Standardize and Insert&Extend

A new split s is said to be saturated if the algorithm Insert&Extend accepts the
resulting mesh without extending the split, i.e., if the condition in line 10 is never satisfied.

Lemma 1. The compositions of the algorithms

Extract&Standardize ◦ Insert&Extend ◦ Extract&Standardize+

and

Extract&Standardize ◦ Insert&Extend

give identical results if applied to a saturated new split s of an acceptable TAB µ.

The example shown in Fig. 3 demonstrates the necessity of the assumption regarding
saturated splits. If a non-saturated split s (solid red) is inserted into the mesh, then the
standardized local configurations obtained from the blue cell are different for the two com-
positions of the algorithms. Indeed, a split extension (dashed red) is triggered by a violation
of the local linear independence on another cell (green), hence it is not considered when per-
forming the initial standardization of the split s and of the blue cell in the first composition
of algorithms.

Proof of Lemma 1. We consider a single cell c in the TAB µ and show that the resulting
standard configurations in the sets obtained by the two compositions of algorithms are
identical. This is obvious if none of the active B-splines is split by s. Otherwise, the
result follows by noting that the original split and its standardized version are topologically
equivalent on the cell’s local configuration, due to the definition of the standardization
procedure. Clearly, this carries over to the resulting standardized configuration. Moreover,
the second composition of algorithms uses the same split on c as the first one, as the split
is not extended by Insert&Extend, due to the assumption that s is saturated.

11
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Figure 3: Saturated splits are a necessary assumption in
Lemma 1. After inserting a split (solid red), the violation of
LLI on the green cell triggers an extension (dashed red), leading
to different standardized configurations of the blue cells.

Figure 4: The standardized tensor-
product configuration for the cell
shown in blue. The red dots are the
anchor points of the four B-splines.

5.3. Insert&Extend generates a finite number of standardized local configurations

Now we consider the set Σ of standardized local configurations. Its elements are TABs
σ = ((−1, 1)2, S,K). The algorithm Insert&Extend followed by Extract&Standar-
dize establishes a relation between them: The TAB σ splits into σ′, represented as

σ  σ′ ,

if there exists a new split s such that

σ′ ∈ Extract&Standardize
(
Insert&Extend(s, σ)

)
.

The new split s can be assumed to be a standardized one, according to Lemma 1. We form
the transitive closure  + of this relation,

σ  + σ′ ⇐⇒ ∃m ∈ Z+ ∃σ1, . . . , σm : σ = σ1  σ2  . . . σm = σ′ ,

and use it to introduce the set of descendants of a local configuration

〈σ〉 = {σ′ : σ  + σ′} .

Lemma 2. The set of descendants 〈τ〉 of the tensor-product configuration τ is finite. More-
over, all the descendants ((−1, 1)2, S,K) have the property of local linear independence.
Additionally, they are all semi-regular if LSR is “on”.

Proof. The relation  defines a directed graph, where the nodes are the standardized local
configurations. We enumerate all the descendants of τ by the following procedure:

1. The set N of non-visited nodes is initialized by {τ}. We also create the set D of
descendants, which is initialized by the empty set.

2. We pick an element σ of N and remove it from the set.

3. All the possible standardized new splits of σ are generated (there are only finitely
many of them).
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Figure 5: The 48 semi-regular standardized local configurations, which are different from the tensor-product
configuration, see Fig. 4. The anchor points of the B-splines are shown as red squares.

4. We call Extract&Standardize(Insert&Extend(s, σ)) for all the new splits s
that were found in the previous step. The resulting standardized local configurations
are added to the set of descendants D. In addition, all the newly found descendants
(the resulting standardized local configurations that were not yet in D) are added to
N .

5. Continue with the second step unless N is empty.

We apply this procedure for both values of the global variable LSR. It terminates in both
cases.

For LSR=“on”, we find 49 standardized local configurations, which are shown in Fig. 4
and Fig. 5. The generation of three of the local configurations is depicted in Fig. 6. All 49
configurations are semi-regular, and therefore also locally linearly independent. Note that
two configurations are considered as equivalent if a rigid displacement (rotation or reflection)
transforms them into each other. Fig. 5 shows only one representative of each equivalence
class.

For LSR=“off”, we find even 385 standardized local configurations. All of them possess

13



Figure 6: Applying the red split to the tensor-product configuration τ (left) produces one descendant
(center). Applying another split (again shown in red) results in two descendants (right). The associated
standardized local configuration are included in Fig. 5 (second, seventh and first configuration in line 1).

the property of local linear independence. Fig. 7 depicts eight selected instances, and the
full list is available in the appendix. 3

Figure 7: Selected standardized local configurations that possess the property of local linear independence
but are not semi-regular.

We are now ready to prove the main result.

5.4. Proof of the Theorem

We consider a sequence of TABs µ(`) = (Ω, S(`), K(`)), ` = 0, . . . , n, which is generated
iteratively by inserting new splits s(1), s(2), . . . , s(n), i.e.,

µ(`+1) = Insert&Extend(s(`+1), µ(`)) . (17)

For each TAB µ(`) there is the associated set

Σ(`) = {((−1, 1)2, S̃(`)
c , K̃(`)

c ) : c ∈ CC(Ω \ S(`)))} = Extract&Standardize(µ(`)) (18)

of standardized local configurations. Without loss of generality, we assume that all the new
splits are saturated. Indeed, calling the refinement algorithm with a non-saturated split
gives the same result as calling it directly with the saturated split s(`+1) that has been found

3A closer inspection reveals that the anchor points are located on the two horizontal lines y = ±1 or on
the two vertical lines x = ±1 in all the 385 cases, where each line carries two of them.
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by the algorithm. More precisely, the split s(`+1) represents the differences between the set
of splits S before and after the application of the procedure. This split is not always unique
since it may or may not contain mesh line segments that were already present. The initial
TAB µ(0) = (Ω, S(0), K(0)) is a tensor-product TAB, hence the associated set of standardized
local configurations is equal to Σ(0) = {τ}.

We prove the theorem by contradiction and assume that all the TABs are acceptable,
except for the final one µ(n) = (Ω, S(n), K(n)). More precisely, there exists a cell ĉ ∈ CC(Ω \
S(n)) with a local configuration

σ? = ((−1, 1)2, S̃
(n)
ĉ , K̃

(n)
ĉ ) ∈ Σ(n)

that is not acceptable.
First we use Lemma 1 to establish the relation

∀σ′ ∈ Σ(`+1) ∃σ ∈ Σ(`) : σ  σ′ (19)

between consecutive sets of standardized local configurations. On the one hand, considering
the left part of Fig. 8, we note that the two horizontal arrows represent the definitions (18)
of the set Σ(`), while the left vertical arrow corresponds to Eq. (17). Lemma 1 then confirms
that the diagram commutes, hence

Σ(`+1) = Extend&Standardize(Insert&Extend(s(`+1),Σ(`))) .

On the other hand, the right-hand side of the figure visualizes the definition of the set of all
the successors of Σ(`),

Σ(`)
 = {σ′ | ∃σ ∈ Σ(`) : σ  σ′} ,

where Ŝ is the set of all the standardized splits. Comparing it with the marked portion of
the left part of the figure confirms (19) by noting that Σ(`+1) ⊂ Σ(`)

 since ŝ(`+1) ⊂ Ŝ.
Second we use this observation to conclude that there exist standardized local configu-

rations σ(1) ∈ Σ(1), . . . , σ(n−1) ∈ Σ(n−1) such that

τ  σ(1)  σ(2) · · · σ? .

This implies σ? ∈ 〈τ〉, which is in contradiction with Lemma 2.
An analysis of the local configurations confirms that there is one basis function for each

cross vertex in the mesh. Consequently, the B-splines span the full bilinear spline space
associated with the T-mesh as their number is equal to the dimension of the spline space,
according to the dimension formula of Deng et al. (2006, Theorem 4.2).

6. Experimental results

In order to validate the effectiveness of the proposed algorithm, we carry out adaptive
approximation of three functions defined on the domain [1, 5] × [1, 5]. The refinement is
initialized by a tensor-product mesh consisting of 4× 4 cells, with 25 bilinear B-splines. All
the numerical tests were performed in C++ using the library G+Smo (Mantzaflaris, 2020).

Given the function, the error tolerance ε and the local semi-regularity condition, the
adaptive approximation procedure repeats the following steps:
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s(`+1) | µ(`) ŝ(`+1) | Σ(`)

µ(`+1) Σ(`+1)

E&S+

E&S

I&E E&S ◦ I&E

∀ŝ ∈ Ŝ | Σ(`)

Σ(`)
 

E&S ◦ I&E

Figure 8: Using Lemma 1 to prove the relation (19), where the labels E&S and I&E represent the algorithms
Extract&Standardize and Insert&Extend, respectively.

1. Mark the cell with the largest approximation error. If this error does not exceed ε,
then terminate the entire procedure.

2. Construct the corresponding split. This step is described in detail below.

3. Perform the Algorithm Insert&Extend with the constructed split and generate the
associated approximating spline.

Recall that the support extension ĉ of a cell c is formed by the union of all the supports
of the active basis functions on this cell, cf. (11). Given the cell and the direction of the
split, the split s is chosen such that it traverses the entire support extension, i.e., such that
it satisfies s = s+∩ ĉ with s+ as defined in (15). In addition, it splits the cell into two smaller
cells having (roughly) equal size. The direction of the split is determined by comparing the
approximation errors of the bilinear interpolants on the vertically or horizontally splitted
cell c. We select the horizontal split if the approximation error on the horizontally splitted
two subcells is smaller than the one in the vertically splitted two subcells, and the vertical
split otherwise. This simple direction indicator, which neglects the effect of T-joints that
might be present, worked sufficiently well in all examples.

6.1. The effect of local semi-regularity (LSR)

First we analyze the effect of LSR condition. In addition to visually judging the quality
of the meshes, we introduce the quantity

RER =
|B(n)|

2n+ 25
− 1 ,

where n is the total number of refinement steps and |B(n)| is the number of basis functions,
measuring the rate of excess refinement that is caused by performing the split extensions.
The initial mesh possesses 25 basis functions and every refinement step creates at least two
new basis functions since it introduces two new cross or boundary vertices in the mesh.
All the additional basis functions are considered as excess refinement caused by the split
extensions.
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Circular arc example. We perform adaptive approximation of the function

f(x, y) = |(x− 1.5)2 + (y − 1)2 − 3.52| (20)

using both versions of the algorithm Insert&Extend. The function is not smooth along
a circular arc. The tolerance ε is chosen as 0.15 in this example.

Fig. 9(a) and Fig. 9(b) show the resulting meshes obtained by switching the LSR con-
dition on or off. It demonstrates that using this condition results in a large number of
additional refinements, and that it essentially prevents truly local refinement. The numbers
(including RER, numbers of cells and basis functions) listed in Table 1 also support this
observation. Without LSR, the algorithm creates a mesh where both the shape and the size
of the cells is adapted to the specific approximation problem. We get smaller cells along the
circular arc, which are aligned with its direction as far as possible.

(a) LSR = “on” (b) LSR = “off”

Figure 9: Circular arc example: The obtained meshes.

6.2. Improvement of mesh quality via dyadic splitting

A closer examination of the meshes in Fig. 9 reveals that certain line segments are not
aligned, see the regions marked in blue. This is caused by the selection of the split, which
always subdivides a cell into two smaller cells of exactly the same size. This results in
additional T-joints.

In order to avoid this phenomenon, we use dyadic splits during the refinement process,
as follows. In order to perform a vertical split of a cell [a, b]× [c, d], we find the lowest level

` = −blog2(b− a)c
17



Example Meshes LSR DS |C(n)| |B(n)| # extensions RER

Circular arc Fig. 9(a) on off 935 903 314 173 %
Fig. 9(b) off off 598 535 76 86 %

Circular arc – revisited Fig. 10(a) on on 858 832 287 153 %
Fig. 10(b) off on 595 535 76 86 %

Three peak example Fig. 11(a) on on 722 701 253 179 %
Fig. 11(b) off on 552 483 44 78 %

Diagonal refinement Fig. 12(a) on on 1,882 1,813 941 248 %
Fig. 12(b) off on 1,134 1,003 121 93 %

Table 1: Information (including the numbers of cells, basis functions (degrees of freedom) and extensions,
and the rate of excess refinement) about the resulting meshes. DS indicates the use of dyadic splitting.

that satisfies b − a > 1
2`

. The x-coordinate of the split is chosen as a number in the set
Z/2` ∩ (a, b), which possesses either one or two elements. In the latter case we pick the one
that is closer to (a+ b)/2. The y-coordinate of a horizontal split is found analogously.

Circular arc example – revisited. We perform the same computations as in the previous
example, but now using dyadic splitting. The resulting meshes are depicted in Fig. 10.
We note that dyadic splitting significantly improves the vertical/horizontal alignment of
the inserted line segments. The numbers reported in Table 1 also indicate the improved
performance. Without LSR, the algorithm again creates a mesh where both the shape and
the size of the cells is adapted to the specific approximation problem.

(a) LSR = “on” (b) LSR = “off”

Figure 10: Circular arc example – revisited: Using dyadic splitting improves the mesh quality.
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6.3. Further examples

We always use dyadic refinement in the remaining examples.

Three peak function. The second function we consider is

f(x, y) =
4∑

i=2

exp(−10
√

(x− i)2 + (y − i)2) (21)

with three peaks around the points (2, 2), (3, 3) and (4, 4). The error tolerance ε is chosen
as 0.02 in this test. Fig. 11 depicts the resulting meshes of approximating this function with
and without LSR, respectively. It indicates that this condition leads to more cells and basis
functions as shown in Table 1. It also reveals that the inserted splits are well aligned since
we use dyadic splitting. Local refinement works reasonably well if LSR is “off”.

(a) LSR = “on” (b) LSR = “off”

Figure 11: The resulting meshes obtained when approximating the three peak function (21).

Diagonal refinement. Next we consider the example

f(x, y) = |x− y| (22)

which is non-smooth along the diagonal x − y = 0. The tolerance ε is chosen as 0.02.
The results presented in Fig. 12 and the numbers listed in Table 1 again show that the
LSR condition induces excess refinements. Local refinement works reasonably well if LSR
is “off”. The shape of some of the cells is quite extreme, since we did not (yet) put any
constraint on the size of the cells.
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(a) LSR = “on” (b) LSR = “off”

Figure 12: The resulting meshes obtained when approximating the function (22) via diagonal refinement.

6.4. Extension to the higher degree splines

By generalizing the definition of bilinear B-splines in Eqns. (1) and (2), we consider four
bicubic B-splines β(X,Y )(u, v) = N3

X(u)N3
Y (v), with the local knot vectors

(X, Y ) ∈ {((x, x, x′, x′, x′′), (y, y, y′, y′, y′′)), ((x, x, x′, x′, x′′), (y, y′, y′, y′′, y′′)),

((x, x′, x′, x′′, x′′), (y, y, y′, y′, y′′)), ((x, x′, x′, x′′, x′′), (y, y′, y′, y′′, y′′))}

for each pair ((x, x′, x′′), (y, y′, y′′)) ∈ K(`). Note that we use knot multiplicity 2 for all the
inner knots, thus C1-smooth B-splines.

Based on the mesh shown in Fig. 10(b), which was created when approximating the
circular arc function (20) using bilinear B-splines, we approximate the circular arc function
using the generated bicubic B-splines via Hermite interpolation. More precisely, the approx-
imating spline and its derivatives match the values of f , fx, fy and fxy at all the cross and
boundary vertices of the hierarchical T-mesh.

Fig. 13 presents the plots of linear and cubic spline functions that approximate the
circular arc function. It demonstrates that the refinement algorithm Insert&Extend
presented in this paper is not limited to the bilinear case, but can be applied to splines of
higher degrees and smoothness as well. Indeed, the generated meshes admit the construction
of splines of degree 2s+ 1 that are Cs-smooth, simply by considering (s+ 1)2 B-splines for
each element of K`.
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(a) Bilinear approximation (b) Enlarged section (c) Bicubic approximation (d) Enlarged section

Figure 13: For the mesh shown in Fig. 10(b), the C0-smooth bilinear and C1-smooth bicubic spline approx-
imations are depicted in (a) and (c). Enlarged sections of the surfaces (marked in black) are presented in
(b) and (d), respectively.

7. Conclusion

We have presented a simple algorithm that produces hierarchical T-meshes by repeated
split insertion. It ensures that the associated spline spaces are equipped with bases consisting
of tensor-product B-splines over local knot vectors that possess the properties of local linear
independence and partition of unity. As its main advantage, our method is able to adapt
both the size and the shape of the cells, while guaranteeing the good properties of the basis.

Since the current framework is limited to Cs-smooth splines of degree p = 2s + 1, we
plan to explore the generalization to other values of the degree in our future work. Clearly,
the extension to the trivariate case would also be highly interesting.

References

Bazilevs, Y., Calo, V.M., Cottrell, J.A., Evans, J.A., Hughes, T.J.R., Lipton, S., Scott, M.A., Sederberg,
T.W., 2010. Isogeometric analysis using T-splines. Comput. Meth. Appl. Mech. Eng. 199, 229–263.

Bracco, C., Lyche, T., Manni, C., Roman, F., Speleers, H., 2016. Generalized spline spaces over T-meshes:
Dimension formula and locally refined generalized B-splines. Applied Mathematics and Computation 272,
187–198.

Bressan, A., 2013. Some properties of LR-splines. Comput. Aided Geom. Des. 30, 778–794.
Bressan, A., Jüttler, B., 2015. A hierarchical construction of LR meshes in 2D. Comput. Aided Geom. Des.

37, 9–24.
Deng, J., Chen, F., Feng, Y., 2006. Dimensions of spline spaces over T-meshes. Journal of Computational

and Applied Mathematics 194, 267–283.
Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z., Feng, Y., 2008. Polynomial splines over hierarchical

T-meshes. Graphical Models 70, 76–86.
Dokken, T., Lyche, T., Pettersen, K.F., 2013. Polynomial splines over locally refined box-partitions. Comput.

Aided Geom. Des. 30, 331–356.
Forsey, D.R., Bartels, R.H., 1988. Hierarchical B-spline refinement, in: Proceedings of the 15th annual

conference on Computer Graphics and Interactive Techniques, pp. 205–212.
Giannelli, C., Jüttler, B., Speleers, H., 2012. THB-splines: The truncated basis for hierarchical splines.

Comput. Aided Geom. Des. 29, 485–498.

21
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Appendix: The 385 standardized local configurations, descendants of the tensor-
product configuration τ , which are used in the proof of Lemma 2
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