
Using Low-Rank Approximations of Gridded Data for Spline Surface Fitting
Dominik Mokrǐs, Bert Jüttler

Using Low-Rank Approximations of Gridded
Data for Spline Surface Fitting

Dominik Mokrǐs, Bert Jüttler

AG Report No. 99
August 24, 2023

www.ag.jku.at

Using Low-Rank Approximations of Gridded Data

for Spline Surface Fitting

Dominik Mokrǐsa,∗, Bert Jüttlerb

aMTU Aero Engines AG, Germany
bInstitute of Applied Geometry, Johannes Kepler University Linz, Austria

Abstract

The paper is devoted to the problem of finding bivariate tensor-product spline (or simi-
lar) functions that approximate gridded data in the least-squares sense. We propose to
apply a low rank approximation of matrices to the data, to find the result by solving a
sequence of univariate fitting problems that can be handled efficiently. This can be seen
as a generalization of the method proposed by Georgieva and Hofreither [1] that combines
cross approximation (which is a particular method for low rank matrix approximation) with
spline interpolation.

While the algorithm yields the best least-squares approximation after r steps, where r
denotes the rank of the data matrix, terminating it earlier yields a low-rank approximation,
which often provides a sufficient level of accuracy. We also present a stopping criterion
(based on a lower error estimate) that allows to use the method efficiently in the situation
when the required number of degrees of freedom is not known in advance.

Keywords: least-squares methods, low-rank approximation, surface fitting, tensor-product
splines
2010 MSC: 65D07

1. Introduction

Surface (re-)construction with tensor-product splines via least squares approximation is
a classical and well-established technique, which is ubiquitous in industrial practice, see [2]
and the references cited therein. The fundamentals of the method are covered by several
textbooks [3, 4]. More advanced techniques have been summarized in [5]. The (seemingly)
alternative approach of Least Squares Progressive Iterative Approximation [6] can be seen as
applying the gradient descent method (or, equivalently, the Richardson iteration method) to
the problem of least squares fitting [7]. This approach enables various accelerating measures
[8] and is beneficial for large data sets.

∗Corresponding author
Email address: dominik.mokris@mtu.de (Dominik Mokrǐs)
URL: www.ag.jku.at (Bert Jüttler)

Preprint submitted to JCAM June 17, 2023

The particular case of structured (i.e., gridded) data allows to process surfaces by simply
applying methods that were established for curves, and this opens the path to employ various
performance-improving measures. The tensor-product formulation of the abstract linear
interpolation scheme, which was already studied by de Boor [9, Chapter XVII], includes
interpolation, least-squares approximation and collocation of a linear differential equation. It
can be employed to parallelize the computation [10]. In the case of surface (re-) construction
from structured data, this corresponds to first interpolating/approximating data slices in one
parametric direction and then interpolating/approximating through the control points (i.e.,
performing lofting) in the other parametric direction, cf. [11, Section 7.2]. The result is
independent of the ordering of the parametric directions. Contrary to the corresponding
statement in the NURBS book of Piegl and Tiller [4, Section 9.4.3], this is also true when
using least-squares approximations that interpolate at the endpoints.

Semi-structured data is used for constructing surfaces via lofting, see [12]. Even for un-
structured data, the process of matrix assembly for least-squares fitting can be significantly
accelerated with the help of a grid projection step (also if the resulting grid is only sparsely
populated) via sum factorization [13].

Georgieva and Hofreither [1] pioneered the use of low rank matrix approximation for
surface reconstruction from structured data, focusing on interpolation, proposing a two-step
procedure that projects a bivariate function into a suitably chosen tensor-product spline
space. Firstly, they create a matrix that contains sampled values of the function at the
Greville abscissae and perform a low rank approximation of that matrix. Secondly, they sum
the contributions of sufficiently many spline interpolants to the obtained rank-1 matrices.

Three methods for low rank matrix approximation were considered by them: Truncated
Singular Value Decomposition (SVD) and Adaptive Cross Approximation (ACA) with and
without pivoting, see [1] and the references cited therein. When the rank is not prescribed
by the application, various stopping (rank selection) criteria can be used instead [14, 15, 16].
In another interesting paper, Pan et al. [17] proposed a method for compact implicit surface
reconstruction via low-rank tensor approximation.

Georgieva and Hofreither [1] compare the performance of these decomposition methods
and notice that while truncated SVD is known to provide the best approximation of a given
rank [18], ACA with pivoting is only slightly less precise and can be efficiently computed
on the fly. While the nice geometric interpretation of the full tensor-product interpolation
method is lost, the possibility of early termination is a substantial advantage from the
efficiency viewpoint.

The present paper presents a generalization of Georgieva and Hofreither’s method. In-
stead of focusing on interpolation, we employ (weighted) least-squares fitting, thus gaining
more flexibility concerning the sampling of the data. Each step of the low rank approxi-
mation of the data matrix yields a tensor-product of two vectors. We show that by fitting
them separately and re-assembling the control points afterwards we arrive at the full tensor-
product least-squares approximation of the data after r iterations, where r is the rank of the
data matrix. Additionally, we use a lower error estimate in order to derive a stopping crite-
rion. We demonstrate that this criterion is very efficient in the situation when least-squares
fitting is combined with refinement of the basis.

2

The remainder of the paper is organized as follows. Section 2 describes in detail how to
reformulate a bivariate (i.e., matrix-valued) least-squares problem as a collection of several
univariate (i.e., vector-valued) problems. Additionally, a lower error estimate is derived.
Section 3 recalls the method of least-squares fitting of gridded data with tensor-product B-
splines and transforms the theory that was presented in the previous section into an efficient
algorithm. This algorithm is then tested on several examples in Section 4.

2. Decomposing least-square solutions of matrix equations

Given matrices X ∈ Rm×p, Y ∈ Rn×q and F ∈ Rm×n with dimensions satisfying m > p
and n > q, we discuss how to solve an over-determined system of equations

F = XCY T (1)

for the unknown matrix C ∈ Rp×q in the least-squares sense,

C = argmin
C′∈Rp×q

‖F −XC ′Y T‖22,2 , (2)

where ‖ · ‖2,2 denotes the Frobenius norm. The number of equations (mn) exceeds the
number of unknowns (pq). The rows of X and Y are assumed to be linearly independent.
Our specific motivation for addressing this problem will be presented in the next section.

It is well known (see [19, Section 1] or [20, Theorem 4.6]) that the solution evaluates to

C =
(
(X>X)−1X>

)
︸ ︷︷ ︸

=X+

F
(
(Y >Y)−1Y T

)T
︸ ︷︷ ︸

=(Y +)T

, (3)

with the two Moore-Penrose pseudoinverses of X and Y , as the Gramian matrices XTX and
Y TY are invertible [21, Lemma 8.4]. This can be equivalently expressed as the fact that the
pseudoinverse of the Kronecker product of two matrices is equal to the Kronecker product
of their pseudoinverses.

This observation leads to what we call the standard method (which has been described
in [22, Section 10.2] in the context of tensor-product spline surface fitting) for solving over-
determined systems of equations (1) in the least-squares sense:

1. Find the auxiliary matrix A =
(
(XTX)−1XT

)
F by solving the linear system

(XTX)A = XTF

with m equations and n right-hand side vectors for the column vectors of A.

2. Find the solution C = A
(
(Y TY)−1Y T)T by solving the linear system

C(Y TY) = AY

with q equations and p right-hand side vectors for the row vectors of C.

3

In the remainder of the paper we consider a decomposition

F =
r∑

j=1

σjuj ⊗ vj = UΣV T (4)

of the given matrix F into a sum of r rank-1 matrices with r ≥ rank(F), where u1, . . .ur are
the column vectors of a matrix U ∈ Rm×r, v1, . . .vr are the column vectors of a matrix V ∈
Rn×r, and Σ = diag(σ1, . . . , σr). The solution C inherits the structure of this decomposition.
This is described in the following result:

Lemma 1. The solution (2) possesses the decomposition

C =
r∑

j=1

σjgj ⊗ hj , (5)

where the vectors gj and hj are the solutions of the least-squares problems

gj = argmin
g′j∈Rp

‖uj −Xg′j‖22 and hj = argmin
h′j∈Rq

‖vj − Y h′j‖22 .

Proof. The vectors gj and hj satisfy the equations

XTXgj = XTuj and Y TY hj = Y Tvj ,

for j = 1, . . . , r, which can be compactly rewritten as

XTXG = XTU and Y TY H = Y TV , (6)

where the matrices G ∈ Rp×r and H ∈ Rq×r possess these vectors as their column vectors.
We substitute (4) into (3) and obtain

C =
(
(X>X)−1X>

)
U︸ ︷︷ ︸

=G

ΣV T
(
(Y >Y)−1Y T

)T
︸ ︷︷ ︸

=HT

= GΣHT ,

since the matrices G and H fulfill the equations (6). This completes the proof, as the
right–hand side of (5) can be compactly rewritten as GΣHT .

Our goal is to construct a low-rank approximation of C by using a partial sum of the
representation given in Lemma 1. For future reference we state a lower error estimate for
the least squares error

ε := ‖F −XCY T‖2,2 ,

which is based on the individual residuals

Ri = ui ⊗ vi −X(gi ⊗ hi)Y
T

that are obtained by considering the decompositions (4) and (5).

4

Lemma 2. The least squares error is bounded from below by

∥∥F −XCY T
∥∥
2,2
≥ εj −

∥∥F −
j∑

i=1

σiui ⊗ vi
∥∥
2,2

, (7)

for any j ≤ r, where εj = ‖∑j
i=1 σiRi‖2,2 is the error of the approximation to the first j

terms in the expansion (4).

Proof. The reverse triangle inequality implies

∥∥F −XCY T
∥∥
2,2

=
∥∥∥

r∑

i=1

σiRi

∥∥∥
2,2
≥ εj −

∥∥∥
r∑

i=j+1

σiRi

∥∥∥
2,2

.

The result then follows by first noting that

∥∥∥
r∑

i=j+1

σiRi

∥∥∥
2,2

= min
C′′∈Rp×q

∥∥∥
r∑

i=j+1

σiui ⊗ vi −XC ′′Y T
∥∥∥
2,2
≤
∥∥∥

r∑

i=j+1

σiui ⊗ vi

∥∥∥
2,2

where the equality is implied by Lemma 1 and the inequality is obtained by considering
C ′′ = 0, and then taking (4) into account.

It should be noted that the lower bound can be evaluated even if only the first j terms
of the expansion (4) are known. This fact will be beneficial when using this lower bound in
an adaptive approximation procedure, as will be described later.

Remark 3. By using the triangular inequality instead of the inverse one in the proof of
Lemma 2 one can obtain an upper bound on the error. These two estimates can then be
summarized as

|ε− εj| ≤
∥∥∥F −

j∑

i=1

σiui ⊗ vi

∥∥∥
2,2

.

3. An algorithm for least-squares fitting of gridded data

We apply Lemma 1 to the problem of least squares fitting of gridded data with separable
weights by tensor-product spline functions. For given points (ξk, η`) and associated data
values dk`, k = 1, . . . ,m and ` = 1, . . . , n, we construct a tensor-product spline function

s(ξ, η) =

p∑

i=1

q∑

j=1

cijMi(ξ)Nj(η)

with control points cij and B-splines Mi and Nj that minimizes the sum of the squared
residuals

m∑

k=1

n∑

`=1

ω2
kν

2
`

(
dk` − s(ξk, η`)

)2
,

5

where ωk and ν` are user-defined non-negative weights.
This is an instance of Problem (2) with

X =



ω1M1(ξ1) · · · ω1Mp(ξ1)

...
. . .

...
ωmM1(ξm) · · · ωmMp(ξm)


 and Y =



ν1N1(η1) · · · ν1Nq(η1)

...
. . .

...
νnN1(ηn) · · · νnNq(ηn)


 , (8)

where cij and fk` = ωkν`dk` are the elements of matrices C and F , respectively. The matrices
X and Y possess maximum rank (i.e., linearly independent rows) if the Schoenberg-Whitney
conditions [23] are satisfied by a subset of the coordinates ξk and η`.

We now present Algorithm LowRankFit, which is based on Lemmas 1 and 2. It generates
an (approximate) solution to the problem of least-squares fitting of gridded data with tensor-
product spline functions.

Algorithm LowRankFit: Construct a low-rank approximation of least-squares fit-
ting of gridded data.

Input : matrices X ∈ Rm×p, Y ∈ Rn×q and matrix F ∈ Rm×n of rank r, tolerances
εaccept and εabort

Output: matrix C ′ ∈ Rp×q approximating the solution C of Equation (2), resulting
status

1 C ′ ← 0p×q;
2 for j = 1, . . . , r do
3 (σj,uj,vj)← LowRankMatrixApprox(F, j);
4 gj ← LSsolve(X,uj);
5 hj ← LSsolve(Y,vj);
6 C ′ ← C ′ + σjgj ⊗ hj;
7 εj ← ‖F −XC ′Y T‖2,2;
8 if εj < εaccept then
9 return Success

10 else if εj − ‖F −
∑j

i=1 σiui ⊗ vi‖2,2 > εabort then
11 return CannotReachTolerance

12 return MaxIterReached

The algorithm proceeds by iterating over r up to the rank of F . In each iteration,
the next instances of σr, ur and vr that appear in the decomposition (4) are constructed
by LowRankMatrixApprox; this can be any algorithm capable of constructing a decom-
position (4), see below. The coefficient vectors gr and hr are computed as (univariate)
least-squares approximations of ur and vr, respectively, and their tensor product is added
to C ′. Finally, a stopping criterion based on Lemma 2 is invoked in order to check whether
the algorithm still has a possibility to satisfy the user-defined error bound.

A few comments are in order. First, it follows from Lemma 1 that C ′ is equal to C
as j reaches r unless interrupted by one of the stopping criteria. As we will see in the

6

examples, a significantly lower rank is usually sufficient for a very good approximation.
Second, in order for LowRankMatrixApprox to be reasonably efficient, one would be executing
an adaptive cross approximation (ACA) algorithm (or a similar method for constructing the
decomposition (4), cf. [1]) in parallel. Third, the systems for computing gr and hr are always
the same and vary only in the right hand-side; one can thus save effort by precomputing, e.g.,
LU-decompositions of the systems on lines 4 and 5 of the algorithm. Finally, the algorithm
generates not only a decent approximation of the data but the coefficients are also structured
in the form C ′ =

∑r
j=1 σjgj ⊗hj. While we do not have an immediate practical application

at hand, this form of the solution may be exploited in the future.
Algorithm LowRankFit is a generalization of [1, Algorithm 2] that replaces interpolation

with weighted approximation. One can see this by choosing m = p and n = q (i.e., re-
quiring that there is a one-to-one mapping between the data points and basis functions in
each direction), setting all weights equal to one and by choosing the parameters ξ1, . . . , ξm
and η1, . . . , ηn to be the Greville abscissae [23] of the B-spline bases {M1, . . . ,Mp} and
{N1, . . . , Nq}. Then the matrices X and Y from Equation (8) are square and invertible due
to Schoenberg-Whitney Theorem [23]. Equations (6) then simplify to

XG = U and Y H = V ,

respectively; these are the formulae for the computation of control points of the component
bases if the interpolation problem is unisolvent.

4. Numerical examples

We illustrate the performance of Algorithm LowRankFit by several examples imple-
mented using the G+Smo library [24]. We will be using truncated SVD and ACA with
and without pivoting for LowRankMatrixApprox; these algorithms are described in [1] in
more detail.

Example 1. We approximate the function

f(ξ, η) =
cos(10ξ(1 + η2))

1 + 10(ξ + 2η)2
,

which was also considered in [25], at 300 × 300 uniformly spaced points, yielding a data
matrix of rank 81 in double floating arithmetic. Figure 1 depicts the results of using Al-
gorithm LowRankFit with εabort = +∞ and εaccept equal to 101% of the error obtained
when performing standard tensor-product fitting with the same basis. We compare the
error in the `2-norm using adaptive cross approximation with and without pivoting in
LowRankMatrixApprox for various uniform cubic B-spline bases. The low rank approxi-
mations quickly reach the error of the full least-squares solutions with the same basis. On
the one hand, this process is slightly slower when pivoting is used. On the other hand, ACA
with pivoting was about three times faster in our tests, hence there is clearly a trade-off
between computational time and number of iterations.

7

100

101

102

	0 	5 	10 	15 	20

l2
-e
rro

r

rank

Alg.	LowRankFit,	no	pivot,	19x19DOF
the	standard	method

100

101

102

	0 	5 	10 	15 	20

l2
-e
rro

r

rank

Alg.	LowRankFit,	pivoting,	19x19DOF
the	standard	method

10-3

10-2

10-1

100

101

102

	0 	5 	10 	15 	20 	25 	30 	35 	40

l2
-e
rro
r

rank

Alg.	LowRankFit,	no	pivot,	67x67DOF
the	standard	method

10-3

10-2

10-1

100

101

102

	0 	5 	10 	15 	20 	25 	30 	35 	40

l2
-e
rro
r

rank

Alg.	LowRankFit,	pivoting,	67x67DOF
the	standard	method

10-8

10-6

10-4

10-2

100

102

	0 	10 	20 	30 	40 	50 	60 	70

l2
-e
rro

r

rank

Alg.	LowRankFit,	no	pivot,	259x259DOF
the	standard	method

10-8

10-6

10-4

10-2

100

102

	0 	10 	20 	30 	40 	50 	60 	70

l2
-e
rro

r

rank

Alg.	LowRankFit,	pivoting,	259x259DOF
the	standard	method

Figure 1: Example 1 – The `2-errors obtained when using ACA without (left) and with (right) pivoting in
LowRankMatrixApprox for various tensor-product spline bases.

Figure 2 depicts the costs. We compare standard least-squares fitting and the low-rank
fitting described, with and without row pivoting. Clearly, the use of Algorithm LowRankFit

provides a significant speed-up compared to standard least-squares fitting.

8

The costs in the left-hand side figure are expressed in terms of the number of calls to
(univariate) LSsolve. While in practice one would perform an LU decomposition before-
hand, backward substitutions still constitute significant part of the total cost. Even though
these numbers should be interpreted with caution, since we are comparing calls to LSsolve

with different number of unknowns, they nevertheless confirm that the new algorithm has a
computational advantage.

The right-hand side figure depicts the costs of the two crucial steps: solution of linear
systems (full lines) and the low-rank matrix approximation (dashed lines). We compare
three approaches: Algorithm LowRankFit using the ACA with and without pivoting for
LowRankMatrixApprox and the standard method (see Section 2). The computations have
been performed on a laptop computer and averaged over 10 runs. Note that we have used
the highly optimized Eigen library [26] for solving the linear systems; applying a similar
same amount of work on code acceleration to our implementation of low-rank matrix ap-
proximation is likely to significantly speed up this step. This explains why the reported
computation times do not confirm the advantages of the new method.

	0

	100

	200

	300

	400

	500

	600

	1000 	10000

#c
al
ls	
to
	L
Ss
ol
ve

#DOF

Alg.	LowRankFit,	no	pivot
Alg.	LowRankFit,	pivoting

the	standard	method

	0

	0.001

	0.002

	0.003

	0.004

	0.005

	0.006

	0.007

	0.008

	0.009

	0.01

	1000 	10000

tim
e	

(s
)

#DOF

LowRankMatrixApprox	in	Alg.	LowRankFit,	no	pivot
LowRankMatrixApprox	in	Alg.	LowRankFit,	pivoting
Solve	in	the	standard	method
LSsolve	in	Alg.	LowRankFit,	no	pivot
LSsolve	in	Alg.	LowRankFit,	pivoting

Figure 2: Example 1 – Computational effort (left: number of calls to LSsolve, right: computation time)
depending on the size of the basis.

Example 2. We approximate the CRESCENDO airfoil presented in [27]. It is represented
by 41×151 sampled points – which we parameterize uniformly in the radial direction and use
the centripetal parametrization of the first profile in the circumferential direction – shown
in Figure 3, left. As the points possess three coordinates, we apply Algorithm LowRankFit

component-wise and assemble the results. All the data matrices have full rank (41).
Figure 3 compares the standard tensor-product fitting using 40 × 128 uniform cubic

B-splines with the results of Algorithm LowRankFit for the same basis using ACA with
pivoting, εabort = +∞ and εaccept = 5e−4; this terminates the computation after 8, 12 and
8 iterations in the x-, y- and z-component, respectively. The two surfaces are virtually
identical.

Figure 4 depicts the decomposition error of the data matrix (in Frobenius norm) and the
fitting error (in the maximum norm) of the x-coordinate, obtained when using ACA with

9

Figure 3: Example 2 – Left: input points; middle: full tensor-product fitting; right: The approximating
surface generated by Algorithm LowRankFit.

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

 0 5 10 15 20 25 30 35 40 45

l2
-e

rro
r

rank

ACA with pivoting
ACA without pivoting

SVD

10-5

10-4

10-3

10-2

 0 5 10 15 20 25 30 35 40 45

m
ax

-e
rro

r

rank

ACA with pivoting
ACA without pivoting

SVD

Figure 4: Example 2 – errors of the x-component. Left: matrix decomposition error; right: maximum fitting
error.

and without pivoting and truncated SVD. The other two components give similar results.
The approximation error does not significantly decrease from the 15-th iteration onwards.
Note that Algorithm LowRankFit performs well even with respect to the maximum norm,
which is not covered by the theoretical results.

Again, the computational effort compares favorably with the standard method, since we
need less than 30 calls (for each coordinate) to LSsolve instead of the min(m+q, n+p) = 169
calls required by standard tensor-product fitting, to get virtually identical results. (Again
these numbers should be interpreted with caution, since we are comparing calls to LSsolve

with different numbers of unknowns. Still they confirm that the new algorithm has a compu-

10

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

	0 	5 	10 	15 	20

L2
-e
rro

r

rank

low	rank	interpolation,	10x10	DOF
Alg.	LowRankFit,	10x10	DOF

low	rank	interpolation,	20x20	DOF
Alg.	LowRankFit,	20x20	DOF

low	rank	interpolation,	40x40	DOF
Alg.	LowRankFit,	40x40	DOF

low	rank	interpolation,	80x80	DOF
Alg.	LowRankFit,	80x80	DOF

low	rank	interpolation,	160x160	DOF
Alg.	LowRankFit,	160x160	DOF

Figure 5: Example 3 – Approximate L2-errors.

tational advantage.) Note that ACA with and without pivoting for LowRankMatrixApprox

perform only marginally worse than the much more costly truncated SVD.

Example 3. The minimization problem (2) covers also the situation of weighted least-
squares with separable (i.e., rank 1) weights, cf. [11, Section 7]. By choosing the parameters
and weights to be the nodes and weights of a quadrature rule, this leads to an approximate
L2-projection. In this example, we approximate the function

f(ξ, η) =
1

4
e
√
ξ2+η2

with the domain [0, 1] × [0, 1] using various uniform cubic tensor-product B-spline bases.
We compare the two approaches of (a) sampling f in the Greville abscissae and performing
low-rank interpolation as in [1, Algorithm 2] and (b) sampling points and weights from a
3-point Gauß-Legendre quadrature rule [28] and performing low-rank weighted fitting of
Algorithm LowRankFit with εabort = +∞ and εaccept = 0. In both cases we use adaptive
cross approximation with pivoting for LowRankMatrixApprox.

The results are reported in Figure 5. In both cases, using a low rank is sufficient for
the approximation. However, the L2-error (approximated using the same quadrature rule)
is lower for (b) by approximately one order of magnitude.

Example 4. We demonstrate how one may use Algorithm LowRankFit adaptively if the
required number of degrees of freedom is not known in advance. One starts with a coarse
basis and proceeds until Algorithm LowRankFit returns either Success (in which case the
procedure is terminated) or CannotReachTolerance, indicating that a refinement is neces-
sary. The already computed values of σr, ur and vr are re-used, thus spreading the cost of
constructing the decomposition (4) over several runs of Algorithm LowRankFit.

We test this procedure by approximating again the function from Example 1, this time
with εabort = εaccept = 10−6. Figure 6 depicts the `2-error depending on r. The horizontal

11

10-8

10-6

10-4

10-2

100

102

	0 	10 	20 	30 	40 	50 	60 	70

l2
-e
rro
r

rank

Alg.	LowRankFit,	259x259DOF
Alg.	LowRankFit,	131x131DOF
Alg.	LowRankFit,	67x67DOF
Alg.	LowRankFit,	35x35DOF
Alg.	LowRankFit,	19x19DOF
Alg.	LowRankFit,	11x11DOF

epsAcc
the	standard	method,	11x11DOF
the	standard	method,	19x19DOF
the	standard	method,	35x35DOF
the	standard	method,	67x67DOF

the	standard	method,	131x131DOF
the	standard	method,	259x259DOF

10-8

10-6

10-4

10-2

100

102

	0 	10 	20 	30 	40 	50 	60 	70

l2
-e
rro
r

rank

Alg.	LowRankFit,	259x259DOF
Alg.	LowRankFit,	131x131DOF
Alg.	LowRankFit,	67x67DOF
Alg.	LowRankFit,	35x35DOF
Alg.	LowRankFit,	19x19DOF
Alg.	LowRankFit,	11x11DOF

epsAcc
the	standard	method,	11x11DOF
the	standard	method,	19x19DOF
the	standard	method,	35x35DOF
the	standard	method,	67x67DOF

the	standard	method,	131x131DOF
the	standard	method,	259x259DOF

Figure 6: Example 4 – The `2-errors obtained when using ACA without (left) and with (right) pivoting
in LowRankMatrixApprox together with the errors of the full gridded fitting and iterations where Algo-
rithm LowRankFit terminates.

dashed lines indicate the error of the standard least-squares fitting with the same basis.
When using a coarse basis, Algorithm LowRankFit exits with CannotReachTolerance soon.
Once again, using full adaptive cross approximation (instead of pivoting) in LowRankMatrixApprox

gives slightly better results at higher computational costs.
Table 1 compares the costs by counting the number of calls to LSsolve. For each

particular basis (corresponding to one of the first six columns), Algorithm LowRankFit –
regardless whether using ACA with or without pivoting for LowRankMatrixApprox – requires
much fewer calls to LSsolve than the standard tensor-product fitting. The total costs of
the entire adaptive procedure, which is obtained by summing up the costs of all the steps,
are presented in the last column of Table 1. Note that the total costs (346 or 420 with and
without pivoting, respectively) are lower by one order of magnitude, compared to the costs
of the full tensor-product fitting. Once more, although these numbers should be interpreted
with caution, since we are referring to calls to LSsolve with different numbers of unknowns,
they nevertheless show the computational advantage of the new algorithm.

p = q: 11 19 35 67 131 259 sum
Alg. LowRankFit without pivoting 12 28 46 66 80 114 346
Alg. LowRankFit with pivoting 28 36 52 74 94 136 420
Full LS fitting 311 319 335 367 431 559 2322

Table 1: Example 4 – Computational costs (in terms of the number of calls to LSsolve).

5. Conclusions and outlook

We have presented an efficient algorithm for constructing low-rank approximations of
least-squares fitting of gridded data with bivariate B-splines by decomposing it into a series
of univariate fitting problems. Future work could be devoted to several topics:

12

An obvious question is whether it is possible to generalize Algorithm LowRankFit to
approximations with more than two variables. While generalization of Lemma 1 is straight-
forward and requires only suitable notation, constructing multivariate analogues to the de-
composition (4) is known to be challenging.

Another direction of research could be devoted to the extension of Algorithm LowRankFit

to non-structured data. This could be attacked by extending the algorithm to general (i.e.,
not necessarily separable) weights and by exploring the idea of grid projection, see [13].
Alternatively one could also apply a suitable preprocessing step to the data, which might
be similar to the idea (create a mesh from the unstructured data points and decompose this
piecewise surface into tensor-products of its slices) presented in [25].

Last, but not least, we mention that a few improvements are required before the algorithm
can be used in industrial practice. First, applications such as Example 2 require the result
to be periodic (and C2-continuous) in one direction and the algorithm would have to be
modified accordingly. Second, choosing εaccept and εabort is challenging and suitable values
are different for each component. Finally, the algorithm could be made more efficient by
exploiting synergies between the results obtained for the three coordinates.

References

[1] I. Georgieva, C. Hofreither, An algorithm for low-rank approximation of bivariate functions using
splines, Journal of Computational and Applied Mathematics 310 (2017) 80–91.

[2] G. Kiss, C. Giannelli, U. Zore, B. Jüttler, D. Großmann, J. Barner, Adaptive CAD model (re-)con-
struction with THB-splines, Graphical Models 76 (5) (2014) 273–288.

[3] J. Hoschek, D. Lasser, Fundamentals of computer aided geometric design, AK Peters, Ltd., 1993.
[4] L. Piegl, W. Tiller, The NURBS Book, 2nd Edition, Springer, 1997.
[5] V. Weiss, L. Andor, G. Renner, T. Várady, Advanced surface fitting techniques, Computer Aided

Geometric Design 19 (1) (2002) 19–42.
[6] C. Deng, H. Lin, Progressive and iterative approximation for least squares B-spline curve and surface

fitting, Computer-Aided Design 47 (2014) 32–44.
[7] D. Rios, B. Jüttler, LSPIA, (stochastic) gradient descent, and parameter correction, Journal of Com-

putational and Applied Mathematics 406 (2022) article no. 113921.
[8] S. Sajavičius, Hyperpower least squares progressive iterative approximation, Journal of Computational

and Applied Mathematics 422 (2023) article no. 114888.
[9] C. de Boor, A Practical Guide to Splines, Springer, 1978.

[10] F. Cheng, A. Goshtasby, A parallel B-spline surface fitting algorithm, ACM Transactions on Graphics
8 (1) (1988) 41–50.

[11] T. Lyche, K. Mørken, Spline Methods Draft, Department of Mathematics, University of Oslo, 2018.
[12] N. Engleitner, B. Jüttler, Lofting with patchwork B-splines, in: Advanced Methods for Geometric

Modeling and Numerical Simulation, Springer, 2019, pp. 77–98.
[13] S. Merchel, B. Jüttler, D. Mokrǐs, M. Pan, Fast formation of matrices for least-squares fitting by

tensor-product spline surfaces, Computer-Aided Design (2022) article no. 103307.
[14] M. Bebendorf, Approximation of boundary element matrices, Numerische Mathematik 86 (4) (2000)

565–589.
[15] K. Frederix, M. van Barel, Solving a large dense linear system by adaptive cross approximation, Journal

of Computational and Applied Mathematics 234 (11) (2010) 3181–3195.
[16] T. Mach, L. Reichel, M. van Barel, R. Vandebril, Adaptive cross approximation for ill-posed problems,

Journal of Computational and Applied Mathematics 303 (2016) 206–217.

13

[17] M. Pan, W. Tong, F. Chen, Compact implicit surface reconstruction via low-rank tensor approximation,
computer-aided design 78 (2016) 158–167.

[18] C. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (3)
(1936) 211–218.

[19] D. W. Fausett, C. T. Fulton, Large least squares problems involving Kronecker products, SIAM Journal
on Matrix Analysis and Applications 15 (1) (1994) 219–227.

[20] L. Sun, B. Zheng, C. Bu, Y. Wei, Moore-Penrose inverse of tensors via Einstein product, Linear and
Multilinear Algebra 64 (4) (2016) 686–698.

[21] H. Dym, Linear Algebra in Action, 2nd Edition, Americal Mathematical Society, 2013.
[22] P. Dierckx, Curve and surface fitting with splines, Oxford University Press, 1993.
[23] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline Techniques, Springer, 2002.
[24] A. Mantzaflaris, An overview of geometry plus simulation modules, in: Mathematical Aspects of Com-

puter and Information Sciences: 8th International Conference, MACIS 2019, Gebze, Turkey, November
13–15, 2019, Revised Selected Papers 8, Springer, 2020, pp. 453–456.

[25] A. Townsend, L. N. Trefethen, Gaussian elimination as an iterative algorithm, SIAM News 46 (2)
(2013) page 3.

[26] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen.tuxfamily.org (2010).
[27] M. Luers, M. Sagebaum, S. Mann, J. Backhaus, D. Großmann, N. R. Gauger, Adjoint-based volumetric

shape optimization of turbine blades, Multidisciplinary Analysis and Optimization Conference (2018)
article no. AIAA 2018–3638.

[28] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer, 1980.

14

