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Abstract. An explicit representation for any irreducible rational Bézier curve and
Bézier surface patch on the unit sphere is given. The extension to general quadrics
(ellipsoids, hyperboloids, paraboloids) is outlined. The construction is based on an
algebraic result concerning Pythagorean quadruples in polynomial rings and can be
additionally interpreted as a generalized stereographic projection onto the sphere.
This projection is shown to be the composition of a hyperbolic projection (a special
net projection) with a stereographic projection. The investigation of its properties
leads to new results for the biquadratic Bézier patch on the sphere. Further attention
is payed to the interpolation of a given point set with a spherical rational curve. The
results are extended to rational B-spline curves and tensor product B-spline surfaces.
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Introduction

Quadric surfaces like spheres, hyperboloids of one or two sheets, elliptic and hyperbolic
paraboloids are widely spread in industrial applications. Nevertheless they are not provided

by most of Computer-Aided Design systems that are based on parametric representations of

curves and surfaces because quadrics cannot be represented by polynomial surface patches in

general. A rational surface model avoides this disadvantage: Every quadric can be described

as a biquadratic rational Bézier surface. Several authors have dealt with the problem on

what condition a biquadratic rational Bézier surface patch describes a part of a quadric and

how a specified quadric patch can be obtained as a rational patch ([Boehm & Hansford’91],

[Farin & Piper & Worsey’87], [Fink’92], [Geise & Langbecker’90], [Piegl’86], [Sederberg & Anderson’85],
[Warren & Lodha’90]).

In this paper an algebraic approach as introduced in [Hoschek & Seemann’92] is used in or-
der to construct Bézier and B-spline curves as well as surfaces on quadrics, especially on
the sphere. The constructions are described with help of projective geometry which allows a
compact and clear presentation of the results.
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1 Some fundamentals of projective geometry

This section presents some fundamentals of projective geometry. For further details, the
reader is referred to [Coxeter’64] or [Pedoe’70).

The scene of the following considerations is the projectively closed three-dimensional real
Euclidean space E3. Its points (a, b, ¢, ...) and planes (&, b, ¢, ...) are described by
homogeneous coordinate vectors from IR*. The point a lies on the plane b iff (a, f)) =0
holds. (The symbol (.,.) denotes the usual inner product of vectors.)

The cartesian coordinate vectors of (finite) points are a, b, ¢, ... . They result from dividing
by the 0-th components:

0
1 Y4l gl

p = — | p where p = - 1)
- bo D3 b2
b3

Let B # O be a symmetric (4,4)-matrix. The set of all points x satisfying x"Bx = 0 forms
a quadric. One of the quadrics in E3 is the unit sphere

zp -2 —xh—123=0 . (2)

The next sections discuss rational parametrizations of the unit sphere. The set of all points
of the unit sphere will be denoted by Q.

Plicker’s line coordinates are the appropriate tool to handle lines in three-dimensional pro-
jective geometry:

Let x and y be two distinct points on a given line L. The 16 numbers

are Pliicker’s coordinates of the line L. These coordinates are homogeneous: If the two points
x and y are replaced by two arbitrary, but distinct points x* and y* on the line L, then the
coordinates g; ; obtained from the latter two points will differ from the coordinates g; ; only
by a common factor. The numbers g; ; fulfill the condition

9ij = —Gji 4)

of skew symmetry and Pliicker’s relation

90.192.3 + 90.293.1 + 903912 = 0 . (5)

Thus, only 6 of the 16 numbers g; ; are essential. On the other hand, any 16 numbers g; ;
(not all equal to zero) satisfying (4) and (5) are coordinates of a line in E3.

The set of all lines whose Plicker’s coordinates fulfill a linear equation is called a linear
complex of lines. These complexes are studied in kinematics: They correspond to screw
motions. The lines of the complex connect any point with all points of the normal plane of
its trajectory.
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2 Algebraic preliminaries

With help of algebraic considerations an explicit representation of parametrized curves and
surfaces on the sphere and on other quadrics is derived in this section. This approach has
been suggested in [Hoschek & Seemann’92] and [Hoschek’92].

If homogeneous coordinates are used, a rational curve in the projectively closed real Euclidean
space E2 has the form

zo(t)

$1(t)
x(t) = , t€la,b 6
(t) 2o(1) [a, b] (6)

3(t)
where the functions z, ..., z3 are elements of the polynomial ring IR[t]. Analogously trian-
gular and quadrangular surface patches result from (6) by choosing zy, ..., z3 in the quotient
ring R[u,v,w]/ < u+ v+ w —1 > or the ring IR[u, v] of bivariate polynomials, respectively.
The symbol [...] means the adjunction of an element to a ring and < ... > stands for the

ideal generated by a ring element.

2.1 Pythagorean quadruples in unique factorization domains

If a rational curve or surface lies on the unit sphere @, its coordinate functions are a solution
of the equation
23 = 23 + x5+ 23 . (7)

Hence our problem is to find the general solution of (7) in the considered polynomial ring. In
number theory it is well known that every solution of the equation

x% = a:% + :1:% (8)

in a unique factorization domain (UFD) R has the form

zg = c(a®+b?)
1 = 2cab , a,bceR (9)
o = c(a? —b?)

(see e.g. [Kubota’72]). The solutions zg, z1, zo are called Pythagorean triples in R. An
analogous result concerning Pythagorean quadruples which should fulfill (7) was derived by
V.A. Lebesgue in the year 1868 and E. Catalan in 1885 (cited in [Dickson’52], pp. 265,
269). A formula yielding every Pythagorean quadruple of integers was given there. When
transferring this result to polynomial rings, one needs the

Proposition 2.1 The polynomial rings IR[t], R[u,v] and R[u,v,w]/ <u+v+w—1> as
well as their complex extensions C[t], Clu,v] and Clu,v,w]/ <u+v+w—1> are unique
factorization domains.

Now the following theorem can be formulated:
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Theorem 2.2 If R is one of the polynomial rings R[t], R[u,v,w]/ <u+v+w—1> or
IR[u,v] and the relatively prime polynomials o, x1, T2, x3 € R fulfill the condition

oy = af + x5+ af (10)
then xg,x1, T2, x3 have the form
zo = pi+pi+ps+pd or my = —p§—pi—ps—p3
T1 = 2pop1 — 2p2p3 (11)
T2 = 2p1p3 + 2popo
T3 = pi+ps—po— D3

with Po,DP1,P2,P3 € R.

Proof. Let C be the complex extension of R, i.e. C[t], C[u,v,w]/ <u+v+w —1> resp.
C[u,v]. Equation (10) can be written in the ring C as

TY = 2Z with Im(z) =Im(y) =0 (12)

where z = 1(zg + 73), y = $ (20 — 23) and z = L(z; + iz2) have been set.

First case: The polynomials 1 and zo are relatively prime in R.
Because C is a UFD it is obvious that there are two factorizations of z — say z = ac = bd —
so that = ab holds. Since Im(z) has to be 0, it follows that

Im(a)Re(b) — Re(a)lm(b) =0

The polynomials Re(a) and Im(a) (as well as Re(b) and Im(b)) are relatively prime in R,
otherwise 1 and z2 would not be relatively prime. Hence b = r a with r € IR can be derived
which leads to x = raa and analogously y = sc¢ with s € IR. Since rs = 1 holds and

z = raa = £(y/|r|a)(y/|r| @), without loss of generality r = s = £1 can be assumed. For
r = s = 1 set a = p;+ipy and ¢ = py+ip3 to obtain representation (11) with zo = p+...+p3.
For r = s = —1 set a = po + ip3 and ¢ = py + ipy yielding (11) with zg = —p3 — ... — p3.
Second case: The polynomials 1 and z2 have a common divisor d.

Assume d to be prime. It is easy to see that the squared divisor d? of 2z = zy is contained
in either z or y. Otherwise zg,...,x3 would have a common factor, in contradiction to the
assumption. The factor d? of x resp. y can surely be obtained by multiplying a, resp. ¢ with
the simple factor d. If d is factorizable, decompose it into prime factors. [ |

Now, the above theorem is applied to rational Bézier curves and Bézier surface patches. In
section 4 it is generalized to piecewise rational functions, leading to B-spline curve and surface
representations.
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2.2 Bézier curves and Bézier surface patches on the sphere

A rational Bézier curve of degree n is defined as
x(t) = Bl(t)b; , (13)

where by, ..., b, € IR*are the Bézier control points in homogeneous coordinates and Bl (t) =
(?)t"(l — )" 4§ =0,...,n are the Bernstein polynomials of degree n. If the coordinate
functions of x are assumed to be relatively prime, i.e. if the curve is irreducible, then there
are polynomials po, ..., ps which yield the representation (11) of the curve x. Representing
these polynomials in the Bernstein basis, one gets

)5

t m i

PO = Ly | =2 B OpY (14)
p3(t)

with p(, ..., p{™ as Bézier control points. If (14) is inserted into (11), products of Bernstein
polynomials arise which can be computed by the product formula

((m}(g)) B (15)
i+j

Bl Bl =

Of course the resulting curve is of degree 2m because zy = p3 + p? + p3 + p3 always has this
degree. As a corollary, all irreducible curves on the sphere @) are of even degree.

Rational Bézier surface patches can be described in a similar way. A tensor product Bézier
surface patch of degree (m,n) is defined by

m n

x(u,v) =YY Bi*(u) B} (v) bi; (16)

i=0 j=0

and a triangular Bézier surface patch of degree m is given by

x(u,v,w) = > BPu(u,0,w)bijk (17)
i+j+k=n
i,5,k >0
under the constraint u+v+w = 1. The control points are again represented in homogeneous
coordinates and in (17) the expression B}, (u,v,w) stands for the generalized Bernstein
polynomials

AR

When triangular surface patches are generated using (11), the product formula

k

B p(u,v,w) = uvlw

min! (i1 +42)! (j1 + j2)! (k1 + k2)! pmtn

n _
BZ2-.72-k32 - (m +n)! ’il!jl! ky! i2!j2! k! i1+42.51+52.k1+k2

m
i1.71.k1

has to be applied. The following corollary is obvious from theorem 2.2:

5
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Corollary 2.3 Ewvery irreducible rational

- Bézier curve of degree 2n,
- tensor product surface of degree (2m,2n) and

- triangular surface of degree 2n
on the unit sphere Q can be obtained by formula (11) where py, ... ,ps are

- Bernstein polynomials of degree n,
- tensor product polynomials of degree (m,n) or

- generalized Bernstein polynomials over triangular domain of degree n, respectively.

2.3 Extension to other quadrics

The sphere is a special case of the oval quadrics. With help of a projective map every oval
quadric can be obtained as image of the sphere. Therefore an approach to find all rational
parametrizations on any desired oval quadric is automatically given. The quadric just has to
be mapped onto the unit sphere where the representation theorem 2.2 holds and then to be
remapped to its original shape.

Another class of non-degenerate quadrics is formed by the doubly ruled quadrics like the
hyperboloid of one sheet or the hyperbolic paraboloid. These quadrics are not projectively
equivalent to the oval quadrics. But the following theorem holds for the hyperbolic paraboloid
with the equation zyz3 = z1x2 as a representative for the ruled quadrics:

Theorem 2.4 If R is one of the polynomial rings IR[t], R[u,v,w]/ <u+v+w—1> or
IR[u,v] and the polynomials o, x1, 2,23 € R fulfill the condition

oLy = T1 T2, (18)
then there are polynomials pg,p1,p2,ps € R with

Ty = PopP3 T1 = p1ps3 (19)
T2 = PopP2 T3 = pP1p2

The proof is straightforward and is omitted here. In contrast to an oval quadric a doubly
ruled quadric comprises two families of straight lines. These lines are obtained by choosing
po and p; as constants and po, p3 as linear terms. If py and p; are dependent on u only, po
and p3 on v only and all of them are linear, then a bilinear surface patch on the hyperbolic
paraboloid is obtained.

The properties of the representation formula for doubly ruled quadrics will be subject of
further research. First of all some geometric considerations and results in the case of the
sphere are presented:
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3 A generalization of stereographic projection

This section contains a geometric interpretation of theorem 2.2. The representation (11) of
rational curves and surface patches on the sphere is considered as a generalized stereographic
projection § : E3 — (. This projection is shown to be a composition of a stereographic
projection with a hyperbolic projection. Some properties of the generalized stereographic
projection are discussed. These properties lead to a criterion for biquadratic tensor-product
Bézier patches on the sphere interpolating four given boundary curves. Finally, interpolation
on the sphere will be shown to be a linear problem.

3.1 The generalized stereographic projection

The representation (11) of rational curves and surface patches on the sphere gives rise to:

Definition. The map ¢ : E3 - Q,

Po P +p? + p3 + P}
2 -2
5 b1 \ PopP1 p2p3 (20)
D2 2p1p3 + 2pop2
2 2 2 2
P3 pi+p3—py —P3

is called the generalized stereographic projection.

Now, corollary 2.3 can be formulated with help of this projection: Any irreducible rational
Bézier curve of degree 2n on the sphere () can be obtained as the image of a rational Bézier
curve of degree m under 6. Analogous assertions hold for rational tensor product Bézier
patches and triangular Bézier patches on Q).

3.2 The stereographic projection

The stereographic projection is a standard method for the generation of curves and surfaces
on the sphere. Let P denote the plane z3 = 0, i.e. the equator plane of the unit sphere @), and
let z=(1001)". The line connecting the centre z with an arbitrary point p = (pop1p20)"
of P intersects the unit sphere @ in exactly two points (cf. fig.1): in z and in a second one
o(p) where
pg +pi + 3

2pop1

2pop2 ’ (21)
p} + 03— g
The map o0 : p € P — o(p) € Q is called the stereographic projection with centre z. The
inverse image of a point q = (o q1g2¢3)" # z of Q under o is

o(p) =

90 — g3

q2
0
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Figure 1: The stereographic projection

The properties of o are well known (see e.g.[Coxeter’61]): The stereographic projection and
its inversion o~ preserve circles, i.e. the image of a circle or a line on P under ¢ is a circle
on (). Additionally, both maps also preserve angles.

Obviously, stereographic projection yields (up to common factors of the homogeneous co-
ordinates) all rational parametrizations of the sphere. But, for example, it does not yield
all biquadratic Bézier surface patches on the sphere () as images of bilinear Bézier surface
patches on the equator plane P (see e.g.[Geise & Langbecker’90]). The generalized stereo-
graphic projection § avoides this disadvantage of stereographic projection. It will be shown
to be a composition of ¢ with a hyperbolic projection .

3.3 The hyperbolic projection

The hyperbolic projection ¥ is introduced in order to give a decomposition of the generalized
stereographic projection ¢ :

Definition. Themap ¥ = o0 106 : E3 = P :

Po P + p3

9 : b1 -~ Pbop1 — pP2p3 (23)
P2 P1P3 + pop2
P3 0

is called the hyperbolic projection.

The next proposition is obvious from the above definition:

Proposition 3.1 The generalized stereographic projection 6 is composition of the hyperbolic
projection ¥ with the stereographic projection o: § = o o ¥.

Now, some properties of ¥ and § will be discussed. At first, the inverse image of a point is
considered in
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Lemma 3.2 The set of all inverse images of the point p = (pop1p20)T of P under 9 (resp.
of the point q = (goq192q3) " of Q under § where p = 0~1(q) ) forms the line

Po 0

AP ] P2 (\p€R). (24)
b2 —P1
0 Dbo

The proof results from straightforward calculations. The lines (24) will be called the projecting
lines of the hyperbolic projection: Each of them passes through its image under ¥ and it is
perpendicular to the line connecting its image under ¥ and the origin. An arbitrary rotation
around the axis (1 0 0 A)" (A € R) (i.e. around the z-axis) maps projecting lines to
projecting lines. Consider an arbitrary line on the equator plane P through the origin. The
projecting lines along this line form a hyperbolic paraboloid (see lemma 3.4).

Theorem 3.3 The system of all projecting lines of 9 can be generated as the intersection of
two linear complexes of lines.

Proof. The Pliicker coordinates of the projecting lines (24) are

9o0.1 = pop2 go.2 = —popP1 903 = P% (25)
92.3 = pop2 g3.1 = —popP1 g1.2 = —P% - p%
These coordinates satisfy the two linear equations gg.1 — go.3 =0 and gpo —g3.1 =0 . |

For example, the two complexes can be chosen corresponding to two null systems describing
screw motions with axes (1 A 0 0)" and (1 0 n 0)" (A\,n € IR) and screw parameters
S§1 = §2 — 1.

The intersection of two linear complexes of lines is called a net of lines (or linear congruence
of lines). A net of lines defines the so called net projection: The lines of the net figure as
projecting lines. The center plane of the net is the image plane of the projection.

These nets and net projections have been studied in advanced geometry. A net projection can
be obtained as parallel projection in a three-dimensional elliptic space (with respect to the
Clifford-parallelism) (see e.g. [Wunderlich’36]). Another approach to net projections results
from the discussion of screw motions in kinematics (cf. [Tuschel’1l], [Bereis & Brauner’57]).
The hyperbolic projection introduced in (23) is a special net projection. The net of lines formed
by the projecting lines (24) is an elliptic one (i.e. all lines of the net pass through two complex
skew lines).

The lemmata 3.4, 3.5 and 3.6 are special cases of more general assertions concerning net
projections (see e.g. [Brauner’56)).

The next lemma explains the origin of the name hyperbolic projection:

Lemma 3.4 The inverse image of a circle on P under 9 (and so of a circle not passing
through the centre z on @ under §) is a one-sheet-hyperboloid. The inverse image of a line
on P under 9 (and so of a circle through z on Q under §) is a hyperbolic paraboloid.

Proof. Consider a circle x(¢) = (1 a+rcosp b+rsing 0) on P (¢ € [0,27) ). Its
inverse image under 9 is the ruled surface (cf. lemma 3.2)

1 0
a+ rcosyp b+ rsing
= ; 2
y(e:?) b+ rsing t —a — rCcosy (t € R) (26)
0 1
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Bézout-elimination (see [Salmon 1885]) yields the implicit representation of surface y as a
quadric:

a?+b—-r> —a —b 0 20
—a 1 0 —b
(vo m v v ) b 0 1 " Z; =0 . (27
0 b a a+b—r? Y3

The matrix in (27) is always nonsingular (for r # 0) and thus surface y is a one-sheet-
hyperboloid.
Analogous deductions prove the assertion in the case of a line on P. [ |

The one-sheet-hyperboloids and hyperbolic paraboloids occuring in lemma 3.4 carry two sys-
tems of lines (generators). The first system consists of projecting lines (24) of ¥. The lines
of the second system will be called the conjugated lines with respect to the first system. The
image of a conjugated line under ¥ is the given circle.

Now, the images of an arbitrary line under 9 and § are discussed in

Lemma 3.5 The image of a given non-projecting line under 9 is a circle or a line on P. It
is a line if and only if the given line intersects the plane P at infinity (i.e. if the given line is
parallel to P). Thus the image of a given non-projecting line under § is a circle on Q.

Proof. Consider the complex extension of the real projective space. Obviously, the image
of a given line under ¥ is a rational quadratic curve, i.e. a conic section on P. This conic
section is a circle iff it passes through the circular points at infinity (0140) and (01 —0)
of plane P (where 7 is the imaginary unit). The inverse images of these points under ¥ are
the planes p3 — ipy = 0 and p3 + ipg = 0. If the given line and P are not parallel, then the
line intersects both planes in distinct points, and its image under 9 is a circle, otherwise it
intersects both planes in one point and its image is a line. |

Finally, the images of a plane under 9 and § are discussed:

Lemma 3.6 Any plane E in E® contains exactly one projecting line Lg. Let two distinct
non-projecting lines L1, Ly on E be given. Its images under 9 resp. 0 intersect in the two
points 9(L1 N Lg) and 9(Lg) resp. in 6(L1 N L) and 6(Lg). If Ly and Lo intersect on Lg,
then the tangents of their images under ¥ resp. § at 9(Lg) resp. 6(Lg) coincide.

Thus the image of all lines of a given plane under ¢ resp. § is the bundle of all circles on
P resp. ) through one point. This point corresponds to the projecting line of the given
plane. The proof of lemma 3.6 results again from straightforward calculations. Now, a first
application of the considerations of this chapter will be given:

3.4 Interpolation with circular arcs

In this section the unique circle interpolating three given points on @ is constructed. The
inverse images of the three points on @ under § are three projecting lines in £3. The interpo-
lating circle on () can be obtained as image of an arbitrary line passing through these three
projecting lines (see lemma 3.5).

Let three distinct points on the sphere ) be given: p*, q* and r*. There is a unique circle

10
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Figure 2: The construction of the conjugated line through the three projecting lines.
The image of this line under § is the circle interpolating p*, q* and r*.

on () interpolating these points. Consider the inverse image of this circle under §. It is a
hyperbolic paraboloid or a one-sheet-hyperboloid (see lemma 3.4). The lines 6 !(p*), 6 !(q*)
and 071(r*) are generating lines of this quadric surface. (see Fig.2)

Each conjugated line of the quadric intersects the three projecting lines and is mapped to the
desired circle on Q).

One of the conjugated lines can be obtained as follows: Any plane containing one of the
projecting lines, e.g. 6 !(r*), intersects the other two, § *(p*) and § (q*), in two points:
by € 6~ !(p*) and by € §~!(q*). Since the line

x(t)=(1—t)bg +tb; (t€RU{oo}) (28)

passes through each of the three projecting lines, it is a conjugated line of the considered hy-
perboloid respectively paraboloid. The image of this line under ¢ is the circle passing through
P, 9" and r*.

11
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Let p, q and r be preimages of p*, @* and r* under ¢, i.e. §(p) = p*, §(q) = q* and é(r) = r*.
A preimage of p* = (p§ p} p3 p}) is, for instance, p = (p§ — p§ pt ps 0) for p* # (1001) "
orp=(pi p5+ps 0 p3)forp*# (100 —1)T.

Using the notations

bo —P3 P2

_| P 1_ D2 = b3
P b2 P —P1 P —Po
b3 Po —p1

the projecting line §~'(p*) can be represented by Ap + up*, \, # € R. The points p and p*
are mapped to the same image point p*. Obviously, the four coordinate vectors p, p*, p and
p constitute an orthogonal basis of the coordinate space IR*. The following lemma shall be
applied to obtain the intersection points by and by :

Lemma 3.7 The intersection point s of the line 6~ (p*) = {Ap + up*|\,p € IR} and the

plane with homogeneous coordinate vector v ( which does not contain 6 '(p*) ) is
s=(V,p)p" — (V,p")p.

Proof. Clearly s lies on 0 !(p*) and since (¥,s) = (¥, p)(V,pt) — (V,p1)(¥,p) = 0 it lies

on the plane v, too. [ |

Following the above construction, the plane with coordinate vector v := T is chosen which
comprises the projecting line §~!(r*). The intersection points of that plane with the lines
5 1(p*) and 6 *(q*) are

by = (f,p)p" — (F,p )P
b1 = (r,q)a" —(f,q")q.
The image curve x(t) = d(y(t)) = 0((1—t)bo +tby ), t € IRU{o0} is the circle interpolating
P, " and r*. Its Bézier control points can easily be computed.
If the conjugated line y(¢),t € R U {oo} should pass through the point p — which one would
need when joining another line segment with C%-continuity — not the plane v = T is chosen,
but that of the next

Lemma 3.8 The plane ¥, containing the point p and the line 6~ (r*) = {Ar+purt|\, u € IR}
(which does not contain p), has the coordinate vector

V= <p’f'>fj_ - <paf'J_>f' :

The proof is similar to that of lemma 3.7.

By analogous deductions a construction of the circle on ) interpolating one point and one
point + tangent can be derived from the second part of lemma, 3.6. Iterating this construction
yields a tangent continuous spherical circular spline through given points.

12
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Figure 3: The condition for biquadratic Bézier patches
3.5 Biquadratic tensor product- and quadratic triangular Bézier patches

In this section, a necessary and sufficient condition for the existence of a rational biquadratic
Bézier patch on the sphere @) interpolating four given boundary curves is derived first:

Let four points py, py, P3, P4 and four circles C.2, Co.3, C3.4, Cs1 = Cu5 (where C; ; connects
p; and p,) on the sphere @ be given. Additionally let q; denote the second intersection point
of Cj_1; and Cj;4+1 (1 =1,2,3,4). (Note that p; = q; may occur !) A part of the sphere @ is
to be described by a rational biquadratic tensor-product Bézier surface patch. The vertices
of this patch are the points p; and its boundary curves are segments of the circles Cj ;1.
Under what conditions does such a biquadratic tensor-product Bézier surface patch exist ?
The answer is given in

Theorem 3.9 There exists a biquadratic tensor-product Bézier patch on the sphere () whose
vertices are the points py, Py, P3, P4 and whose boundary curves are segments of the four
circles C1.2, C23, C3.4, Ca1 = Cu if and only if the two vertices p,, ps and the two second
intersection points qo and q, are coplanar, i.e. if and only if these four points are situated
on one circle C on Q (see fig.3).

Proof. (=) Let a biquadratic Bézier patch y(u,v) on Q be given ((u,v) € [0, 1]?). There
exists a bilinear Bézier patch in E?

x(u,v) = By (u) By(v) bo.g + By(u) By (v) boa + Bi(u) By(v) by + Bi(u) Bi (v) b1 (29)

where the given patch y(u,v) is the image of the bilinear patch x(u,v) under the generalized
stereographic projection 9, i.e. y(u,v) = §(x(u,v)) (see theorem 2.2). The plane spanned by
the three points bg1, boo, b1.g (resp. bg.1, bi1, b1g) is denoted by Es (resp. by E;) and
the projecting line of this plane (see lemma 3.6) is the line Ly (resp. the line Ly) (see fig.4).
The images of the control points and of the projecting lines are the points

d(bo1) =p1, d(boo) =Py, 6(big)=p3, d(bi1)=py; and (30)
0(L2) =dqy, O(L4) =qy

13
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Figure 4: The proof of theorem 3.9

Obviously the images of the boundary lines of the patch (29) are the boundary curves of
patch y(u,v) and these curves are circles on ). The three points by, bog, b1 and the
line Ly are coplanar, thus the boundary curves of patch y(u,v) connecting p; with p, and
p, with p; intersect in the vertex p, of patch y and in the point q,. Analogous deductions
show that the remaining two boundary curves between p;, p; and p, intersect in the vertex
p4 of patch y and in the point qg.

Now consider the line L connecting the two points bg; and by . The two planes Fo and Fy
pass through L. Thus the lines Ly and L4 intersect the line L. The image 6(L) is a circle on
() through the four points p;, q9, p3 and q,.

(<) Consider the six lines §~(p;), ... , 6 (p4) and §71(q,), 6~ (q,) in E3. The four points
Pi, 4y, P3 and q, were assumed to be situated on one circle on (), hence there exists a line
L in E? intersecting the four lines §~!(p,), 6~ '(ay), 6 ' (p3) and 6~ !(qy). (The circle is the
image of this line under 4.)

Let by (resp. by ) be the intersection point of the lines L and 6~ (p;) (resp. 6~ !(p3)). The
control points by and by are the intersection points of the line 6 !(py) with the plane
spanned by the lines L, §~!(qy) and of the line ! (p,) with the plane spanned by the lines L,
6~1(qy), respectively. Resulting from this construction, the image of the bilinear Bézier patch
with the control points b; ; (cf.(29)) is the required quadratic Bézier patch on the sphere Q.
This proves the assertion. [ |

The first part of the theorem is a necessary condition for biquadratic Bézier patches on the
sphere. The second part of the proof yields a construction of a biquadratic Bézier patch
on () connecting four given vertices whose boundary curves are segments of given circles.
Corresponding to different choices of the boundary curve segments and of the interior sphere
segment, the sphere carries 32 patches satisfying these constraints. (Most of them are degen-
erated.) Only 8 of them can be obtained by the construction presented. (The signs of the
weights of the control points b; ; can be chosen arbitrarily.)

14
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If the second intersection points q; are not situated on the boundary curve segments of the
patch on the sphere ) and the patch is regular, then the patch can be represented by a
biquadratic Bézier patch. This condition is sufficient, but it is not necessary.

The conditions of theorem 3.9 are not fulfilled generally, but:

Theorem 3.10 There ezists always a tensor-product Bézier patch of degree (2,4) on the
sphere () whose vertices are the points py, Pe, P3, P4 and whose boundary curves are segments
of the four circles C1 9, Co3, C3.4, C1.1 = Cys.

Proof. The inverse images of the four boundary circles on the sphere 2 under the general-
ized stereographic projection § are four one-sheet-hyperboloids resp. hyperbolic paraboloids
(lemma 3.4) in E3. These four quadric surfaces intersect in projecting lines (24) correspond-
ing to the points p; and q; (i = 1,2,3,4).

In order to construct the required Bézier patch on the sphere, a rational tensor-product Bézier
patch of degree (1,2) has to be found whose boundary curves are situated on the above four
quadric surfaces. Two of these four boundaries (on opposite sides of the patch) can be chosen
as conjugated lines (generators) of the above quadrics, i.e. as rational linear curves. The
remaining two boundary curves must connect the vertices of these conjugated lines. (These
vertices are the intersections of the conjugated lines and the projecting lines corresponding
to the points p;.) These boundary curves can be chosen as conic sections, i.e. as rational
quadratic curves.

There exists a rational tensor-product-Bézier patch of degree (1,2) interpolating the four
boundaries. Applying generalized stereographic projection § yields the required Bézier patch
on the sphere. |

More detailed constructions of the biquadratic Bézier patch of theorem 3.9 resp. of the Bézier
patch of degree (2,4) of theorem 3.10 connecting four given boundary curves will be given in
a forthcoming paper [Dietz & Hoschek & Jittler’93].

In case of rational quadratic triangular Bézier patches, a condition analogous to theorem 3.9
has been developed in e.g.[Sederberg & Anderson’85] [Boehm & Hansford’91]: The boundary
curves are again segments of three circles on (). These circles must intersect in one point.
This condition can also be proved by applying the generalized stereographic projection §: All
quadratic triangular Bézier patches on the sphere can be obtained as images of linear rational
triangular Bézier patches in £ under §. The three control points of this linear patch span a
plane in E3. The common point of the boundary circles corresponds to the projecting line of
this plane.

Consider again the situation of theorem 3.9. Let additionally a circle C;.3 on the sphere @
through the two points p; and p3 be given. One of the two segments of the circle C; ; between
the points p; and p; is denoted by C7; ((i,7) = (1,2),(2,3),(3,4),(4,1),(1,3)). The second
intersection point q; is assumed not to be situated on the circle segments C;_; ; and C7},
(¢ =1,2,3,4). Finally, the circle segments Cf 5, Cf4 and C5 5 (resp. C} 5, C;, and C3,) are
presumed to be the boundary curves of a regular triangular patch on @ (see fig.5). Then the
condition of theorem 3.9 and the above condition for quadratic triangular Bézier patches on
the sphere yield the surprising

Corollary 3.11 (Patchwork-Theorem) The two regular triangular patches on the sphere Q
connecting the three boundary curve segments C7 5, Cf o and C5 5 resp. Cf s, Ci, and C3 4
can be described by two quadratic triangular Bézier patches if and only if the regular patch on
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Figure 5: The Patchwork-Theorem

Q@ connecting the four boundary curve segments CT,, C55 C5, and Cj, can be represented
as a biquadratic tensor product Bézier patch.

The proof is obvious: The circle C of theorem 3.9 corresponds to the circle 'y 3. The common
points of the boundary curves of the triangular Bézier patches are the second intersection
points q, and q, (see fig. 5). (The two quadratic triangular patches are the images of the two
linear triangular patches with the control points bg.g,bg.1,b1.0 and bg1,b19,b11 in fig. 4
under §.)

The above corollary holds also in degenerated cases: Figure 6 shows a decomposition of
Boehm’s biquadratic Bézier patch on the sphere (see [Boehm’93]).

The requirements for the boundary circles of triangular and quadrangular patches can be
formulated with help of the vertex angles, too. If a regular triangular Bézier patch is mapped
onto a plane by the stereographic projection, its image is a regular triangle — provided that
the intersection point of the three boundary circles is chosen as the centre of projection.
Because the stereographic map is angle preserving, the three vertex angles of the patch sum
up to w. Conversely, if three boundary curves are given which do not intersect and the vertex
angles of which sum up to 7, a regular Bézier patch with these boundary curves exists.
Applying corollary 3.11 one gets

Corollary 3.12 Let a regular quadrangular surface patch of the sphere be given. The bound-
ary segments should not pass through the second intersection points qi,...,q, of the boundary
circles and the vertex angles o1, ..., @4 of the corners should lie inside (0, 7).

Then a biquadratic tensor product Bézier patch with the given boundary curve segments exists
if and only if o1+ @2+ @3+ @4 =27 holds.

16
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Figure 6: A decomposition of Boehm’s patch

Proof. Using the circle Cj 3 of corollary 3.11, the quadrangular Bézier patch can be
subdivided into two triangular patches. The condition s € (0,7) resp. @4 € (0,7) ensures
that the circle segment Cf 3, lying inside the patch, does also not pass through the point q,
resp. qq. Therefore, both of the triangular patches are regular and their vertex angles sum
up to w each.

The converse direction can be similarly seen. [ |

17
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3.6 Interpolation with rational Bézier curves

Rational spherical curves interpolating given points are constructed in this section. Interpo-
lation on the sphere will be shown to be a linear problem.

Let m + 1 points p; with parameters t; € R ({p < t; < ... < t;,) on the sphere @) be given
(¢ = 0,...,m). These points shall be interpolated by a rational Bézier curve x(t) of degree
2n on the sphere Q with 2n + 1 homogeneous control points b; (j = 0,...,2n) (cf.(13)).
The generalized stereographic projection will be used in order to construct this curve. The
required curve can be obtained as the image of a rational Bézier curve y(t) of degree n in E®
with n + 1 homogeneous control points ¢; (j =0, ...,n) under ¢ (see corollary 2.3).

Consider the m + 1 lines §~!(p;) in E3. For t = t;, the curve y(t) has to intersect the line
6 1(p;). Then its image x(¢) under § interpolates the point p; on Q.

As already established, the line §~!(p;) is represented by Aq; + uq;-, )\, 4 € IR, where q; is a
preimage of p; under 6, i.e. §(q;) = p;. (For the notation g see section 3.4.)

Therefore the interpolation condition for the curve y(t) can be written as

y(t:) = Mg + g, $=0,...,2n (31)

with unknown constants (\;, u;) # (0,0). The coordinate vectors q;, q;", §; and §; form
an orthogonal basis of IR*. Hence, the curve y(t) passes through the line §~!(p;) iff the two
linear equations

(@,y(t)) =0 and  (q;,y(t)) =0 (32)

are fulfilled ( = 0, ..., m) and the curve y(¢) does not have a base point at t = ¢;, i.e. y(;) # 0.
(The equations (32) describe two planes in E®. These planes intersect in the projecting line
51(p;)-)

A homogeneous system of linear equations for the unknown control points c;, j = 0,...,n,
results from

y(t) =) Bj(t)c; (33)

and from condition (32). It consists of 2m + 2 equations with 4n + 4 unknowns. Since the
two-parametric family of curves Ay (t) + py~(t), A\, u# € IR, leads to the same spherical curve,
the number of unknowns can be reduced by 2. Thus, if m < 2n holds, then there is at least
one nontrivial solution of the homogeneous system of equations.

The system is solved and so a curve y(t) is found passing through the lines § ! (p;). Applying
generalized stereographic projection ¢ (see eq.(20)) to the obtained curve y(t¢) yields the
required interpolating curve x(t) on the sphere ). The control points b; of the curve x(t)
can be computed with help of product formulas for Bernstein polynomials as mentioned in
section 2. Figure 7 shows a quartic rational Bézier curve on the sphere interpolating five given
points.

The following theorem deals with the uniqueness of the curve x(t):

18
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Figure 7: A quartic Bézier curve on the sphere interpolating five given points

Theorem 3.13 If 2n+ 1 points py, - . ., Pa, 0N the sphere QQ with parameters to, ..., ton € IR
(ti # tj fori # j) are given, then there is a rational spherical curve x(t) of degree 2n satisfying
the interpolation problem

x(t)~p;, t1=1,...,2n.

The solution is unique in the sense that
x(t) ~x"(t), telR

holds for all further solutions x*(t). ( ~ stands for linear dependence and does not exclude
x(ti) =0/)

Proof. The existence of at least one solution x(¢) is obvious. The second part of the theorem
remains to show. Let the coordinate functions of x(¢) be reduced by common divisors and get
zo > 0 by multiplying with —1 if necessary. Then x(t) is representable as image under ¢ of
a rational curve y(t) of degree n satisfying equation (31), where q; is an arbitrary preimage
of p;. Let z(t) be a second solution of (31) with z(¢;) = n;q; + &q;, i =0,...,2n. Then it
holds that

(y(t:), 2(t:)) = (Niq; + piqi, mi@; — &G@5) = 0= (y(t;),z2"(;)), i=0,...,2n.

Now, (y(t),z(t)) and (y(t),z"(t)) are polynomials of degree 2n at most and have 2n + 1
distinct roots. Thus, they are identical to zero. For every t* € IR, v and 7 can be found with
y(t*) = va(t*) + rz+(t*), leading to 6(y(t)) ~ 6(z(t)), t € IR. This proves the assertion. |

If the curve y(¢) has a base point at ¢ = ¢;, then the point p; is inaccessible in the sense of
numerical analysis. The curve x(¢) does not have any infinite points (i.e. poles): The image
of an infinite point of the curve y(¢) under the generalized stereographic projection is always
finite. If one of the tangents of curve y(¢) is a projecting line of the hyperbolic projection,
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then x(¢) = 6(y(t)) may have a cusp at this point.
The method can be extended to interpolation with rational B-Spline curves and surfaces on
the sphere, but in this case formulas for the product of B-spline basis functions are needed.

4 B-spline curves and surfaces

We will now extend our constructions to B-Spline curves and tensor-product B-Spline surface
patches on quadrics. We get the corresponding curve or surface representation if we insert
in (13) or (16) the B-Spline basis functions Nj;(7) with k as order (degree k — 1) instead
of Bernstein polynomials. The parameter 7 may be defined over a knot sequence T'. In the
interior of T all knots may have multiplicity / = 1. Analogously to (15) we need a product
formula for the B-Spline basis functions N;;(7). For such products we can set

M
Nig(1) - Nj(1) = > 0 Ni2—1(7) (34)
m=0

while multiplication of two functions of degree £ —1 leads to a function of order 2k—1. Because
the B-Spline functions N;; have continuity of order £ — 2 with our assumption for the knot
vector, the product of two basis functions must have the same continuity class. Therefore
each knot in the knot sequence of N, ox—1 must have multiplicity [ = k. The coefficients a,,
can be determined recursively ([Morken’91], [Vermeulen & Bartels & Heppler’92]) with help
of wellknown recursiv definition of B-Spline functions. The factor o, vanishesif j ¢ {i,..,i+
k — 1} otherwise M is determined by

for j=1 : M=k(k—-3)+3

for j—ita : M=k(k—(a+1)+1 a€{l..k—1} (35)

This formula has an asymmetry: For the product with ¢ = j two additional coefficients appear
at the beginning and at the end of the sequence {i,..,7 + k — 1}. The number M is reduced
for open spline curves: then we have multiplicity & at the boundaries of the knot sequence
and therefore M must be lower. This (very low) continuity C*~! for the B-Spline curves
resp. surfaces with basis functions N, o1 can be elevated if we choose special sets of control
points in the parameter space E3:

Consider a linear B-Spline curve in E® with N 4 1 homogeneous control points p; € IR*
(¢t=0,..,,N). Its image under § is a quadratic B-Spline curve on the sphere Q). Generally,
this curve is only continuous of order 0. The order of continuity can be elevated with help
of the second part of lemma 3.6: If the projecting line through p; (0 < % < N) and the two
control points p,_; and p;,; are coplanar, then the image of the linear B-Spline curve under
d is continuous of first order at é(p;). Using lemma 3.8, this condition can be expressed in
terms of coordinate vectors of the control points:

(Pi—1,Pi) <piLapz'+1> - <pi—17piL> (PHPiy1) = 0 (36)

If the above equation holds for s = 1,.., N — 1, then the image of the linear B-Spline curve
under § is a tangent continuous circular spline on the sphere Q.
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Conclusion

In this paper, an explicit representation of any irreducible Bézier curve and Bézier surface
patch on the unit sphere @ (and on the hyperbolic paraboloid) has been given. This represen-
tation has been studied by introducing a generalization of stereographic projection. Discussing
this projection, new results concerning the biquadratic Bézier patch on the sphere and meth-
ods for interpolation on the sphere have been derived. Rational B-Spline representations have
been considered finally.

The extension of this results to other quadrics is straightforward: An arbitrary oval (resp.
doubly ruled) quadric surface x' Bx = 0 (where B is a nonsingular symmetric (4,4)-matrix)
can be obtained as image of the unit sphere (resp. of the hyperbolic paraboloid) under an
appropriate projective map

x> w(x) = Ax

(where A is a nonsingular (4,4)-matrix). Therefore the equations (Ax)' B(Ax) =0 and
x"Qx = 0 (where Q is the matrix corresponding to the unit sphere resp. to the hyperbolic
paraboloid (18)) are equivalent. Thus, a representation analogous to (11) resp. (19) for an
arbitrary oval (resp. doubly ruled) quadric results as image of that for the unit sphere (resp.
of that for the hyperbolic paraboloid) under the projective map n. For example, the hyper-
boloid of two sheets z2 + 2 + z3 — 22 = 0 is obtained from the unit sphere by the projective
map
71t (zo 1 X2 £L‘3)T — (11 2 x3 wo)T

The representation analogous to (11) is
xo = 2pop1 — 2p2p3 z1 = 2p1p3 + 2pop2 (37)
w2 = pi+p3—p§ — 13 z3 = *(pg + pi +p3 +p3).
The hyperboloid of one sheet 3 — 22 — 23 + z3 = 0 results from the hyperbolic paraboloid
(18) by the projective map
mo: (zox1@axy) — (o +x3 To—T3 T +Ty T1—xp)
and the representation analogous to (19) is

To = pop3 + P1p2 T1 = poP3 — P1P2 (38)
T2 = p1p3 + pop2 T3 = P1P3 — Pop2-

The discussion of rational curves and surfaces on quadrics will be continued in a forthcoming
paper [Dietz & Hoschek & Jittler'93]. That paper will present more detailled constructions
of the biquadratic Bézier patch and of the Bézier patch of degree (2,4) interpolating given
boundary curves.

21



R. Dietz et al. / An Algebraic Approach ...

References

Bereis, R. and Brauner, H. (1957): Schraubung und Netzprojektion, Elemente der Math-
ematik 12, pp. 33-41

Boehm, W. and Hansford, D. (1991): Bézier patches on Quadrics, in Farin, G. (ed.):
NURBS for Curve and Surface Design, STAM, Philadelphia, pp. 1-14

Boehm, W. (1993): Some Remarks on Quadrics, Computer Aided Geometric Design 10
(same issue)

Brauner, H. (1956): Uber Mannigfaltigkeiten von Strahlen mit kongruenten Netzrissen,
Archiv der Mathematik 7, pp. 406-416

Coxeter, H.S.M. (1961): Introduction to Geometry, John Wiley & Sons Inc., New York
Coxeter, H.S.M. (1964): Projective Geometry, Blaisdell, New York, London, Toronto
Dickson, L.E. (1952): History of the Theory of Numbers, Vol. II, Chelsea, New York

Dietz, R., Hoschek, J. and Jiittler, B. (1993): Rational Patches on Quadric Surfaces,
submitted to Computer-aided Design

Farin, G., Piper, B. and Worsey, A.J. (1987): The octant of a sphere as a nondegenerate
triangular Bézier patch, Computer Aided Geometric Design 4, pp.329-332

Fink, U. (1992): Biquadratische Bézier-Flachenstiicke auf Quadriken, Ph. D. Thesis, Uni-
versitat Stuttgart

Geise, G. and Langbecker, U. (1990): Finite quadric segments with four conic boundary
curves, Computer Aided Geometric Design 7, pp. 141-150

Hoschek, J. and Seemann, G. (1992): Spherical Splines, Mathematical Modelling and
Numerical Analysis 26, pp.1-22

Hoschek, J. (1992): Bézier Curves and Surface Patches on Quadrics, in Lyche, T. and
Schumaker, L.L. (eds.): Mathematical methods in CAGD and Image Processing, Academic
Press, Boston, pp.1-4

Kubota, K.K. (1972): Pythagorean triples in unique factorization domains, American
Mathematical Monthly 79, pp. 503-505

Pedoe, D. (1970): A Course of Geometry, Cambridge University Press, Cambridge

Morken, K. (1991): Some Identities for Products and Degree Raising of Splines, Construc-
tive Approximation 7, pp. 195-208

Piegl, L. (1986): The sphere as a rational Bézier surface, Computer Aided Geometric
Design 3, pp. 45-52

Salmon, G. (1885): Lessons Introducing to the Modern Higher Algebra, Reprinted by
Chelsea, New York

22



R. Dietz et al. / An Algebraic Approach ...

Sederberg, T. and Anderson, D. (1985): Steiner Surface Patches, IEEE Comp. Graphics
Appl., pp. 23-26

Tuschel, L. (1911): Uber die Schraubliniengeometrie und deren konstruktive Verwendung,
Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Wien 120, pp. 233-254

Vermeulen, A. H., Bartels, R. H. and Heppler, G. R. (1992): Integrating Products of
B-Splines, SIAM J. Sci. Stat. Comput. 13, pp. 1025-1038

Warren, J. and Lodha, S. (1990): A Bézier Representation for Quadric Surface Patches,
Computer-aided Design 22, pp. 574-579

Wunderlich, W. (1936): Darstellende Geometrie nichteuklidischer Schraubflichen, Monat-
shefte fiir Mathematik und Physik 44, pp. 249-279 (Reprinted 1958 by Johnson Reprint
Corp., New York)

Authors’ address

Prof. Dr. J. Hoschek, R. Dietz and B. Jiittler
Technische Hochschule Darmstadt

Fachbereich Mathematik

Arbeitsgruppe Differentialgeometrie und Kinematik

Schlofgartenstr. 7
6100 Darmstadt

Germany

23



R. Dietz et al. / An Algebraic Approach ...

List of figure captions

Fig.1: The stereographic projection

Fig.2: The construction of the conjugated line through the three projecting lines.
The image of this line under § is the circle interpolating p*, q* and r*.

Fig.3: The condition for biquadratic Bézier patches
Fig.4: The proof of theorem 3.9

Fig.5: The Patchwork-Theorem

Fig.6: A decomposition of Boehm’s patch

Fig.7: A quartic Bézier curve on the sphere interpolating five given points

24



