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Abstract

Starting from an initial sequence of Hermite elements, a Hermite subdivi-
sion scheme recursively generates finer sequences of Hermite elements which are
associated with the dyadic points. With the help of the interpolating splines
that can be associated with the Hermite elements, we analyze the smooth-
ness of the limit curves generated by Hermite subdivision schemes of arbitrary
order, including non—interpolatory ones. After presenting these theoretical re-
sults, we describe two new families of Hermite subdivision schemes.
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1 Introduction

Starting from an initial sequence of Hermite elements (i.e. vectors containing func-
tion values and associated derivatives), a Hermite subdivision scheme (HSS for short)
recursively generates finer sequences of Hermite elements which are associated with
the dyadic points, see Dyn and Levin 1995 and 1999, Kuijt 1998, Merrien 1992. The
dimension of the Hermite elements (order of derivatives+1) will be called the order
of the scheme. By simultaneously designing points and associated derivatives, Her-
mite subdivision schemes are a useful tool for curve design. For instance, using an
interpolatory scheme, curves with cusps can easily be generated, simply by choosing
zero derivatives at some of the initial points.

Hermite subdivision schemes generate spaces of functions which are spanned
by vectors of refinable basis functions. Such spaces, generalizing the standard
wavelet constructions, have recently been discussed in approximation theory, cf.
Goodman 2000, Plonka 1995, Strela and Strang 1995.

Hermite subdivision has been introduced by Merrien (1992). He studied a family
of interpolatory 2-point-schemes of order 2 (i.e., dealing with function values and
associated first derivatives), generating C' limit functions. Merrien’s family of HSS
generalizes the piecewise linear interpolant of the function values, and the piecewise
cubic interpolant of the second order Hermite elements.

Hermite subdivision schemes can be seen as a special case of vector subdivision
schemes (cf., e.g., Han and Jia 1998, Micchelli and Sauer 1997 and 1999). Unlike
standard vector schemes, however, Hermite schemes have non—stationary rules, de-
pending on the refinement level k. In order to analyze interpolatory Hermite sub-
division schemes, Dyn and Levin (1995, 1999) introduced an associated point sub-
division scheme, generating the divided differences of the Hermite elements. If the
associated scheme is stationary, then the original HSS is said to be stationary, too.
The construction of the associated point scheme requires the computation of certain
matrix—valued Laurent polynomials.

Using these results, Kuijt (1998) constructed several interpolatory HSS of order 2,
which were shown to generate C? functions. Kuijt derived the refinement rules by
considering the polynomials interpolating neighboring Hermite elements, and sam-
pling Hermite data from them.

In this paper we propose a different approach to Hermite subdivision schemes
of arbitrary order, including non-interpolatory ones. We consider the interpolating
splines associated with the Hermite elements. Consequently, a HSS can be associated
with another subdivision scheme, generating a sequence of spline functions. An HSS
will be said to be stationary, if the associated spline subdivision scheme has stationary
rules. Our approach leads to a simple tools for analyzing the properties of the limit
curves, and it can be used in order to design new schemes.

We provide the tools which are needed for analyzing the smoothness and differen-
tiability of the limit curve, by generalizing the results of Dyn et al. (1991) on classical
point subdivision schemes to the spline case. For the sake of brevity, the proofs will



be omitted, as they are mostly similar to their counterparts in the point case. Further
details can be found in the PhD thesis of the second author (Schwanecke 2000).
After presenting these theoretical results, we describe two new families of Her-
mite subdivision schemes. Firstly, we derive a family of interpolatory C? Hermite
subdivision schemes which generalizes the classical 4-point scheme of Dyn et al. 1987.
Secondly, using a least-squares—fitting—based approach with suitable Sobolev-type
norms, we derive a new family of non—interpolatory Hermite subdivision schemes.

2 Hermite Subdivision vs. Spline Subdivision

We show that a Hermite subdivision scheme can be identified with a subdivision
scheme generating a sequence of spline functions.

2.1 Hermite Subdivision Schemes (HSS)

Consider the sequence {hgo)}iez of m~th order Hermite elements

0 0) (0 0
hz( ) = (hz(,())v hz(',l)’ ERE) hz(,r)n—l)—r’ (1)
i.e. vectors containing function values hg?o) and associated derivatives hg)l), cees hg?,)n_l
up to order m—1 of an (unknown) function £ (¢) at the integers,
a7
(") — 5©
20w =Y. ©)

t=1

Starting from this initial sequence, a Hermite subdivision scheme (HSS) of order m
recursively generates finer sequences {hgk)}iez of Hermite elements. The k—th gener-

ation of Hermite elements is associated with the dyadic points {tz(k) =1i27%}es.
The refinement is based on the two rules,

! !
k+1 k)q. (k) (k+1) (k). (k
n{ Y = ZA( 'n. niHY ZB Y. k=012, (3)
=0 =0
with the matrix masks

A® =AW AP} and BW ={BP ..., B} (4)

which consist of real m x m matrices A;k), BJ(-k). Note that the masks may depend
on the subdivision level k.

The sequence of Hermite elements is said to converge to a C” limit function f(t), if

d’ k
(¢ = lim A%TY 5 =0,... min{r,m —1 5
diE]f( ) t:tz(,k) qiglo 294,35 J mm{r } ( )
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Figure 1: A curve (left) generated by Merrien’s interpolating HSS for (o, §) = (%, g),
along with its first derivative (right).

holds for all i,k € Z, k > 0.

Example. An interesting family of HSS of order 1 with [ = 1, depending on two
parameters «, 3, has been introduced by Merrien 1992. It is described by the matrix
masks

1 o 1 _a
A(()k) = Ioxo, Agk) = O2x2, B(()k) - (—52’9 1—k/5> ; Bgc) - ( 2 1;25) . ©)

For («, 8) = (0,1), the scheme produces simply the piecewise linear function inter-
polating the data (i, hz(oo))

For (o, 8) = (%, %), the limit function is C*. The sequence of Hermite elements
converges to the unique cubic Hermite spline matching the initial first order Hermite
elements (i, h§°)).

For general values of the parameters «, 3, the scheme produces sequences of Her-
mite elements which interpolate the initial data, due to choice of the matrices Agk). In
particular, Merrien has proposed to choose 8 = 4a + 1, see Merrien 1992 for details.
An example is shown in Figure 1.

In this paper, we will use Merrien’s family of HSS in order to illustrate the
principal ideas. In particular, a more detailed analysis of the differentiability of
the limit curve will be given. O

2.2 Associated Spline Function

The sequence {hgk)}iez of m—th order Hermite elements is interpolated with a C™!
spline function X¥)(t) of order 2m,

X(k)(t) = Zpﬁk) Niom(t), teR (7)

i€z
The B-splines N; o,,,(t) are defined over the knot vector
TO = (o 2, (O, 2, ) (®)
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where all knots have multiplicity m, as indicated by {.}{™. The coefficients (control

points) M

.~ are associated with the corresponding Greville abscissas

4(8) 1—m+2j
§zm+] i+ % (@m —1)’
These abscissas divide the real axis in segments according to the ratios
02:2:1:2:2:...:2:1:2:2: ... (10)
—

m — 1 times

j=0,....m—1,i€Z k=012.... (9)

See e.g. Schumaker 1981 for further information on B-spline and Greville abscissas.
The spline function (7) is to match the associated Hermite elements, i.e.

dI
— x®) (¢ — h
dzxi ®) g () A

The Hermite data hgk) and the control points p(-k)

1
tion.

(11)

are related by a linear transforma-

Lemma 1 The Hermite elements h( of order m and the coefficients pZ of the
associated spline function X *)(t) are related by

Pim Pim

: = H(k)hz(k) resp. hgk) = (H(k))_1 : ) (12)
(k) (k)
pim—l—(m—l) pim—l—(m—l)

where H®) = VU®) resp, (H(’“)y1 = (U(’“))f1 V=Y with the lower triangular matrices

1 2m — ) (i -1
Uk = (= ( ) ( ))jgz‘:L...,m

20Dk (2m —1)I\yj — 1

(U(k))—l _ ((_1)i—j2(i—1)kw (Z N 1) )i <imL,omims

7 —1

and the upper triangular matrices

i (m—1 m—1
V = ((_1)]_1( >2m ])z<j:1,...,m; V_l = (( >2Z m)z<] 1,...,m-

J—1 J—t
Example. For Hermite elements of order m = 1 we obtain the piecewise linear
(spline) function interpolating the data ( ; ,h%) In this case, Hermite data and
control points are identical.

For Hermite elements of order m = 2, the Greville abscissas of the associated
cubic spline are f( ) = t(k) =% and 5221 = ( )+ 557~ The Hermite elements and
the control points are related by the transformatlon matrices

1 L 1 1
(k) — 3.2k (k) 1 _ 2 2 _
H —(1 1) and H —(_3.2]6_1 3‘216_1), k=0,1,2,....

3.2F
Both cases are shown in Figure 2. O
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Figure 2: Hermite elements and associated spline function in B-spline form for m =1
(left) and m = 2 (right). In the latter case, the knots of the spline function have

multiplicity 2 (black triangles), and the control points (black squares) are associated
with the non—uniform Greville abscissas (hollow triangles).

2.3 Associated Spline Subdivision Scheme (SSS)

The recurrence relations (3) of the Hermite elements imply a recurrence relation for
the control points of the associated spline functions. Combining Lemma 1 with (3)
we obtain the following result.

Proposition 2 Consider a Hermite subdivision scheme (3) of order m, generating
sequences of Hermite elements {hgk)}iez. Assume that the matrices

~

Aj = HEOAWEO™ and B; .= HEIBRHE®™ j—0,... 1, (13)

do not depend on the subdivision level k. The control points of the associated spline
functions (7) satisfy the 2m recurrence relations

m(l+1)—1
poin= 3" dpl. h=0,...2m-1, k=0,12,..., (14)
r=0

where the coefficients are obtained from (13) via

0 . 0 m m
Qo O(i+1)-1 O O (j+1)—1
Aj = : : , and B; = : (15)
m—1 m—1 2m—1 2m—1
O Cn(i+1)—1 (g Opn(j+1)-1
For any given set of m x m coefficient matrices A;, B;, 7 = 0,...,[, the recurrence

relation 14 can be used to generate a sequence of spline functions X (¢), k = 1,2, .. .,
starting from an initial function X () (%) . This process will be called a (stationary)
spline subdivision scheme (SSS) & = §(Ao, - .., A4;, By, ..., B;) of order 2m.
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As a technical assumption, we always require that (Ao, By) # (Omxm, Omxm) 7
(A, By), i.e., L is assumed to be as small as possible.

If the assumption of the Proposition is satisfied, i.e., if the matrices flj, Bj do not
depend on the subdivision level &, then the HSS will be said to be stationary. This
definition can be shown to be equivalent to the definition of a stationary interpolatory
HSS given in Dyn and Levin 1995 and 1999, see Schwanecke 2000. As observed in
the proposition, any stationary HSS is equivalent with a stationary SSS, and the
subdivision masks are related by (13).

Example. In the case of Merrien’s Hermite subdivision scheme (where m = 2 and
[ = 1), we obtain from (13)

31 9-36a—8 3+36a+58 9+36a—58 3—36a+8
A o H 24 24 n o 24 24
Ao = (1 §> » A1 = Oaxa, Bo = (3—36a+,@ 9+36a—5,3> , Bi= (3+36a+5ﬂ 9—36a—,8> :
11 24 24 24 24
(16)
Consequently, the associated SSS of order 2m = 4 is given by the subdivision rules
k+1 3 (k 1, .(k
pé(li ) = Zpgi) + Zpgi—)kl’
k+1 1 _(k 3 (k
p5u+1) = ngi) + ngiiu (17)
(k+1)  _  9-36a—8, (k) |, 3+36a+58, (k) 9+36a—53, (k) 3—36a+43 (k)
Pyivo” = 723 g 9% T+ 72(1 g D1 T+ 72(2 g Daito T 72511 K 2i+3)
(k+1) __  3-36a+8, (k) | 9+36a-58, (k) 3+36a+58, (k) 9— 36 (k)
Piiys = ST O 7 e ) : Doir1 + o Zp Doiiyo t - P21+3

This scheme generates a sequence of cubic spline functions X (¢ ) Wlth double knots
at the dyadic points tgk). Note that the coefficients of each rule sum up to one. This

will turn out to be a necessary conditions for convergence of an SSS. O

3 Analysis

A powerful method for analyzing (point-) subdivision schemes has been described
in Dyn et al. 1991. We will adapt these techniques to the more general class of SSS.

Consider an SSS of order 2m on the finite domain I = [0,n] C R with some fixed
n € Z,. It is well-defined for all £ > 0 if the associated Hermite elements of level k
are defined for all dyadic points {tgk)|i =0,...,Z®}, where

*) _ ok : _f2-1 ifA#0
Z 2ntm,  with m { 2l — 2 otherwise. (18)
The associated spline function is then of the form
Z (k)
Zp iom, 7 (t),  where Z®) = m(2%n + ny) +m —1, (19)
with the knots
T® = (), (A, ).



3.1 Generator Matrix

We consider all control points of the spline function X *)(¢) which determine the
future behaviour of the sequence of spline functions in the interval [tgk), tz(-i)l]. These
control points will be gathered in the control point vector
k k k
pg ) = (pgm)7 et ’p£n2i+n1+2)fl)' (20)
The evolution of the control point vectors can be described with the help of the
generator matrix G of the SSS. If A; # 0, the matrix G is defined as

( /:10 /:1[ Omsxm ++ == Opmxm \
B, . B Opsm oo+ o Omxm
Omsmn Ao wo+ oo A Opmsm *+* Omxm
G=1| Opsm Bo -+ -+ By Omxm - Omxm |. (21)
Omxm *+* Omxm  Ag  +-- cor A O
\ Omsm  *+* Omwm Bo  +- cor By Opsem )

Otherwise, the matrix is the same as before, but with the last m rows and columns
deleted. G is a M x M matrix with M = m(n; + 3).
The control point vectors satisfy the linear recurrence relations

Pg;H) = Gy Pz(k) and szcill) =G, Pz(k) (22)

where Go = G(}71"™) and G; = G(]7™" ™). Here, we denote by

a---b
G(C d) = (9i,j)i=ar..bij=crd (23)

the submatrix of the generator matrix G = (g; ;)i j1,.,m, consisting of the rows
a,...,b and the columns c, ..., d.

Suppose that a parameter value t(k)

.~ has the dyadic representation

k
) =g+ 0277 € [0,n — 27" (24)
j=1

with iy = [tz(-k)J and {iy,...4x} C {0,1}. Resulting from (22), the associated control
point vector can be expressed in terms of the initial data,

Pikr = Gik e 'Gilpio,o- (25)

Technical Remark. Without loss of generality we may assume that the coefficients
of the SSS satisfy By # Ouxm. If this assumption is not satisfied by the original

8



scheme, one should consider the SSS which is obtained by applying a shift of m to
the control points. The same technique has been used in Dyn et al. 1991, Proposition
2.1.

Example. The SSS which is associated with Merrien’s scheme (m = 2, [ = 1) can
equivalently be described by the 6 x 6 generator matrix

1‘:10 /:11 0252
G = By By 02 |, (26)
O2x2 Ao A
cf. (16). Note that A} = 09y5, hence ny = 21 — 2 = 0. Consequently, G is a 6 x 6
matrix. The control point vectors pgk) = (pgf), ey pgfl?,) have length 4; they satisfy
the recurrence (22) with the two 4 x 4 submatrices
Ay A B, B
Gy = IR d G,= - 27
’ (Bo Bl) . ' (Ozxz Ag © (27)

3.2 Convergence

The sequence of spline functions X (¥)(¢) generated by an SSS is said to converge
uniformly to a C* limit function f on [0, n], if

Ve>0 3K =K(e):

£ K _ k . (B)y _ ) (28)

> = Vi=0,....m2n+1)—-1: [f(&")—p;"'| <e

According to this definition, the sequence of control polygons (which may be con-
sidered as piecewise linear functions with respect to the Greville abscissas (9), but
it suffices to consider the control points) converges uniformly to the C* limit func-
tion f on [0,n]. Due to the uniform convergence of the control polygon to the
B-spline curve, this implies the uniform convergence of the associated sequence of
spline curves X *)(¢).

3.3 Continuity of the Limit Curve

The continuity of the limit curve can be analyzed as in Dyn et al. 1991, Section 3. In
this section we give an outline of the main results (see Schwanecke 2000 for further
details).

Necessary conditions. Firstly, if an SSS of order 2m converges uniformly to a
continuous limit function f % 0 on [0,n], for arbitrary initial data X (©(¢), then

m(l4+1)—1
Y al=1 for h=0,...,2m -1 (29)

j=0



That is, the components of each row of the generator matrix (21) sum up to one. If
this condition is satisfied, then the SSS is guaranteed to reproduce constant functions,
. (k) _ (k) _ Ci li (k+1) _  (k+1) __ C
ie. py’ =...=p,u = C implies p, =D 41y = C.
Secondly, each of the new coefficients pgkﬂ) has to depend on ‘sufficiently many’
old coefficients. More precisely, the submatrices Gy and G; governing the transfor-

mation of the control point vectors have to have at least one common row,
M —m>14m, or, equivalently, m(n; +1) > 1. (30)

For instance, in the special case of a point subdivision scheme (m = 1), a scheme
with [ = 0 will never be C°.

In the remainder of this paper we assume that both necessary conditions are
satisfied.

Difference process. Now consider the differences of adjacent control points,
k k k . 5
Ag):pg—i—)l_pz( )7 7’:07"'7Z(k)_1' (31)

Suppose there exists an integer L > 0 and an « € [0, 1), such that

max \AZ(-HL)\ <o max \Agk)\. (32)
i=0,...,Z(k+L) 1 i=0,...,Z(k) 1
Then the spline subdivision scheme & (/Alo, . A, By, ..., Bl) converges uniformly to

a continuous function f on [0,n]. Thus, if the differences are contracting, then the
sequence of spline functions is a Cauchy sequence, converging to a continuous limit
function.

Next we analyze the subdivision scheme which generates the differences of control
points. If the necessary conditions (29),(30) are satisfied, then the differences can be
generated by another subdivision scheme

AS = AS(Ay,..., A, By, ..., B). (33)

Again we use the generator matrix and control point vectors in order to describe this
scheme. The (M — 1) x (M — 1) matrix

1,...,M—-1
C=FEyG (Ey)™ (1 - M—1) (34)

P

is the generator matrix of the difference process (33), where

M
Ey = (=0i+6is15) and (Ey)™" = (=Y Sisnj + bisry)- (35)

h=0

The proof is similar that of Proposition 3.1 of Dyn et al. 1991. Due to the neces-
sary conditions (29), (30), the differences of the control points at each level can be

10



expressed by differences of control points at the previous level. A short calculation
confirms that the resulting subdivision process is governed by the above generator
matrix C, cf. Schwanecke 2000, p.87.

Now consider the difference vectors of length M — (m + 1),

Az('k) — (A(k) A(k)

)T
mi? ) Tm(idng+2)—-2/

These vectors control the future behaviour of the difference process in the interval

[tgk), t,(i)l]. The difference scheme (33) can be seen as a transformation acting on these

difference vectors,
Agipr1 =CoAr and Agipipr1 = CrlAg,

where Cy = C(}%:EZIB) and C; = C(IH’A';_(%:)) Similar to (25), any difference

vector can be expressed in terms of the initial data AEO),
k 0
AP =¢y -0, AY, (36)
with the dyadic representation (24).

Continuity criterion. The following result will be used as the main tool for ana-
lyzing the continuity of the limit function.

Theorem 3 (Continuity) Let the spline subdivision scheme S satisfy the necessary
conditions (29),(30). Then the following are equivalent:

1. The scheme S converges uniformly to a continuous limit function on [0,n] for
arbitrary initial data.

2. The difference process AS converges uniformly to zero on [0,n] for arbitrary
wnitial data.

3. There exists an integer L > 0 and an « € [0,1), such that
||C“CZL||OOSC¥ VijE{O,l},jZl,...,L. (37)

Thus, in order to prove the continuity of the limit function, the difference process
has to be shown to be contractive, by collecting several steps of the scheme.

Example. The difference scheme of the SSS associated with Merrien’s HSS has the
generator matrix

L 0 0 00
R B R 00
C= 38 s 600 |, (38)
e B =2 000
\ 0 0 L 00

11



see (26) and (34). The transformation of the difference vectors A is governed by

7

the two submatrices Cy = Gg) and C) = (i’g) Consider the case 0 < a < % and
B =4a+1, leading to the matrix norms ||Cy|ls = [|Ci]lc = 2(ex+1) < 1. For these
values of the parameters o and [, the SSS produces a continuous limit function, as

the criterion of Theorem 3 is satisfied. O

3.4 Derivative Processes

Recall that an SSS of order 2m generates a sequence of C™ ! spline functions X *)(¢)
of order 2m. We will derive criteria for a C” limit function f, r =1,...,m — 1, by
studying the first m — 1 derivatives of these spline functions. Clearly, the r—th
derivative (d"/dt") X *)(t) is a C™ 17" spline function with the knot vector

TE = ({83 ), 3mSR ).

2kn4ny 7 2kn4ni+1

~
inner knots have multiplicity m

Its control points are associated with Greville abscissas which divide the real axis
according to the ratios
ceet1:2:20 000020100000 102:0 20000201 (39)

v v v
m — 1 —r times r + 1 times m — 1 —r times

Note that this is again a non—uniform parameterization, except for the last deriva-
tive, where r = m — 1.

First derivative. Consider the first derivative of the spline functions. If the condi-
tions (29),(30) are satisfied, then a short calculation confirms that the control points
of the first derivatives are again generated by a subdivision scheme 0§ with a certain
generator matrix DI! (see below).

Again, we have two necessary condition for convergence of the derivative
scheme OS to a non-zero continuous limit function for arbitrary initial data.

Firstly, the rows of the generator matrix D! have to sum up to one. That is, the
scheme OS has to reproduce constant functions. Equivalently, the original scheme S
has to reproduce linear polynomials.

Secondly, the submatrices governing the transformation of the control point vec-
tors have to have a common row, i.e.,

M —(m+1)>14+m or, equivalently, m(n;+1) > 2. (40)

Higher order derivatives. We apply this idea successively to the first m — 1
derivatives. This leads to the subdivision schemes

87"8(140,...,Al,Bo,...,Bl), ’f':]_,...,m—l (41)
with associated generator matrices D"l (see below).

12



Again, we have two necessary conditions for convergence of the r—th derivative
to a continuous non—zero limit function for arbitrary initial data. Firstly, the rows
of its generator matrix D" have to sum up to one. Equivalently, the original scheme
S has to reproduce the control points of polynomials of degree r. Secondly, the two
submatrices D([)T] and Dgﬂ have to have a common row,

M —m—r>1+4+m, or, equivalently, m(n; +1)>1+r. (42)

Generator matrices. Assume that the SSS and the associated m — 1 derivative
schemes satisfy these necessary conditions. Then, the r—th derivative process 0"S
has the (M —r) x (M — r) generator matrix

-1 /1,.... M—r
plrl = or gl (EW) e —1,...m—1 43
m G (Bu L,...,M—p) "TT TS (43)
where
Efl =diag(1,...,1,2,2%...,2",1,...,1,...,2,2%,...,2") - Euy, (44)
——— ————— —— —_———
m—r times r times m—r times r times

see (35). The control points of the 7—th derivative of the spline function X () (t)
will be denoted by pgk)[r]. Again, the control points governing the future behaviour
of the scheme 0"S in the interval [tgk),tz(i)l] are gathered in a control point vector
pgk)[r] = ( 5}’;?[?], el p§,’jg£jm +2)—1—7~)- The transformation of these vectors is again
given by submatrices of the generator matrix,

k T T k)[r k T T k)[r
plhlrd — plrpl ng plErDE Z plig®] (45)

where DE) = (1 4777) and DY = (7).

Example. We consider again the case of an SSS of order 2m = 4, generating a
sequence of cubic spline functions. Here, the sequence of the first m — 1 derivatives
reduces to the first derivative. It is generated by the first derivative scheme 0S
producing a sequence of quadratic spline functions with double knots, see Figure 3.

We compute the generator matrix of this scheme in the case of Merrien’s HSS
and the associated SSS, cf. (43). This leads to

1 0 0 0 0)
—3+36a+8 3-58 3—36a+8
6 3 6 00
1] 3-8 B 3-8
pii=1 % § F 00 (46)
3-36a+8 3-8 —3+36a+8
6 3 6 00
\ 0 0 1 00)

The transformation of the control point vectors pgk)[r] (length 3) is governed by the
submatrices D! = DI(1 %) and DI = DI (329), 0

13



cubic C1 spline function p(k_) first derivative
PR (quadratic CO spline function)

. PEh]

(K)
Paisn)F

Py
2 Py el e 0 ,,
N p(2'i<)[1] p(k)[l]
oIl
V Greville abscissas 2(1-1)
A knats o
w Py
v v v v v v v v v v v
2 2 2 2 2 2

Figure 3: HSS of order m = 2, SSS of order 2m = 4 (left), and the associated first
derivative scheme (right).

3.5 Analyzing the derivative processes

In order to analyze the convergence of the subdivision schemes (41) we have to
consider the associated difference schemes

AIS(Ay,...,ALBy,...,B), r=1,...,m—1, (47)
generating the differences APl = pgi)lm — ¥ of the control points. The difference

scheme exists if the derivative scheme 0”8 satisfies the necessary conditions for con-
vergence, i.e., the rows of the generator matrix D'} sum up to one. The difference
scheme AQ"S has the generator matrix

(48)

o= s (10 ML),

The future behaviour of the process AJS in the interval [tz(-k) ) | is determined by

» Yi41
the difference vectors AP = (AW .,A(mkzl[:r]m 2y 2 ,) Again, the evolution

of these difference vectors is governed by two submatrices of the generator matrix,
C([)T‘] — C[r] (1...M—m—r—1) and C{T] — C[T}(1+m...M_7-_1).

1 M—-m—r—1 1M—m—-r—1
The convergence of the derivative schemes (41) can be analyzed with the help of

the following result.

Theorem 4 (Differentiability I) Let the subdivision process (41) satisfy the nec-
essary conditions for convergence. Then the following are equivalent:

1. The derivative scheme 0"S converges uniformly to a continuous limit function
fV on [0,n] for arbitrary initial data.

2. The difference process AO™S converges uniformly to zero on [0,n| for arbitrary
initial data.
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Figure 4: C' convergence regions of Merrien’s HSS, obtained by considering one (left)
or two (right) steps of the difference scheme AJS.

3. There ezxists a positive integer L and an o € [0, 1), such that
jcf..clw <o forall i; € {0,1}, j=1,...,L. (49)

If these equivalent conditions are satisfied, then the original SSS produces a C" limit
function f.

Example. We apply this technique to Merrien’s HSS. The generator matrix D! of
the derivative scheme satisfy the necessary condition for convergence; its rows sum
up to one. Consequently, we may compute the generator matrix of the associated
difference process A0S,

9—36a—S 3—360+8

6 6 0 0
—34+B+18a 18a—f 00
ol = 5 ’ (50)
18a—p —3+p+18a
3 3 0 0
3*360¢+ﬁ 9*3605*ﬂ 0 0

6 6

The transformation of the difference vectors Az(k)[r]

cyl = cl(;3) and O = CU ().

Consider again the special case f§ = 4o+ 1. In order to apply the convergence
criterion of Theorem 4 we have generated plots of the matrix norms in (49) for L =1
(left) and L = 2 (right), depending on the parameter a. If all matrix norms are
less than 1, then the scheme is guaranteed to produce a C! limit function. From
(49) with L = 1 we get that the scheme is C* for all « € [0.084,0.166] (left figure).
Considering two steps, i.e. choosing L = 2, we may conclude that the scheme is C!
for all a € [0.067,0.210] (right figure). By composing more than two steps (i.e.,
increasing the value of L), we may obtain even larger intervals for a.

Based on a different approach, Merrien’s scheme has been shown to produce a C*
limit curve for 0 < a < %, see Dyn and Levin 1995. O

is governed by the two submatrices
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3.6 Inscribed Polygon Process

The derivative (d™'/dt™~1)X*) is a C° spline curve; it is described as a sequence
of Bézier curves of degree m with identical boundary control points (or, equivalently,
as a spline curve of order m + 1, where all knots have multiplicity m). Generally, the
derivatives of order m of the spline functions X *)(¢) are not continuous. In order to
analyze the differentiability of higher order we introduce the inscribed polygon process

PO S(Ay,..., A, By,...,B). (51)
This process generates the sequence of piecewise linear function with the vertices
(depending on the subdivision level k)
( Lotk dm_*lx<k)(igf<k+1)) i (52)
m ) dtm_l m Z—O,...'

That is, the process generates an inscribed polygon to the derivatives of order m — 1,
with the stepsize 1/(2¢)m).

After some computations we arrive at the (M — m + 1 x M — m + 1) generator
matrix of the inscribed polygon of the (m — 1)-th derivative.

P = Ly D™ (Lyrmyr) ™, (53)

where the transformation matrix is a bandmatrix with bandwidth 2m — 1,

( \

Rm—l—l
1 0

Rm—|—1

LM7m+1 = - ) (54)

Rm+1

Rm—|— 1

with

m m+1—3i\"7 fi—1\/"
= () (5 () -
j—1 m m o
%,7=1,...,m+1

The inverse matrix of (53) is obtained by replacing the submatrices on the diagonal
with the inverse matrices R} ;.
The inscribed polygon process and the (m—1)-th derivative process can be shown

to be equivalent.
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Figure 5: Spline subdivision scheme, derivative scheme, and inscribed polygon pro-
cess for m = 2.

Theorem 5 The inscribed polygon process PO™ 'S generates a continuous limit
function f if and only if the (m — 1)-th derivative process PO™ S generates a con-
tinuous limit function g. Moreover f = g.

The proof follows directly from the stability of the Bernstein basis, and from the
convex hull property of Bézier curves.

Example. In the case of Merrien’s HSS we obtain the matrices

1 0000 1 0 0 0 0
i3 100 L2 -1 o0

Ls=| 0010 0 and L;'=1]1 0 0 1 0 0 (56)
00 %11 0 0 —3 2 —3
00001 00 0 0 1

which transform the matrix D!l (see (46)) into the generator matrix of the inscribed
polygon process PJS,

1 0 0 0 0 \
—3+472a+28 6-8  3—T20+28
24 6 24 00
3-2 2 3-2
P= 326 B 2 g 0 |. (57)
3-72a+428 6-8 —3+720+28
24 6 24 00
\ 0 0 1 0 0)
Figure 5 shows the spline subdivision scheme S, the derivative scheme 08, and the
associated inscribed polygon process POS. O

3.7 Analyzing the inscribed polygon process

The limit curve of the inscribed polygon process can be analyzed as in the classi-
cal case of point subdivision schemes, using divided difference processes and their
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difference schemes, see Dyn et al. 1991. We denote by
D'PI"'S(Ay, ..., A, By, ..., B). (58)

the r—th divided difference process of the inscribed polygon scheme, and by

A

AD"PI™S(Ay, ..., AL By, ..., B). (59)

its difference process, r =0, 1,....

If the r—th divided difference process converges to a smooth limit function for
arbitrary initial data, then two necessary conditions are always satisfied. Firstly, the
rows of its generator matrix sum up to one. Consequently, the inscribed polygon
process (58) has to reproduce polynomials of degree r. Secondly, the submatrices
governing the transformation of the control point vectors have to overlap,

M —-2m—(r—1)>(1+4+m), or,equivalently, mn; > r. (60)

Let Q") and El"l be the generator matrix of the r—th divided difference process (58),
and of its difference process (59). Starting from the generator matrix Q1% = P of the
inscribed polygon process, these matrices can recursively be obtained from

Q[H—l] = 2EM—m+1—rQ[r](EIM—m-I—l—T)_1 ( 1 e % — 2 - : ) » T=01,
(61)
and El'l = 1Q’“. The transformation of the corresponding difference vectors
is then governed by the two submatrices E[T] = E[’"](1 "'M72m7’) and EM

1. M—2
Elr ](1+mM ]\;[mmr T). With the help of these matrices we obtain a criterion for dif-

ferentiability of the limit function of the SSS.

Theorem 6 (Differentiability IT) Assume that the inscribed polygon process and
the associated divided difference processes satisfy the necessary conditions. Then the
following are equivalent:

1. The scheme D"PO™ 'S converges uniformly to a continuous limit function on
[0,n] for arbitrary initial data.

2. The difference process AD"PI™ 1S converges uniformly to zero on [0,n] for
arbitrary initial data.

3. There exists an integer L > 0 and an o € [0,1), such that

IEN. . BN <a Vie{01},j=1,..,L (62)

If these equivalent conditions are satisfied, then the inscribed polygon process produces
a CT limit function, and the original SSS produces a C™ =1 limit function.
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Remarks. 1.) Note that this theorem — for r = 0 — provides another criterion for
differentiability of order m — 1. That is, in order to make sure that the original SSS
generates a C™ ! function, it is sufficient to show that one of the processes A9™ 1S
and APJ™ 'S is contracting.

2.) Note that the differences and divided differences are generated by subdivision
schemes only if the necessary conditions are satisfied, cf. the remarks after Eq. (35).

Example. At first we analyze the continuity of the limit function of the inscribed
polygon process. This leads again to criteria for a C* limit function of the Merrien’s
HSS and the associated SSS.

From (57) we obtain the generator matrix of the difference process APJIS,

271—T2a—2p 3—T2a+28
24 24 00
—15+72a+108 9+72a—108 0 0
E[O] _ 24 24 (63)
94+72a—108 —15472a+108 0 0
24 24
3—T72a+28 27—T2a—28
24 24 00

The transformation of the difference vectors is governed by the two submatrices E([)O] =
EP(172) and EP] = ELI(37). Again we consider the matrix norms for L = 2, where
B = 4a + 1 has been chosen. This leads to the feasible domain « € [0.030,0.235],
where the inscribed polygon scheme is guaranteed to produce a continuous limit
function. Consequently, for these values of «, the spline curves generated by the SSS
converge to a C! limit function. The feasible interval obtained by considering two
steps of the difference process APOIS is slightly larger than the analogous interval
obtained from the (equivalent) difference process AJS. By composing more and
more steps, however, the results obtained from both processes will become more and
more similar.

Secondly we consider the divided difference scheme DPOS, with the generator
matrix Q! = 2E0. We check the two necessary conditions for convergence to a
continuous limit function for arbitrary initial data.

According to the first condition, the rows of its generator matrix have to sum
up to one. Equivalently, the scheme PdS has to reproduce linear functions. This

necessary condition implies o = %. The second condition, however, is violated, as
mn; = 2-0 < 1. Thus, Merrien’s scheme is not C?. O
4 Design

The techniques presented in this paper can be used in order to design HSS and SSS.
We present two examples.
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Figure 6: Deriving the interpolatory 4-point scheme (left) and the analogous scheme
for second order Hermite elements (right).

4.1 A Generalization of the 4—Point scheme

Based on a geometric construction, Dyn et al. (1987) derived a family of interpolating
4-point subdivision schemes. With the help of the spline-based approach, this family
can be generalized to Hermite elements (cf. Schwanecke and Jittler 1999), as follows.

Consider the piecewise linear function with vertices (tz(k),hz(k))iez. This function
is refined by inserting new vertices (té’fﬂ),hgﬁf))iez and keeping the old vertices,
hgfl) = hl(k). The new vertices are placed by minimizing the jumps of the first
derivatives at the segment end points, see Figure 6. More precisely, the weighted
sum of squared differences, with weights 2w, (1 — 4w)/4, and 2w is to be minimized
by the new vertex. This idea leads to the refinement rules of the original 4-point
scheme.

Analogously, one may consider the })iecewise cubic function, interpolating the
second order Hermite elements (tgk) ,hgk )icz- This function is refined by inserting
new Hermite elements (tgfill ), hgi:[ll ))iez and keeping the old ones, hg’;H) = hgk). The
new Hermite elements are placed by minimizing the jumps of the second derivatives
at the segment end points, see again Figure 6. More precisely, the weighted sum of
squared differences, with weights 8w, (1 — 8w)/8, and 8w is to be minimized by the
new Hermite element. This leads to the refinement rules of the generalized 4-point

scheme. The associated SSS of order 2m = 4 with | = 3 has the matrix masks

. 0 %—Fw
) B0: 1 )
0 g—w
A —1—2w 243w A 33w —1+2w . w0
s T ) (e T ) e
which depend on one parameter w, see 14. The convergence of this scheme can be
analyzed with the techniques described in this paper. By composing 6 steps of the
difference scheme ADPAS we obtain the C? convergence range w € [—0.006, 0.036].

Figure 7 shows several curves which have been generated by Merrien’s scheme
and by the generalized 4-point scheme. This scheme has been described earlier in

A0:A2=A3:02x2,1211:(

[l Ll N [N
NSV RN
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Figure 7: Top: Merrien’s interpolants for o = 0.125 (left) and @ = 0.2 (right). Below:
Interpolants generated by the generalized 4—point— scheme where w = 0.01 (left) and
w = 0.03 (right).

a conference article (Schwanecke and Jiittler 1999). See also Schwanecke 2000 for
additional information.

4.2 Smoothing Scheme

*) of order m = 2, associated with the

Consider the sequence of Hermite elements hg
dyadic points tgk). We fit cubic polynomials F;(t) and G;(t) to neighbouring elements,

by minimizing the weighted sums

K K

A
k k k k
> v (B = h& o + 5 D0 v (Fl) - w02 (65)
j=—K =K
and
L+1 ) Lt ©
k)
Z wj (G ( Z—|—j) h1(—|—] 0) + E W (G,( H—]) hi+j,1) (66)
j:—L ]——L
with weights v = (v_g,...,vk), w = (w_p,...,wry1) and A. These polynomials

depend on 2K + 1 resp. 2L + 2 Hermite elements. The new Hermite elements are
sampled from the resulting cubic polynomials,

k k k k k k
W = (B, BT, ndED = @), BT, (67)

This leads to a family of stationary (due the choice of the weight \/4* of the first
derivative) Hermite subdivision schemes. In order to apply the previous theory, one
needs to apply a suitable shift of indices. Two examples will be discussed in more
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Figure 8: Estimated C? convergence range of the first smoothing scheme.

detail.

Example 1. We choose K = 2, L = 1, and the weights v = (1,w,w,w, 1), w =
(1,w,w, 1). This produces a family of HSS and associated SSS with [ = 4, depending
on the two parameters A and w. The parameter A controls the influence of the first
derivative, and the parameter w can be used to adjust the influence of the boundary
points in the masks.

For suitable values of A\ and w, the resulting scheme can be shown to produce
a C? limit function. It is, however, difficult to compute the matrix norms in The-
orem 6 exactly, as this involves norms of 13 x 13 matrices whose components are
fairly complicated functions of w and A. In order to estimate the C? convergence
range we computed these matrix norms numerically for pairs (w, A) from a grid with
stepsize 0.25. Figure 8 shows the feasible pairs, obtained by composing 3 steps of
the difference process ADPOS. Examples for limit curves obtained for two feasible
values of the parameters are shown in Figure 9. We have drawn both the points and
the associated derivative vectors. The derivatives have been scaled by %

Example 2. Similar to the first example, we choose K =1, L = 1, and the weights
v = (1,w,1), w = (1,w,w,1). Once again, this produces a two-parameter family
of HSS and associated SSS. The subdivision masks are smaller than in the previous
example (I = 3).

As observed in our numerical experiments, these subdivision seem to generate C?
limit curves, for suitable values of w and A (e.g., w = 1.3, A = 0.5). However, we
were not able to verify this fact with the help of Theorem 6, which provides only a
sufficient condition. This will be a subject of further research.

The subdivision masks of the associated SSS, obtained for w = 1.3, A = 0.5, are

+ (—0.0640.40\ . [0.360.14\ ; [0.27-0.064\ . (00
Ao= (—0.064 0.27) A= (0.14 0.36) o A= <0.40 —0.064) As= (0 0)
po_(—012028) 5 (0180.24) o (0.300.046) 5 _(0.19-0.088
07 \—0.0880.19/> 71 10.0460.30) * 72 \0.24 0.18 /) T* \0.28 —0.12 ) °
Again, this scheme is illustrated by an example, see Figure 9. Note that the singu-
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Figure 9: Sequences of Hermite elements generated by the smoothing scheme, Initial
data (left, on a smaller scale), Example 1, w = 1.3, A = 0.6 (center) and Example 2,
w=1.3,\=0.5 (right).

larity is due to the parameterization of the curve, not to a lack of differentiability.

5 Conclusion

We have developed a set of tools for designing Hermite subdivision schemes and for
analyzing the smoothness and differentiability of the generated limit curves. Our
approach was based on the interpolating spline curves which can be associated with
any sequence of Hermite elements. As a matter of future research, one should try to
generalize these ideas to surface design, by considering bivariate Hermite subdivision
schemes, cf. Dubuc and Merrien 1999, Van Damme 1997.

Using Hermite schemes, it is possible to design simultaneously both a curve (or
surface) and its tangent (or tangent plane). This may be a useful feature in various
applications, where the quality of the resulting shape is important. For instance,
by simultaneously designing a surface and its tangent planes, it should be relatively
simple to control the distribution of reflection lines, which are a powerful tool for
assessing the quality of a surface.
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