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Abstract

We introduce a robustness measure which allows to an-
alyze implicitly defined curves and surfaces with respect to
their stability. It can be used to bound the maximal posi-
tion error, which is introduced by small perturbations of the
coefficients of a curve or surface. It is shown that the ro-
bustness of an implicitly defined curve or surface can be
enhanced by multiplying it with auxiliary factors.

1. Introduction

Curves and surfaces can be described by various differ-
ent representations: piecewise polynomial or rational para-
metric representations [7] (NURBS – Non–Uniform Ratio-
nal B–Splines), implicitly defined curves and surfaces [1] or
level sets [11], and triangular meshes / subdivision surfaces
[19]). Traditionally, the different possible representations
are tied to certain specific applications, such as Computer
Aided Design (parametric representations), numerical sim-
ulation and Computer Graphics (meshes), or image process-
ing (level sets). In this paper, we will focus on (piecewise)
algebraic representations. More precisely, the free–form
curves and surfaces will mainly be described by zero con-
tours of bi– and trivariate spline functions. The use of these
algebraic spline curves and surfaces offers several compu-
tational advantages.

• The problem of fitting curves and surfaces to scattered
data, which is a fundamental task in various appli-
cations (e.g., in reverse engineering of geometric ob-
jects), can be solved without generating auxiliary tri-
angulations and parameterizations of the data (cf. [9]).

• Algorithms for certain fundamental geometric opera-
tions, including intersections with lines and foot point
generation, do not need suitable initial values which
are often difficult to generate.

• Algebraic curves and surfaces are closed under certain
important geometric operations, such as intersection or
offsetting.

However, the problems associated with implicitly defined
curves and surfaces are also well documented.

• The implicit representation of a curve or surface may
contain unwanted branches, or even singular points,
in the region of interest. Even if a regular parametric
curve or surface (e.g., a cubic) is given, its implicit rep-
resentation is not guaranteed to be free of these prob-
lems.

• Exact implicit representations of low–degree curves or
surfaces may have huge data volumes. E.g., the im-
plicit form of a bicubic Bézier patch (which has 16
control points) is a trivariate polynomial of degree 18,
which is equipped with 1330 scalar coefficients.

• Small perturbations of the coefficients of an implic-
itly defined curve or surface may entail huge changes
of the shape and the topology. This is different from
B–spline or Bernstein–Bézier representations of para-
metric curves, where the maximum position error is
bounded by the coefficient error, due to the convex hull
property.

Recently, several approximate techniques for generating
implicit representations have emerged [4, 2, 15, 10, 9]. In-
stead of exact techniques (relying on symbolic tools such
as resultants [3], Gröbner bases, or moving curves and sur-
faces (syzygies) [14]), these methods approximate a given
curve or surface by the zero contour of a bi– or trivariate
(piecewise) polynomial. Using these techniques helps to
avoid the problems associated with implicit representations.

In this paper we will concentrate on the issue of robust-
ness. After summarizing the situation in the parametric
case (Section 2), Section 3 introduces a robustness measure
for implicit representations, leading to a classification of a
given curve or surface with respect to its stability. Section 4
discusses a method for enhancing the robustness of a given



representation, by multiplying it with suitable auxiliary fac-
tors. Finally we conclude this paper.

2. Parametric curves

For the convenience of the reader we recall how to bound
the position error of a polynomial curve. Consider the
Bézier curve

p(t) :=

n∑

i=0

biB
n
i (t), t ∈ [0, 1] (1)

with the Bernstein polynomials Bn
i (t) :=

(
n
i

)
(1 − t)n−iti.

We collect the coefficients bi in a vector. This coefficient
vector is supposed to be subject to a relative error of max-
imum magnitude ε. This results in a perturbed curve pε(t)
with control points b∗

i , where maxi |bi−b∗
i | ≤ ε maxi |bi|.

The perturbation leads to the position error

δpos := max
t∈[0,1]

|p(t) − pε(t)|

which can be bounded by

δpos = max
t∈[0,1]
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≤ max
i

|bi − b∗
i | ≤ ε max

i
|bi|

Similar to [5], we define a robustness measure

Rp :=
δpos

ε
, (2)

where δpos is the maximum position error of all possible
perturbed curves. For polynomials in the form (1) it follows
immediately from (2) that

Rp ≤ max
i

|bi|. (3)

This ratio allows us to classify a given curve: The smaller
the robustness measure, the more robust is the representa-
tion of the curve. Multiplying Rp with the maximal relative
error gives a bound on the position error of the curve. The
result (3) has an obvious geometric interpretation: in order
to obtain a robust representation, the origin of the system of
coordinates should be chosen in the vicinity of the curve.

3. Implicitly defined curves and surfaces

Consider an algebraic curve segment F of order n,

F = {x | x ∈ Ω ⊂ R
2 ∧ f(x) = 0}

which is defined in a certain planar domain Ω ⊂ R
2 by the

zero contour of a bivariate polynomial of degree n. This

polynomial is given by its Bernstein–Bézier–representation
(cf. [7, 13])

f(x) :=
∑

i,j,k∈Z+

i+j+k=n

bijk Bn
ijk(u, v, w) (4)

with Bn
ijk(u, v, w) := n!

i!j!k!u
ivjwk , where (u, v, w) are the

barycentric coordinates of a point x with respect to a non-
degenerated triangle 4ABC.

Again, we assume that the (now scalar–valued) coeffi-
cients bijk are subject to a relative error of maximum mag-
nitude ε, resulting in perturbed coefficients b∗ijk such that
maxijk |bijk − b∗ijk | ≤ ε maxijk |bijk |. Let Fε be the per-
turbed curve, i.e., the zero contour of the perturbed polyno-
mial fε.

Before discussing the resulting position error, we intro-
duce the following technical notion:

Definition 3.1. Consider a vector field in Ω ⊂ R
2. Two

algebraic curves F ,G ⊂ Ω ⊂ R
2 satisfy the “I–property”

with respect to the vector field if any integral curve of the
vector field which starts from one of them hits the other
curve.

3.1 Bounding the Hausdorff distance

Since no parameterization of the algebraic curves is
available, we have to use the more involved concept of the
Hausdorff distance in order to quantify the difference be-
tween two curves (cf. [8]). The one–sided Hausdorff dis-
tance1 is given by

HD(F ,Fε) = sup
y∈Fε

inf
x∈F

||x − y||.

Lemma 3.2. We assume that the gradient fields ∇f and
∇fε do not vanish in Ω, and that the two curves F and Fε

satisfy the I–property with respect to ∇f . If

c ≤ ||∇f(x)|| and |fε(x) − f(y)| ≤ η

holds for all x,y ∈ Ω, where c and η are certain posi-
tive constants, then the one–sided Hausdorff distance can
be bounded by

HD(F ,Fε) ≤
η

c
.

The proof results immediately by applying the mean
value theorem to the integral curves which connect the
points of both curves. For the sake of brevity, we omit the
details (cf. [20]).

We assume that the domain Ω is contained in 4ABC.
Due to the convex–hull property, the maximal “algebraic

1The symmetric version is max(HD(F ,Fε), HD(Fε,F)).



distance” η in Lemma 3.2 can be bounded by

η = max
(x,y)∈4ABC

|f(x, y) − fε(x, y)|

≤ max
ijk

|bijk − b∗ijk | ≤ ε max
ijk

|bijk |

Analogously to (2), we define a robustness measure for al-
gebraic curve segments,

Rf =
HD(F ,Fε)

ε
(5)

which can be bounded by2

Rf ≤
max |bijk|

min(x,y)∈4ABC ||∇f(x, y)||
. (6)

Clearly, this upper bound is invariant with respect to scal-
ing: When the coefficients bijk are multiplied by an arbi-
trary real constant λ 6= 0, the upper bound of the robustness
constant remains unchanged.

Remark 3.3. Note that the robustness measure is tied to
the domain triangle of the curve, since it leads to bounds of
the absolute distance error. Consequently, this measure can
be used for comparing two curves which are defined with
respect to the same domain, but not for two curves with
different domains.

In order to compare curves with different domain trian-
gles, a relative robustness measure should be used. This
could be defined as the ratio between the diameter of the
domain and the (absolute) robustness measure.

3.2 Bounding the minimal gradient

In order to bound the robustness measure, the minimal
gradient – or at least a lower bound of it – is needed. Hence,
we have to compute the two partial derivatives with respect
to x and y. Recall that the derivative of a triangular Bézier
patch at a point X in the direction R is given by

d

dτ
f(X + τR)

= n
∑

i,j,k∈Z+

i+j+k=n−1

(rbi+1jk + sbij+1k + tbijk+1)
︸ ︷︷ ︸

= cijk

Bn−1
ijk (u, v, w)

where r, s, t, (r + s + t = 0), are the barycentric coordi-
nates of the direction R with respect to the domain trian-
gle 4ABC = 4[(A1, A2), (B1, B2), (C1, C2)]. For the
case of the direction x (set i = 1, j = 2), resp. y (with
i = 2, j = 1) we obtain

r =
Ci − Bi

∆ij

s =
Bi − Ci

∆ij

t =
Bi − Ai

∆ij

2In the case of polynomials with vanishing gradient in 4ABC, the
robustness constant is set to ∞.

Figure 1. Bounding the minimal gradient

where

∆ij = (Bj − Cj)(Ai − Ci) − (Bi − Ci)(Aj − Cj).

A derivative of a triangular degree n Bézier patch is a tri-
angular Bézier patch of order n − 1. Let cx

ijk and cy
ijk be

the Bernstein–Bézier coefficients of the derivatives with re-
spect to x and y (i, j, k ∈ Z+, i + j + k = n − 1). These
coefficients are certain linear combinations of the bijk .

We collect these coefficients to control points

dijk = (cx
ijk , cy

ijk).

This system of control points is associated with the trian-
gular Bézier patch ∇f : 4ABC → R

2 of degree n − 1.
Clearly, due to the convex hull property, the gradient ∇f =
((∂/∂x)f, (∂/∂y)f) in each point of the domain triangle
lies within the convex hull of the control points dijk .

The minimum gradient length can now be bounded by

min ‖∇f(x, y)‖ ≥ min
x∈ convex hull{dijk |

i+j+k=n−1;i,j,k∈Z+}

‖x‖ . (7)

Consequently, we search for the minimal distance of the
convex hull of the dijk to the origin, see Figure 1. If the
origin lies within the convex hull, then the robustness con-
stant is chosen as ∞. Otherwise, this distance is used to
bound the denominator in (6). This leads to a lower bound
on the robustness measure, expressed in terms of the control
points.

Remark 3.4. While the convex hull of a (finite) point set in
the plane can easily be generated exactly (e.g., using Gra-
ham’s algorithm), the computation in the three–dimensional
situation (which is needed for bounding the robustness mea-
sure for implicitly defined surfaces) is slightly more in-
volved. However, there exist several approximative tech-
niques which can be used instead.

Remark 3.5. The assumptions of Lemma 3.2 include the
“I–property”. Consequently, the distance bounds are only
valid for those segments of the curve, which satisfy this
property with respect to the perturbed curve. Since this may
not be valid at the boundaries, the original curve segment



should be slightly “blown up”, by enlarging the domain tri-
angle. Otherwise, the bounds would be valid only for in-
finitely small perturbations.

In practice, the relative coefficient error should be very
small (much smaller than the 5% used throughout this pa-
per), and the effects of the possible violation of the I–
property at the segment boundaries be neglected.

3.3 Two examples

Example 1: For a polynomial f whose gradient vanishes
somewhere in the domain, the robustness measure Rf is
formally ∞. Since

δpos = εRf ,

it is no longer possible to bound the displacement δpos. In
this situation, the perturbed curve is not only subject to a
displacement, but some branches of the zero contour may
vanish or even new ones may be created. We illustrate this
fact by a simple example.

Figure 2a shows the surface given by a polynomial in
Bernstein-Bézier form. The three vertical lines represent
the vertices of the domain triangle. Figure 2b shows the
gradient field of the polynomial, the zero contour of f , and
two zero contours after admitting a relative coefficient error
of 5%.

The surface has a saddle point, thus the gradient vanishes
in a point, as shown in Figure 2b. In addition, the perturbed
curves have totally different shapes. Since the displacement
of the curve does not depend continuously on the error, we
have to exclude zero contours of polynomials with vanish-
ing gradients; no robustness measure can be defined in this
situation.

Example 2: In the case of polynomials with non–
vanishing gradient, an upper bound of the robustness mea-
sure can be obtained from (6). However, if there exists a
high diversity in the gradients and in the control points, we
may get poor bounds for the robustness measure.

Similar to the previous example, Figure 3a shows the sur-
face given by a polynomial in Bernstein-Bézier form. Fig-
ure 3b shows the gradient field of the polynomial, the zero
contour of f , and two zero contours after introducing a rel-
ative coefficient error of 5%.

Since the gradient does not vanish within the domain
triangle, we are now able to bound the minimum gradient
length by min ||∇f || ≥ 0.36, which leads to the robust-
ness constant Rf ≤ 22. After introducing 5% relative co-
efficient error, the maximal position error, which occurs at
x = 5, equals 0.264. Using the robustness measure, it can
be bounded by 5% × Rf = 1.1. Clearly, this is a relatively
poor upper bound.
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Figure 2. Original bivariate polynomial with
vanishing gradient (a). Perturbation with 5%
relative error gives the polynomials shown in
(c,d). The gradient field and the zero contours
before (black) and after (grey) perturbing the
Bernstein–Bézier coefficients are visualized
in (b).

3.4 Enhancing the gradient bound

In order to get a tighter bound we would need to know
the minimal gradient in the vicinity of the curve. With the
method described in Section 3.2, we bound the minimal gra-
dient for the whole domain. We may adapt this bound by
subdividing the domain triangle into four smaller ones, see
Figure 3b.

If the subdivision is realized using de Casteljau’s algo-
rithm, then an extrapolation is needed for the inner triangle.
Hence, the computations are no longer numerically stable.
Therefore, one should a priori compute the splitting rules
symbolically, by combining three consecutive de Casteljau
algorithms.

Remark 3.6. Special attention should be paid when com-
puting the position error of the smaller triangles. Multiply-
ing the robustness constant of a subtriangle with the max-
imal relative error of the original patch leads to a wrong
result. Wallner et al. [18] point out that the de Casteljau al-
gorithm propagates the absolute error of the control points.
So it is clear that the relative error can become arbitrary
high. Thus one must not use the relative error of the origi-
nal control points, but the relative error of the control net(s)
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Figure 3. The original bivariate polynomial (a).
Perturbation with 5% relative error gives the
polynomials shown in (c,d). The gradient field
and the zero contours before (black) and after
(grey) perturbing the Bernstein–Bézier coef-
ficients are visualized in (b).

of the subtriangle(s).

Example 2 (continued): Recall that the original distance
bound (for 5% coefficient error) was 1.1. We split the do-
main into four triangles and recompute the robustness mea-
sure for the innermost triangle (since the biggest error oc-
curs there). This leads to a distance bound of 0.37. This
bound is far better, but it still overestimates the position er-
ror by about 40%. If we split once more, we get a distance
bound of 0.275 which is now within 4.3% of the exact error
(0.264).

Remark 3.7. 1. Note that a direct comparison of the ro-
bustness measures for the original triangle and the
smaller ones (see previous example) does not make
much sense, cf. Remark 3.3(2). Therefore, we have
compared the absolute error bounds obtained for an
relative error of 5% in the original coefficients.

2. In practice, one does not know in which part of the tri-
angle the biggest error occurs and so the minimal gra-
dient has to be computed for every subtriangle which
is hit by the curve. As a necessary condition, these
triangles are characterized by alternating signs of the
Bernstein–Bézier coefficients.

exact point
rectangle containing exact point
convex hull of exact points
convex hull of disturbed points

y

x
ijk

ijk

Figure 4. Bounding the the minimum gradient
length for exact and interval coefficients

3.5 Inexact control points

So far, we bounded the position error of the zero con-
tour of bivariate polynomials in Bernstein–Bézier represen-
tation with exact control points. However, in practice the
coefficients are the result of some numerical computation,
e.g. one interpolates some points with a polynomial. In this
case it is not possible to specify the points exactly but only
an interval which contains the exact value. Note that every
floating point number is only reliable within the machine
accuracy. Hence, each floating point number is in fact an
interval.

So interval arithmetic is needed to compute the deriva-
tives of the Bézier patch. Finally we do not obtain the
cijk as points in R

2, but as certain rectangles which contain
the exact points. See [16] for more information on interval
arithmetics and related techniques.

Still, we can proceed similar to the case of exact points.
We only have to split each rectangle up into 4 points and
find the convex hull for these corner points. As an exam-
ple, Figure 4 shows the gradient patch of a quartic bivariate
polynomial. Since the derivative patch is cubic, it has 10
control points.

Example 2 (continued): We consider again the previous
curve segment, but now with interval coefficients with accu-
racy ±0.01 (the maximum absolute value of the coefficients
is equal to 8). In the interval case, the minimum gradient
length can be bounded by 0.36, and the robustness measure
is equal to 22.3. In the exact situation, these figures were
equal to 0.37 and 22.0, respectively.

After subdividing the triangle twice, the innermost trian-
gle has the robustness constant 2.79 (which was 2.75 in the
exact case).

3.6 The case of tensor-product functions

The previous results can immediately be generalized to
the case of curves and surfaces defined by tensor-product



(TP) polynomials. In the curve case, the implicitly defined
curve is described by the zero contour of the polynomial

f(x, y) :=

m∑

i=0

n∑

j=0

bijB
m
i (x)B̂n

j (y), (x, y) ∈ [0, 1]2,

(8)
with coefficients bij , where Bm

i (x), B̂n
j (y) are the Bern-

stein polynomials with respect to x and y, respectively, as
defined in (1). Again, we admit a maximal relative error ε
in the maximum norm of the coefficient space,

max
ij

|bij − b∗ij | ≤ ε max
ij

|bij |.

Due to the convex hull property, the perturbation of the val-
ues of f can be bounded by

max
(x,y)

|f(x, y) − fε(x, y)| ≤ ε max
i,j

|bij |

The partial derivatives with respect to x and y of a TP
polynomial are TP polynomials of degree (m − 1, n) and
(m, n − 1), respectively. Thus, in order to represent the
gradient as a parametric TP surface patch [0, 1]2 → R

2 of
degree (m, n), degree elevation of the derivatives is needed,
see [7]. We can now proceed in the same way as in the case
of Bézier triangles; the minimal gradient can be bounded
as the minimal distance of the convex hull of the dij of the
gradient patch to the origin.

3.7 Implicitly defined surfaces

The concept of the robustness measure can easily be gen-
eralized to implicitly defined surfaces. Adopting again the
Bernstein–Bézier technique, such surfaces are given by the
zero contours of polynomials of the form

f(x, y, z) :=
∑

i,j,k,l∈Z+

i+j+k+l=n

bijklB
n
ijkl(r, s, t, u)

with trivariate Bernstein polynomials Bn
ijkl, see [1, 7].

These polynomials are now defined with respect to a do-
main tetrahedron 4ABCD.

Lemma 3.2 can easily be generalized to the surface case.
As in the bivariate case we define the robustness measure,
which can be bounded as follows:

Rf :=
δpos

ε
≤

maxi+j+k+l=n |bijkl |

min(x,y,z)∈4ABCD ||∇f ||
.

The gradient field of f now defines a trivariate vector–
valued polynomial. The minimal gradient can again be
bounded by the minimum distance of the convex hull of the
control points from the origin. Clearly, the computation of
this lower bound now involves convex hull computations in
three–dimensional space, where approximative techniques
will be preferred.
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4 Robustness enhancement

After analyzing the robustness, we develop a method for
improving the robustness of a given implicitly defined curve
or surface.

4.1 Motivation

As observed in the previous section, the robustness can
often be improved by subdividing the domain. However, as
demonstrated by the following example, this approach will
not work in all cases.

Example 3: We consider a the cubic polynomial

f(x, y) = (y2 + x − 0.5)(y + 0.01), (9)

whose zero contour is a parabola and a straight line, see
Figure 5. The domain triangle is shown in the figure. The
singular point is not contained in the domain, but close to
it. As to be expected, the robustness measure is rather poor,
Rf ≤ 50.5051. After a subdivision step we get the tighter
bound Rf ≤ 17.0825, which seems to be an important
improvement. However, this improved robustness measure
does not give better bounds on the position error: for the
original triangle (with 5% coefficient error) the bound was

δpos ≤ 50.5051 · 0.05 = 2.525255.

After the subdivision, the position error can be bounded by

δpos ≤ Rf ε2 ≤ 17.0825 · 0.147 ≈ 2.52488.

(Here, ε2 = 0.147 is the relative error with respect to one
of the four triangles obtained after the subdivision). Conse-
quently, the robustness of this curve representation is rather
poor. This is due to the singular point which is close to the
domain triangle.



4.2 Multiplication by an auxiliary factor

The representation of an implicitly defined curve or sur-
face is not unique, since the defining function f(x, y) can be
multiplied by any bivariate function λ(x, y). Clearly, while
this multiplication does not change the original zero con-
tour, it might introduce additional branches, which have to
be kept outside the domain triangle. Hence, λ has to be
strictly positive (or negative) on the entire domain.

We will now exploit this observation in order to improve
the robustness of the representation. Clearly, if one already
has a perturbed representation (with some coefficient error),
then this multiplication will not improve matters, as it can-
not eliminate the noise from the coefficients. On the other
hand, if a highly precise implicit representation is given
(e.g., based on extended arithmetic, or even exact arith-
metic, or just double precision), but it has to be converted
into to less precise format (such as standard floating point
numbers), then an enhancement of the robustness can be
highly useful for improving the accuracy of the representa-
tion.

High robustness measures (which lead to large position
errors) are caused by high variations in the gradient field.
Consequently, we choose the auxiliary factor such that the
gradient field becomes more uniform (‖∇f‖ ≈ 1). As
a heuristic observation, uniform gradient fields can be ex-
pected to give a more robust representation. This is sim-
ilar to the idea of “reinitialization” in the level set frame-
work [11, 17].

If a bivariate function has uniform gradients, ‖∇f‖ ≡ 1,
its graph forms a so–called surface of constant slope. These
surfaces, which are special ruled surfaces, have thoroughly
been studied in classical differential geometry. Due mate-
rial properties of the material, these surfaces are naturally
generated by piling material like sand or grains.

Consider the surface of constant slope which is associ-
ated with a given curve. Generally, this surface does not
exist in the entire domain, but only in a certain neighbour-
hood of the given curve, which is bounded by the curve’s
evolute. As an example, we consider the curve in Figure 6,
whose evolute is the unit circle. The associated surface of
constant slope (right) is defined only in the outer part of the
evolute (visualized by the cylinder).

4.3 Computing the auxiliary factor

Starting from the observations in the previous section,
we aim at improving the robustness measure of a given
function f(x, y) by multiplying it with another bivariate
polynomial λ(x, y), called the mollifying function. The goal
of this procedure is to obtain gradients of constant length.

The absolute length of ||∇f || is of no importance, since
one can always multiply the defining function with a con-
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Figure 6. A planar curve and its evolute (left).
Surface of constant slope through the given
curve (right).

stant factor without changing the robustness of the curve.
For the sake of simplicity, we search for a unit gradient field.
As explained earlier, this cannot be fulfilled on the entire
domain for an arbitrary surface. However, in the vicinity
of the curve we may get a representation similar to a sur-
face of constant slope. In order to preserve the shape of the
original zero contour, this polynomial has to be non-zero on
the entire domain. Thus we search for a so–called “mol-
lifying function” λ(x, y) taking positive values on 4ABC
such that

||∇(λ(x, y)f(x, y))|| (10)

= ||f(x, y)∇λ(x, y) + λ(x, y)∇f(x, y)||
!
= 1

We have to distinguish between several parts of the domain:

1) points on the zero contour,

2) points in the vicinity of the curve,

3) points far away from the curve.

First we apply condition (10) to all points (x̄, ȳ) on the zero
contour and obtain

||f(x̄, ȳ)∇λ(x̄, ȳ) + λ(x̄, ȳ)∇f(x̄, ȳ)|| (11)

= ||λ(x̄, ȳ)∇f(x̄, ȳ)||
!
= 1

Since we discuss only curves without singularities (i.e.
||∇f(x̄, ȳ)|| 6= 0), this gives

λ(x̄, ȳ) =
1

||∇f(x̄, ȳ)||
(12)

For all (x̄, ȳ) ∈ F we get ||∇(λ(x̄, ȳ)f(x̄, ȳ))|| ≡ 1.
Second we consider the neighbourhood of F . Here,

λ(x, y) ≈
1

||∇f(x, y)||
(13)

is still reliable, since f(x, y) is rather small and thus

||f(x, y)∇λ(x, y) + λ(x, y)∇f(x, y)|| ≈ 1. (14)



Third, for points further away from the zero contour, the
first term in (14) may become big and so the approximation
in (13) is no longer valid, so we need another condition to
calculate λ(x, y). If the gradients of the surface were all
unit vectors, then

distF(x, y) = λ(x, y)|f(x, y)|

would hold, where distF (x, y) is the footpoint distance of
the point (x, y). (For details on footpoint calculation see
[6].) So, at all points which are further away from the zero
contour, the polynomial λ(x, y) should fulfill

λ(x, y) =
distF (x, y)

|f(x, y)|
. (15)

In order to compute the mollifying function, we sam-
ple the expected values λi at a sufficiently high number of
points (xi, yi) (i = 1 . . .N ) in the domain. The values are
determined from (12) if the points are close to the zero con-
tour, or from (15) otherwise. Then, by fitting a bivariate
polynomial to these points in the least squares, we obtain
the mollifying function λ(x, y).

When computing the points and fitting the surface there
arise some issues that have to be addressed:

• First, a bound c1 ∈ R
+ has to be introduced in order

to decide where to switch between condition (12) and
(15). Furthermore we may exclude points which are
too far away from the zero contour. More precisely,
condition (12) is used whenever c1 < |f(x, y)| ≤ c2.

• Another problem is the degree of the λ. Surfaces with
a high degree provide a better approximation of the
points. On the other hand, if there is a high variation
in the values of λ(x, y), they tend to oscillate and so
additional zero contours, or even points with vanishing
gradients, may be created.

This problem can be addressed by using a series of lin-
ear enhancements. That is, instead of multiplying the
original representation with one polynomial of degree
n, it is multiplied by n linear ones. See the example in
the next section.

• According to our numerical experiments, it is better
to exclude sample points (‘outliers’) where the esti-
mated value of λ exceeds a certain threshold, i.e.,
|λi| > C, C ∈ R

+.

• Finally, in order to compute the enhanced representa-
tion, the Bernstein–Bézier representations of the prod-
uct h(x, y) = f(x, y)λ(x, y) is needed. If f(x, y) and
λ(x, y) have degrees m and n, respectively, their prod-
uct is a bivariate polynomial of degree m+n. The new
coefficients can be generated with the help of suitable
product formulas for polynomials in Bernstein form,
cf. [7].

Summing up, it is difficult to decide which combination of
parameters provides the best enhancement. Some numerical
experiences are reported in the next section.

4.4 Three examples

Example 4: Figure 7 shows a bivariate polynomial of de-
gree 4 and its gradient field. The gradient length can be
bounded from below by 1

15 , which leads to the robustness
measure Rf ≤ 30. As one can see, the lowest gradients oc-
cur on the zero contour, which is simply a straight line. In
order to enhance the robustness, we tested all combinations
of the following parameters: C = 1(1)5, c1 = 0(0.05)c2,
c2 = 0(0.05)1 and degree=1(1)5. The best result is shown
in Figure 8, which was obtained by choosing a quartic poly-
nomial λ, and the parameters C = 4, c2 = 1, c1 = 0.25.
Figure 8a shows f , along with the two sets of sampled
points and the mollifying function λ, while Figure 8b vi-
sualizes the enhanced representation.

In order to compare the product λ(x, y)f(x, y) with the
original representation f(x, y), we have to raise the de-
gree of f(x, y), in order to get Bernstein–Bézier repre-
sentations of the same degree. The graph of the product
λf is almost a plane, see Figure 8b. While the robust-
ness measure of the original surface could be bounded by
Rf ≤ 30, the enhanced representation gives the improved
value Rλf ≤ 4.67. Consequently, the new representations
is about six times more robust than the original one.

In this example, the mollifying function has degree 4.
However, this high degree was only possible because of the
simple shape of the curve. According to our numerical ex-
periments, often only a degree 1 enhancement is possible
for more complicated shapes, since mollifying functions of
higher degrees introduced new zero contours or points with
vanishing gradients. This problem can be overcome by ap-
plying iteratively a series of linear enhancements.

Example 3 (continued): We consider again the cubic
polynomial, whose zero contour factors into a parabola
and a straight line. For the original polynomial we found
Rf ≤ 50.50, which is rather poor. The reason for this
is the singular point which is close to the domain. Hence
the lower bound for the gradient was 0.01. Now we apply
several steps of enhancement by linear polynomials. The
results are shown in table 1. The upper bounds for Rf de-
crease successively with each step. Figure 9 compares the
gradient field of the original patch and the gradient field of
the enhanced representation after 5 iterations. Of course,
the effect of the singular point cannot be eliminated, since
the zero contour remains unchanged. Still, the robustness
can be improved significantly. Clearly, this is a rather patho-
logical example, due to the singularity which is close to the
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Figure 7. Bivariate polynomial of degree 4.
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Figure 8. sampled points and mollifying func-
tion (a). Enhanced surface with more uniform
gradients (b).

boundary of the domain. Still, the method leads to a signif-
icant improvement of the robustness.

Example 5: Finally, we have applied the method to data
provided by one of our industrial partners, see Figure 10.
First, an approximate implicit representation of the para-
metric surface shown in the figure has been generated using
a variant of the method described in [9]; is a tensor–product
polynomial of degree 6× 6× 6. Among other applications,
this implicit representation is useful for detecting the self–
intersection (red curve). After restricting the polynomial to
a suitable box, we obtained the grey surface patch which
has very poor robustness measure (3,582). This is due to

degree Rf max |bijk | min ||∇f ||
3 50.50 0.51 0.01
4 16.45 0.45 0.027
5 10.99 0.56 0.051
6 9.89 0.55 0.056
7 9.28 0.51 0.055
8 8.70 0.47 0.054

Table 1. Example 3 – Iterative enhancement
by linear factors
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Figure 10. (Industrial) Example 5 (data cour-
tesy of think3): The robustness measure of
the grey surface patch has been improved
from 3,582 to 2,358.

the neighbouring singularity of the surface. In this case,
the mollifying factor was chosen as a tri–linear polynomial.
The enhanced representation had a robustness measure of
2,358. Consequently, the geometrical errors caused by co-
efficient errors have been reduced to approximately 66%.

5 Concluding remarks

In the case of parametric curves and surfaces, bounds
for the position errors of perturbed curves and surfaces can
easily be generated. In this paper, we generalized this ap-
proach to the implicit case. More precisely, we introduced a
robustness measure which allows to classify implicitly de-
fined curves/surfaces with respect to their stability. The po-
sition error can be bounded by the relative error in the coef-
ficients, multiplied with the robustness measure.

As a heuristic observation, zero contours of functions
with a uniform gradient field (||∇f || ≈ 1) have optimal



stability. Ideally, the graph of such a function would be a
surface of constant slope. This observation leads to the idea
of robustness enhancement: the implicit representation of
a curve (or surface) can be made more robust by multiply-
ing it with a suitable auxiliary factor (called the mollifying
function). As demonstrated by the numerical example, this
approach indeed improves the implicit representation, even
in pathological cases.

Currently, the computation of the mollifying function re-
lies on (1.) generating sample points and (2.) fitting a func-
tion to them. As a matter of future research, we will investi-
gate other, more direct methods for computing the auxiliary
factors. For instance, the auxiliary factor could be gener-
ated by comparing the first terms of the Taylor expansion of
λf with the Taylor expansion of the distance function. This
is also closely related to a more general question: Given
a curve or surface, what is the “optimal” function f (in a
suitable sense) such that the zero contour is the given curve
or surface? Clearly, the distance function (which assigns
– to each point – the distance from the curve) cannot play
this role, since it is not smooth globally. Once a optimal
global representation has been found, it could then be ap-
proximated by polynomials, leading to an optimal robust
representation.
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